Плотность кислорода в сосуде

Плотность кислорода и другие его физические свойства
Кислород растворяется в воде, хотя и в небольших количествах: 100 объемов воды при 0oC растворяют 4,9, а при 20oC – 3,1 объема кислорода. Важнейшие константы кислорода представлены в таблице ниже:
Таблица 1. Физические свойства и плотность кислорода.
Плотность, кг/м3 | 1,42987 – газ 1141 – жидкость |
Температура плавления, oС | -218,35 |
Температура кипения, oС | -182,96 |
Энергия ионизации атома, эВ | 9,32 |
Относительная электроотрицательность | 1,51 |
Радиус атома, нм | 112 |
Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью: стандартная энтальпия атомизации кислорода равна 498 кДж/моль. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500oC она становится заметной.
Твердый кислород синего цвета, а жидкий – голубого. Окраска обусловлена взаимным влиянием молекул.
Известны три аллотропные формы кислорода: кислород O2, озон O3 и крайне неустойчивый тетракислород O4.
Распространенность кислорода в природе
Кислород является самым распространенным элементом земной коры. В атмосфере его находится около 23% (масс.), в составе воды – около 89%, в человеческом организме – около 65%, в песке содержится 53% кислорода, в глине – 56% и т.д. Если подсчитать его количество в воздухе (атмосфере), воде (гидросфере) и доступной непосредственному химическому исследованию части твердой земной коры (литосфере), то окажется, что на долю кислорода приходится примерно 50% их общей массы. Свободный кислород содержится почти исключительно в атмосфере, причем количество его оценивается в 1,2×1015 т. При всей громадности этой величины она не превышает 0,0001 общего содержания кислорода в земной коре.
В связанном состоянии кислород входит в состав почти всех окружающих нас веществ. Так, например, вода, песок, многие горные породы и минералы, встречающиеся в земной коре, содержат кислород. Кислород является составной частью многих органических соединений, например белков, жиров и углеводов, имеющих исключительно большое значение в жизни растений, животных и человека.
Краткое описание химических свойств и плотность кислорода
Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия кислорода как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например оксид азота (II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением.
O2 + 2H2 = 2H2O (550oС, сгорание H2в O2);
O2 + F2 = O2F2 (-183oС, электрический разряд);
O2 + N2↔2NO (электрический разряд);
O2 + S = SO2 (сгорание на воздухе);
5O2 + 4P = P4O10 (сгорание на воздухе);
O2 + C = CO2 (600-700oС, сжигание на воздухе);
O2 + 2Na = Na2O2 (сжигание на воздухе);
O2 + 2Mg = 2MgO (сгорание на воздухе);
3O2 + 4Al = 2Al2O3 (сгорание на воздухе).
Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же количество теплоты, как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота не тратится на нагревание азота воздуха; поэтому температура горения в кислороде значительно выше, чем в воздухе.
Примеры решения задач
Источник
Кислород химический элемент, атомный номер 8, атомная масса 15,9994. Обычно концентрация кислорода (в виде молекул O2) в атмосфере на уровне моря составляет по объему 21%. Кислород немного тяжелее воздуха, вес 1 м3 при 0° и 760 мм рт. ст. равен 1,43 кг. Плотность по отношению к воздуху 1,1. При температуре -182,97°C и давлении 760 мм рт. ст. кислород превращается в голубоватую легко подвижную жидкость, энергично испаряющуюся при нормальной температуре. При этом занимаемый газом объем уменьшается примерно в 850 раз. При нагревании жидкий кислород снова превращается в газ. Вес 1 л жидкого кислорода при температуре -183°C равен 1,14 кг. Жидкий кислород при атмосферном давлении затвердевает при температуре -218,4°C и образует кристаллы голубоватого цвета. Химическая формула – O. В обычных условиях молекула кислорода двухатомная – O2.
Кислород при нормальных условиях (температуре и давлении) представляет собой прозрачный газ без запаха, вкуса и цвета. Не относится к горючим газам, но способен активно поддерживать горение.
По химической активности среди неметаллов он занимает второе место после фтора.
Все элементы, кроме благородных металлов (платина, золото, серебро, родий, палладий и др.) и инертных газов (гелий, аргон, ксенон, криптон и неон), вступают в реакцию окисления и образовывают оксиды. Процесс окисления элементов, как правило, носит экзотермический (с выделением теплоты) характер. Также необходимо учитывать тот факт, что при повышении температуры, давления или использовании катализаторов – скорость реакции окисления резко возрастает.
История открытия кислорода
Открытие кислорода приписывают Джозефу Пристли (Joseph Priestley). У него была лаборатория, оборудованная приборами для собирания газов. Он испытывал его физиологическое действие на себе и на мышах. Пристли установил, что после вдыхания газа некоторое время ощущается приятная легкость. Мыши в герметически закрытой банке с воздухом задыхаются быстрей, чем в банке с O2. Поскольку Пристли был приверженцем флогистонной теории он так и не узнал, что оказалось у него в руках. Он только описал этот газ, даже не догадываясь, что он описал. А вот лавры открытия кислорода принадлежат Антуан Лоран Лавуазье (Antoine Laurent de Lavoisier), который и дал ему имя.
Лавуазье, поставил свой знаменитый опыт, продолжавшийся 12 дней. Он нагревал ртуть в реторте. При кипении образовывалась ее красная окись. Когда реторту охладили, оказалось, что воздуха в ней убыло почти на 1/6 его объема, а остаток ртути весил меньше, чем перед нагревом. Но когда разложили окись ртути сильным прокаливанием, все вернулось: и недостача ртути, и «исчезнувший» кислород.
Впоследствии Лавуазье установил, что этот газ входит в состав азотной, серной, фосфорной кислот. Он ошибочно полагал, что O2 обязательно входит в состав кислот, и поэтому назвал его «оксигениум», что значит «рождающий кислоты». Теперь хорошо известны кислоты, лишенные «оксигениума» (например: соляная, сероводородная, синильная и др.).
Способы получения кислорода
В основном кислород получают тремя способами:
- разделение воздуха путем низкотемпературной ректификации (глубокого охлаждения);
- разложение воды путем электролиза (пропускание электрического тока);
- химический способ.
Из атмосферного воздуха его получают методом глубокого охлаждения, как побочный продукт при получении азота.
Также O2 добывают путем пропускания электрического тока через воду (электролиз воды) с попутным получением водорода.
Химические способ получения малопроизводителен, а, следовательно, и неэкономичен, он не нашел широкого применения и используются в лабораторной практике.
Наверно многие помнят химический опыт, когда в колбе нагревают марганцовку (перманганат калия KMnO4), а потом выделяющийся в процессе нагрева газ собирают в другую колбу?
2KMnO4 = K2MnO4 + MnO2 + O2 ↑
А весь фокус был, когда в данную колбу помещали тлеющую лучинку и она вспыхивала ярким пламенем и учитель объяснял, что выделившийся газ – O2, который поддерживает горение. И что процесс горения – это не что иное, как процесс окисления.
Применение кислорода
Помимо того, что все живые существам в природе, за исключением немногих микроорганизмов, при дыхании потребляют кислород, он широко применяется во многих отраслях промышленности: металлургической, химической, машиностроении, авиации, ракетостроении и даже в медицине.
В химической промышленности его применяет:
- при получении ацетилена из природного газа (метана);
- при производстве кислот (азотной, серной);
- для газификации твердого топлива;
- для производства аммиака, формальдегида и метанола.
В металлургии его используют:
- при получении цветных металлов из руд;
- при выплавке чугуна в доменных печах;
- при выплавке стали в мартеновских и электрических печах;
- кислородно-конверторной выплавке стали.
В медицинских целях больным, у которых нарушена нормальная деятельность органов дыхания или кровообращения, искусственно увеличивают содержание O2 в воздухе или дают дышать непродолжительное время чистым O2. Медицинский кислород, выпускаемый ГОСТ 5583, особенно тщательно очищают от всех примесей.
Применение кислорода в сварке
Сам по себе O2 является негорючим газом, но из-за свойства активно поддерживать горение и увеличения интенсивности (интенсификации) горения газов и жидкого топлива его используют в ракетных энергетических установках и во всех процессах газопламенной обработки. В таких процессах газопламенной обработки, как газовая сварка, поверхностная закалка высокая температура пламени достигается путем сжигания горючих газов в O2, а при газовой резке благодаря ему происходит окисление и сгорание разрезаемого металла.
При полуавтоматической сварке (MIG/MAG) кислород O2 используют как компонент защитных газовых смесей с аргоном (Ar) или углекислым газом (CO2).
Кислород добавляют в аргон при полуавтоматической сварке легированных сталей для обеспечения устойчивости горения дуги и струйного переноса расплавленного металла в сварочную ванну. Дело в том, что как поверхностно активный элемент он уменьшает поверхностное натяжение жидкого металла, способствуя образованию на конце электрода более мелких капель.
При сварке низколегированных и низкоуглеродистых сталей полуавтоматом O2 добавляют в углекислый газ для обеспечения глубокого проплавления и хорошего формирования сварного шва, а также для уменьшения разбрызгивания.
Чаще всего кислород используют в газообразном виде, а в виде жидкости используют только при его хранении и транспортировке от завода-изготовителя до потребителей.
Вредность и опасность кислорода
За внешней безобидностью скрывается очень опасный газ, но об этом на нашем сайте опубликована статья про маслоопасность и взрывоопасность кислорода и мы не будем здесь дублировать информацию.
Хранение и транспортировка кислорода
Кислород газообразный технический и медицинский выпускают по ГОСТ 5583.
Хранят и транспортируют его в стальных баллонах ГОСТ 949 под давлением 15 МПа. Кислородные баллоны окрашены в синий цвет с надписью черными буквами «КИСЛОРОД».
Жидкий кислород выпускается по ГОСТ 6331. O2 находится в жидком состоянии только при получении, хранении и транспортировке. Для газовой сварки или газовой резки его необходимо снова превратить в газообразное состояние.
Характеристики кислорода
Характеристики O2 представлены в таблицах ниже:
Коэффициент перевода объема и массы O2 при Т=15°С и Р=0,1 МПа
Масса, кг | Объем | |
---|---|---|
Газ, м3 | Жидкость, л | |
1,337 | 1 | 1,172 |
1,141 | 0,853 | 1 |
1 | 0,748 | 0,876 |
Коэффициенты перевода объема и массы O2 при Т=0°С и Р=0,1 МПа
Масса, кг | Объем | |
---|---|---|
Газ, м3 | Жидкость, л | |
1,429 | 1 | 1,252 |
1,141 | 0,799 | 1 |
1 | 0,700 | 0,876 |
Кислород в баллоне
Наименование | Объем баллона, л | Масса газа в баллоне, кг | Объем газа (м3) при Т=15°С, Р=0,1 МПа |
---|---|---|---|
O2 | 40 | 8,42 | 6,3 |
Благодаря этой таблице теперь можно легко дать ответы на вопросы, которые очень часто задают сварщики:
- Сколько кислорода в баллоне в м3?
Ответ: в 40 литровом баллоне 6,3 м3
- Сколько в баллоне кислорода?
Ответ: в 40 литровом баллоне 6,3 м3 или 8,42 кг
- Сколько весит баллон кислорода?
Ответ:
58,5 кг – масса пустого баллона из углеродистой стали согласно ГОСТ 949;
8,42 – кг масса кислорода в баллоне;
Итого: 58,5 + 8,42 = 69,92 кг вес баллона с кислородом.
Для того, чтобы приблизительно узнать сколько кислорода в баллоне, нужно вместимость баллона (м3) умножить на давление (МПа). Например, если вместимость баллона 40 литров (0,04 м3), а давление газа 15 МПа, то объем кислорода в баллоне равен 0,04×15=6 м3.
Давление кислорода в баллоне при различной температуре окружающей среды
Температура окружающей среды | Давление в баллоне, МПа |
---|---|
-40 | 10,4 |
-30 | 11,3 |
-20 | 12,1 |
-10 | 12,9 |
13,7 | |
+10 | 14,5 |
+20 | 15,3 |
Источник
Таблица содержит значения плотности газов при нормальных условиях (при 0°С и 760 мм. рт. ст.). Будет полезна для школьников и студентов при изучении химии и физики, а также для подготовки к экзаменам и ЕГЭ.
Смотрите также таблицу плотность металлов
Газы | Формула | Плотность при нормальных условиях ρ, кг/м3 |
Азот | N2 | 1,2505 |
Аммиак | NH3 | 0,7714 |
Аргон | Ar | 1,7839 |
Ацетилен | C2H2 | 1,1709 |
Ацетон | C3H6O | 2,595 |
Бор фтористый | BF3 | 2,99 |
Бромистый водород | HBr | 3,664 |
Н-бутан | C4H10 | 2,703 |
Изо-бутан | C4H10 | 2,668 |
Н-бутиловый спирт | C4H10O | 3,244 |
Вода | H2O | 0,768 |
Водород | H2 | 0,08987 |
Воздух (сухой) | – | 1,2928 |
Н-гексан | C6H14 | 3,845 |
Гелий | He | 0,1785 |
Н-гептан | C7H16 | 4,459 |
Германия тетрагидрид | GeH4 | 3,42 |
Двуокись углерода | CO2 | 1,9768 |
Н-декан | C10H22 | 6,35 |
Диметиламин | (CH3)2NH | 1,966* |
Дифтордихлорметан | CF2Cl2 | 5,51 |
Дифенил | C12H10 | 6,89 |
Дифениловый эфир | C12H10O | 7,54 |
Дихлорметан | CH2Cl2 | 3,79 |
Диэтиловый эфир | C4H10O | 3,30 |
Закись азота | N2O | 1,978 |
Йодистый водород | HI | 5,789 |
Кислород | O2 | 1,42895 |
Кремний фтористый | SiF4 | 4,9605 |
Кремний гексагидрид | Si2H5 | 2,85 |
Кремний тетрагидрид | SiH4 | 1,44 |
Криптон | Kr | 3,74 |
Ксенон | Xe | 5,89 |
Метан | CH4 | 0,7168 |
Метиламин | CH5N | 1,388 |
Метиловый спирт | CH4O | 1,426 |
Мышьяк фтористый | AsF5 | 7,71 |
Неон | Ne | 0,8999 |
Нитрозилфторид | NOF | 2,176* |
Нитрозилхлорид | NOCl | 2,9919 |
Озон | O3 | 2,22 |
Окись азота | NO | 1,3402 |
Окись углерода | CO | 1,25 |
Н-октан | C8H18 | 5,03 |
Н-пентан | C5H12 (CH3(CH2)3СН3) | 3,457 |
Изо-пентан | C5H12 (СН3)2СНСН2СН3 | 3,22 |
Пропан | C3H8 | 2,0037 |
Пропилен | C3H6 | 1,915 |
Радон | Rn | 9,73 |
Силан диметил | SiH2(CH3)2 | 2,73 |
Силан метил | SiH3CH3 | 2,08 |
Силан хлористый | SiH3Cl | 3,03 |
Cилан трифтористый | SiHF3 | 3,89 |
Стибин (15°С, 754 мм.рт.ст.) | SbH3 | 5,30 |
Селеновая кислота | H2Se | 3,6643 |
Сернистый газ | SO2 | 2,9263 |
Сернистый ангидрид | SO3 | 3,575 |
Сероводород | H2S | 1,5392 |
Сероокись углерода | COS | 2,72 |
Сульфурил фтористый | SO2F2 | 3,72* |
Триметиламин | (CH3)3N | 2,58* |
Триметилбор | (CH3)3B | 2,52 |
Фосфористый водород | PH3 | 1,53 |
Фосфор фтористый | PF3 | 3,907* |
Фосфор оксифторид | POF3 | 4,8 |
Фосфор пентафторид | PF5 | 5,81 |
Фреон-11 | CF3CI | 6,13 |
Фреон-12 (дифтордихлорметан) | CF2CI2 | 5,51 |
Фреон-13 | CFCI3 | 5,11 |
Фтор | F2 | 1,695 |
Фтористый кремний | SiF4 | 4,6905 |
Фтористый метил | CH3F | 1,545 |
Фторокись азота | NO2F | 2,9 |
Хлор | Cl2 | 3,22 |
Хлор двуокись | ClO2 | 3,09* |
Хлор окись | Cl2O | 3,89* |
Хлористый водород | HCl | 1,6391 |
Хлористый метил (метилхлорид) | CH3Cl | 2,307 |
Хлористый этил | C2H5Cl | 2,88 |
Хлороформ | CHCl3 | 5,283 |
Хлорокись азота | NO2Cl | 2,57 |
Циан, дициан | C2N2 | 2,765 (2,335*) |
Цианистая кислота | HCN | 1,205 |
Этан | C2H6 | 1,356 |
Этиламин | C2H7N | 2,0141 |
Этилен | C2H4 | 1,2605 |
Этиловый спирт | C2H6O | 2,043 |
_______________
Источник информации:
И.К.Кикоин. Таблицы физических величин./ – СПб.: 1976.
Источник
Команда “Газы!” была объявлена еще две недели назад. И что?! Легкие задачи порешали и расслабились?! Или вы думаете, что задачи на газы касаются только 28-х заданий ЕГЭ?! Как бы не так! Если газов пока еще не было в 34-х заданиях, это ничего не значит! Задач на электролиз тоже не было в ЕГЭ до 2018 года. А потом как врезали, мама не горюй! Обязательно прочитайте мою статью “Тайны задач по химии? Тяжело в учении – легко в бою!”. В этой статье очень подробно рассказывается о новых фишках на электролиз. Статья вызвала шквал самых разных эмоций у преподавателей химии. До сих пор мне и пишут, и звонят, и благодарят, и бьются в конвульсиях. Просто цирк с конями, в котором я – зритель в первом ряду.
Однако, вернемся к нашим баранам, вернее, Газам. Я прошла через огонь и воду вступительных экзаменов и знаю точно – хочешь завалить абитуриента, дай ему задачу на Газы. Почитайте на досуге сборник задач И.Ю. Белавина. Я процитирую одну такую “мозгобойню”, чтобы вам жизнь медом не казалась. Попробуйте решить.
И.Ю. Белавин, 2005, задача 229
“Два из трех газов (сероводород, водород и кислород) смешали и получили газовую смесь, плотность которой оказалась равной плотности оставшегося газа. Полученную газовую смесь вместе с равным ей объемом третьего газа под давлением поместили в замкнутый сосуд емкостью 4 л, содержавший азот при н.у. и нагревали при 600 С до окончания химических реакций, затем постепенно охладили. Определите массы веществ, содержавшихся в сосуде после охлаждения, если плотность газовой смеси в сосуде перед нагреванием равнялась 9,25г/л. (Ответ: m(S) = 7,5 г, m(SO2) = 15 г, m(Н2О) = 9 г)”
Ну как, решили? Нет?! А ваши репетиторы?! Извините, это был риторический вопрос. Кстати, мои ученики, абитуриенты 2003-2008 гг. такие задачи щелкали, как семечки, на экзаменах во 2-й медицинский (теперь РНИМУ им. Н.И. Пирогова). Надеюсь, вам понятно, что 34-м задачам ЕГЭ еще есть куда усложняться, perfectio interminatus est (нет предела совершенству), с газами нужно работать, работать и работать. Поэтому команду “Газы!” отменять рано. Итак, поехали!
Сегодня мы поговорим о газовых смесях, затронем понятие плотности газа (абсолютной и относительной), средней молярной массы, решим задачи: определение средней молярной массы и плотности газа по компонентам смеси и наоборот.
• Газовая смесь – смесь отдельных газов НЕ вступающих между собой в химические реакции. К смесям газов относятся: воздух (состоит из азота, кислорода, углекислого газа, водяного пара и др.), природный газ (смесь предельных и непредельных углеводородов, оксида углерода, водорода, сероводорода, азота, кислорода, углекислого газа и др.), дымовые газы (содержат азот, углекислый газ, пары воды, сернистый газ и др.) и др.
• Объемная доля – отношение объема данного газа к общему объему смеси, показывает, какую часть общего объема смеси занимает данный газ, измеряется в долях единицы или в процентах.
• Мольная доля – отношение количества вещества данного газа к общему количеству вещества смеси газов, измеряется в долях единицы или в процентах.
• Плотность газа (абсолютная) – определяется как отношение массы газа к его объему, единица измерения (г/л). Физический смысл абсолютной плотности газа – масса 1 л, поэтому молярный объем газа (22,4 л при н.у. t° = 0°C, P = 1 атм) имеет массу, численно равную молярной массе.
• Относительная плотность газа (плотность одного газа по другому) – это отношение молярной массы данного газа к молярной массе того газа, по которому она находится
• Средняя молярная масса газа – рассчитывается на основе молярных масс составляющих эту смесь газов и их объемных долей
Настоятельно рекомендую запомнить среднюю молярную массу воздуха Мср(в) = 29 г/моль, в заданиях ЕГЭ часто встречается.
Обязательно посетите страницу моего сайта “Изучаем Х-ОбХ-04. Закон Авогадро. Следствия из закона Авогадро. Нормальные условия. Молярный объем газа. Абсолютная и относительная плотность газа. Закон объемных отношений” и сделайте конспекты по теории. Затем возьмите бумагу и ручку и решайте задачи вместе со мной.
ВАНГУЮ: чует мое сердце, что ЕГЭ по химии 2019 года устроит нам газовую атаку, а противогазы не выдаст!
Задача 1
Определить плотность по азоту газовой смеси, состоящей из 30% кислорода, 20% азота и 50% углекислого газа.
Задача 2
Вычислите плотность по водороду газовой смеси, содержащей 0,4 моль СО2, 0,2 моль азота и 1,4 моль кислорода.
Задача 3
5 л смеси азота и водорода имеют относительную плотность по водороду 12. Определить объем каждого газа в смеси.
Несколько задач со страницы моего сайта
Задача 4
Плотность по водороду пропан-бутановой смеси равна 23,5. Определите объемные доли пропана и бутана
Задача 5
Газообразный алкан объемом 8 л (н.у.) имеет массу 14,28 г. Чему равна его плотность по воздуху
Задача 6
Плотность паров альдегида по метану равна 2,75. Определите альдегид
Ну как? Пошло дело? Если туго, вернитесь к задачам и решайте их самостоятельно до тех пор, пока не щелкнет! А для стимуляции – десерт в виде еще одной задачи И.Ю. Белавина на газы. Наслаждайтесь ее решением самостоятельно!
И.Ю. Белавин, 2005, задача 202
“Сосуд емкостью 5,6 л при н.у. заполнили метаном, затем нагрели до высокой температуры, в результате чего произошло частичное разложение метана. Определите массу образовавшейся сажи, если известно, что после приведения к нормальным условиям объем полученной газовой смеси оказался в 1,6 раза больше объема исходного метана, эта газовая смесь обесцвечивает бромную воду и имеет плотность по воздуху 0,2931. (Ответ: m(C) = 0,6 г)”
Задачи И.Ю. Белавина – это крутой драйв! Попробуйте порешать, и вы откажетесь от просмотра любых ужастиков, поскольку запасетесь адреналином надолго! Но нам нужно спуститься на землю к ЕГЭ, простому и надежному, как первый советский трактор. Кстати, у меня в коллекции припасено немало сюрпризов с газовыми фишками, собранными за все годы работы и бережно хранимыми. Думаю, пришло время сказать им: “И снова здравствуйте!”, поскольку ЕГЭ с каждым годом становится “все чудесатее и чудесатее”. Но это уже совсем другая история. Читайте мои статьи – и вы подстелите соломку под свою ЕГЭшную попу.
Вы готовитесь к ЕГЭ и хотите поступить в медицинский? Обязательно посетите мой сайт Репетитор по химии и биологии https://repetitor-him.ru. Здесь вы найдете огромное количество задач, заданий и теоретического материала, познакомитесь с моими учениками, многие из которых уже давно работают врачами. Позвоните мне +7(903)186-74-55, приходите ко мне на курс, на бесплатные Мастер-классы “Решение задач по химии”. Я с удовольствием вам помогу.
Репетитор по химии и биологии кбн В.Богунова
Источник