Пневматические испытания сосудов эмиссия
(согласно ПБ-03-593-03)
Основные положения по применению акустико-эмиссионного метода контроля сосудов, котлов, аппаратов и технологических трубопроводов
Метод АЭ основан на регистрации и анализе акустических волн, возникающих в процессе пластической деформации и разрушения (роста трещин) контролируемых объектов. Это позволяет формировать адекватную систему классификации дефектов и критерии оценки состояния объекта, основанные на реальном влиянии дефекта на объект. Другим источником АЭ-контроля является истечение рабочего тела (жидкости или газа) через сквозные отверстия в контролируемом объекте.
Характерными особенностями метода АЭ контроля, определяющими его возможности и область применения, являются следующие:
- метод АЭ-контроля обеспечивает обнаружение и регистрацию только развивающихся дефектов, что позволяет классифицировать дефекты не по размерам, а по степени их опасности;
- метод АЭ-контроля обладает весьма высокой чувствительностью к растущим дефектам – позволяет выявить в рабочих условиях приращение трещины порядка долей мм. Предельная чувствительность акустико-эмиссионной аппаратуры по теоретическим оценкам составляет порядка 1*10-6 мм2, что соответствует выявлению скачка трещины протяженностью 1 мкм на величину 1 мкм;
- свойство интегральности метода АЭ-контроля обеспечивает контроль всего объекта с использованием одного или нескольких преобразователей АЭ-контроля, неподвижно установленных на поверхности объекта;
- метод АЭ позволяет проводить контроль различных технологических процессов и процессов изменения свойств и состояния материалов;
- положение и ориентация объекта не влияет на выявляемость дефектов;
- метод АЭ имеет меньше ограничений, связанных со свойствами и структурой материалов;
- особенностью метода АЭ, ограничивающей его применение, является в ряде случаев трудность выделения сигналов АЭ из помех. Это объясняется тем, что сигналы АЭ являются шумоподобными, поскольку АЭ есть стохастический импульсный процесс. Поэтому, когда сигналы АЭ малы по амплитуде, выделение полезного сигнала из помех представляет собой сложную задачу.
При развитии дефекта, когда его размеры приближаются к критическому значению, амплитуда сигналов АЭ и темп их генерации резко увеличивается, что приводит к значительному возрастанию вероятности обнаружения такого источника АЭ.
Метод АЭ может быть использован для контроля объектов при их изготовлении, в процессе приемочных испытаний, при периодических технических обследованиях, в процессе эксплуатации.
Целью АЭ-контроля является обнаружение, определение координат и слежение (мониторинг) за источниками акустической эмиссии, связанными с несплошностями на поверхности или в объеме стенки объекта контроля, сварного соединения и изготовленных частей и компонентов. Все индикации, вызванные источниками АЭ, должны быть при наличии технической возможности оценены другими методами неразрушающего контроля. АЭ-метод может быть использован также для оценки скорости развития дефекта в целях заблаговременного прекращения испытаний и предотвращения разрушения изделия. Регистрация АЭ позволяет определить образование свищей, сквозных трещин, протечек в уплотнениях, заглушках и фланцевых соединениях.
АЭ-контроль технического состояния обследуемых объектов проводится только при создании в конструкции напряженного состояния, инициирующего в материале объекта работу источников АЭ. Для этого объект подвергается нагружению силой, давлением, температурным полем и т.д. Выбор вида нагрузки определяется конструкцией объекта и условиями его работы, характером испытаний и приводится в “Программе работ по АЭ контролю объектов”.
Схемы применения акустико-эмиссионного метода контроля
Метод АЭ рекомендуется использовать для контроля промышленных объектов по следующим схемам, представляющим собой, как правило, варианты сочетания с другими методами неразрушающего контроля.
- Проводят АЭ контроль объекта. В случае выявления источников АЭ в месте их расположения проводят контроль одним из регламентируемых методов неразрушающего контроля (ПК): ультразвуковым (УЗК), радиационным, магнитным (МПД), проникающими веществами и другими, предусмотренными нормативно-техническими документами. Данную схему рекомендуется использовать при контроле объектов, находящихся в эксплуатации. При этом сокращается объем применяемых методов неразрушающего контроля, поскольку в случае использования регламентируемых методов необходимо проведение сканирования по всей поверхности (объему) контролируемого объекта.
- Проводят контроль одним или несколькими методами НК. При обнаружении недопустимых (по нормам регламентируемых методов контроля) дефектов или при возникновении сомнения в достоверности применяемых методов НК проводят контроль объекта с использованием метода АЭ. Окончательное решение о допуске объекта в эксплуатацию или ремонте обнаруженных дефектов принимают по результатам проведенного АЭ контроля.
- В случае наличия в объекте дефекта, выявленного одним из методов НК, метод АЭ используют для слежения за развитием этого дефекта. При этом может быть использован экономный вариант системы контроля, с применением одноканальной или малоканальной конфигурации акустико-эмиссионной аппаратуры.
- Метод АЭ в соответствии с требованиями нормативно-технических документов к эксплуатации сосудов, работающих под давлением, применяют при пневмоиспытании объекта в качестве сопровождающего метода, повышающего безопасность проведения испытаний. В этом случае целью применения АЭ контроля служит обеспечение предупреждения возможности катастрофического разрушения. Рекомендуется использовать метод АЭ в качестве сопровождающего метода и при гидроиспытании объектов.
- Метод АЭ может быть использован для оценки остаточного ресурса и решения вопроса относительно возможности дальнейшей эксплуатации объекта. Оценка ресурса производится с использованием специально разработанных методик, согласованных в установленном порядке. При этом достоверность результатов зависит от объема и качества априорной информации о моделях развития повреждений и состояния материала контролируемого объекта
Порядок применения метода акустической эмиссии
- АЭ контроль проводят во всех случаях, когда он предусмотрен нормативно-техническими документами или технической документацией на объект.
- АЭ контроль проводят во всех случаях, когда нормативно-технической документацией на объект предусмотрено проведение неразрушающего контроля одним из регламентируемых методов, но по техническим или другим причинам проведение такого контроля невозможно.
- Допускается использование АЭ контроля вместо регламентируемых методов неразрушающего контроля по согласованию в установленном порядке.
Оценка результатов АЭ контроля
После обработки принятых сигналов результаты контроля представляют в виде идентифицированных и классифицированных источников АЭ.
При принятии решения по результатам АЭ контроля используют данные, которые должны содержать сведения обо всех источниках АЭ, их классификации и сведения относительно источников АЭ, параметры которых превышают допустимый уровень. Допустимый уровень источника АЭ устанавливает исполнитель при подготовке к АЭ контролю конкретного объекта.
Классификацию источников АЭ выполняют с использованием следующих параметров сигналов: суммарного счета, числа импульсов, амплитуды (амплитудного распределения), энергии (либо энергетического параметра), скорости счета, активности, концентрации источников АЭ. В систему классификации также входят параметры нагружения контролируемого объекта и время.
Выявленные и идентифицированные источники АЭ рекомендуется разделять на четыре класса:
- Источник I класса – пассивный источник.
- Источник II класса – активный источник.
- Источник III класса – критически активный источник.
- Источник IV класса – катастрофически активный источник.
Выбор системы классификации источников АЭ и допустимого уровня (класса) источников рекомендуется осуществлять каждый раз при АЭ контроле конкретного объекта, используя данные, приведенные в приложении 3 (ПБ 03-593-03). В некоторых зарубежных нормативно-технических документах приняты другие системы классификации (приложение 3 ПБ).
Рекомендуемые действия персонала, выполняющего АЭ контроль при выявлении источников АЭ того или иного класса, следующие:
Источник | Класс | Рекомендуемые действия |
Пассивный | I | регистрируют для анализа динамики его последующего развития |
Активный | II |
|
Критически активный | III |
|
Катастрофически активный | IV |
|
Каждый более высокий класс источника АЭ предполагает выполнение всех действий, определенных для всех источников более низких классов.
При положительной оценке технического состояния объекта по результатам АЭ контроля или отсутствии зарегистрированных источников АЭ применение дополнительных видов неразрушающего контроля не требуется. Если интерпретация результатов АЭ контроля неопределенна, рекомендуется использовать дополнительные виды неразрушающего контроля.
Окончательная оценка допустимости выявленных источников АЭ и индикаций при использовании дополнительных видов НК осуществляется с использованием измеренных параметров дефектов на основе нормативных методов механики разрушения, методик по расчету конструкций на прочность и других действующих нормативных документов.
Правила (ПБ-03-593-03) предназначены для применения при проведении акустико-эмиссионного контроля:
- Емкостного, колонного, реакторного, теплообменного оборудования химических, нефтехимических и нефтеперерабатывающих производств
- Изотермических хранилищ
- Хранилищ сжиженных углеводородных газов под давлением
- Резервуаров нефтепродуктов и агрессивных жидкостей
- Оборудования аммиачных холодильных установок
- Сосудов, аппаратов
- Технологических трубопроводов (газопроводов, продуктопроводов, промысловых магистральных трубопроводов нефти и газа)
- Трубопроводов пара и горячей воды и их элементов.
Сравнительная оценка методов неразрушающего контроля (НК) и метода акустической эмиссии (АЭ):
Традиционные методы НК | Метод акустической эмиссии |
Большая трудоемкость подготовительных работ и контроля | Трудоемкость подготовительных работ и контроля в десятки (сотни) раз меньше |
Невозможность распознавания дефектов, которые развиваются под действием эксплуатационных нагрузок | Обнаруживаются и локализуются наиболее опасные (развивающиеся под действием эксплуатационных нагрузок) виды дефектов |
Для проведения контроля требуется полное прекращение эксплуатации объекта | Контроль может осуществляться в условиях реальной эксплуатации или при воздействии эквивалентных испытательных нагрузок при кратковременном останове |
Версия для печати
Источник
Пневматические испытания на прочность и герметичность технологического оборудования.
Наша компания предоставляет услуги по сопровождению методом акустической эмиссии пневматических испытаний на прочность технологических трубопроводов, сосудов и аппаратов, работающих под давлением, а также любого другого технологического оборудования (технологические трубопроводы низкого и высокого давления, емкостное оборудование, криогенное оборудование, оборудование аммиачных холодильных установок, вакуумное оборудование, оборудование прессов и многое другое).
Согласно требований п.186 ФНП ОРПиД (утв.приказом №116 от 25.03.2014) гидравлическое испытание трубопроводов с рабочим давлением не более 10 МПа, а также сосудов разрешается заменять пневматическим испытанием (сжатым воздухом, инертным газом или смесью воздуха с инертным газом) при условии одновременного контроля методом акустической эмиссии.
Все трубопроводы, на которые распространяется ГОСТ 32569 «Трубопроводы технологические стальные», после окончания монтажных и сварочных работ, термообработки (при необходимости), контроля качества сварных соединений неразрушающими методами, а также после установки и окончательного закрепления всех опор, подвесок и оформления документов, подтверждающих качество выполненных работ, подвергают наружному осмотру, испытанию на прочность и плотность, и при необходимости – дополнительным испытаниям на герметичность с определением падения давления.
Испытанию, как правило, подвергают весь трубопровод полностью. Допускается проводить испытание трубопровода отдельными участками, при этом разбивку на участки проводит монтажная организация по согласованию с заказчиком.
Испытание на прочность и плотность трубопроводов с номинальным давлением PN 100 может быть гидравлическим или пневматическим.
Замена гидравлического испытания на пневматическое допускается в следующих случаях (в сопровождении с контролем методом акустической эмиссии):
а) если несущая строительная конструкция или опоры не рассчитаны на заполнение трубопровода водой;
б) при температуре окружающего воздуха ниже 0°С и опасности промерзания отдельных участков трубопровода;
в) если применение жидкости (воды) недопустимо, на этот вид испытаний разрабатывается инструкция.
Испытание на прочность и плотность пневматически с обязательным контролем методом акустической эмиссии проводится:
а) для трубопроводов, расположенных в действующих цехах;
б) для трубопроводов, расположенных на эстакадах, в каналах или лотках рядом с действующими трубопроводами;
в) при испытательном давлении менее 0,4 МПа (4 кгс/см ), если на трубопроводах установлена арматура из серого чугуна.
Испытание на прочность и плотность трубопроводов на номинальное давление PN свыше 100 должно проводиться гидравлическим способом. В технически обоснованных случаях для трубопроводов на номинальное давление PN до 500 допускается (по согласованию с надзорными органами) замена гидравлического испытания на пневматическое при условии контроля этого испытания методом акустической эмиссии (АЭ)
При испытании на прочность и плотность испытываемый трубопровод (участок) должен быть отсоединен от аппаратов и других трубопроводов заглушками. Использование запорной арматуры для отключения испытываемого трубопровода (участка) не допускается.
Перед проведением испытаний вся запорная арматура, установленная на трубопроводе, должна быть полностью открыта, сальники уплотнены; на месте регулирующих клапанов и измерительных устройств должны быть установлены монтажные катушки; все врезки, штуцера, бобышки для контрольно-измерительных приборов должны быть заглушены.
ЧИТАЙТЕ ТАКЖЕ:
Паспортизация оборудования
Техническое освидетельствование
Визуальный и измерительный контроль
Источник
ЗНАЕТЕ ЛИ ВЫ?
Гидравлическому испытанию подлежат все сосуды после их изготовления. Сосуды, изготовление которых заканчивается на месте установки, транспортируемые на место монтажа частями, подвергаются гидравлическому испытанию на месте монтажа. Сосуды, имеющие защитное покрытие или изоляцию, подвергаются гидравлическому испытанию до наложения покрытия. Гидравлическое испытание сосудов, за исключением литых, должно проводиться пробным давлением. Применяется вода с температурой не ниже 5 °С и не выше 40 °С. Давление при испытании должно контролироваться двумя манометрами. После выдержки под пробным давлением давление снижается до проектного, при котором производят осмотр наружной поверхности сосуда, всех его разъемных и сварных соединений. Сосуд считается выдержавшим гидравлическое испытание, если не обнаружено: – течи, трещин, слезок, потения в сварных соединениях и на основном металле; – течи в разъемных соединениях; – видимых остаточных деформаций, падения давления по манометру. Гидравлическое испытание допускается заменять пневматическим при условии контроля этого испытания методом акустической эмиссии. Пневматические испытания должны проводиться по инструкции сжатым воздухом или инертным газом. Время выдержки сосуда под пробным давлением устанавливается разработчиком проекта, но должно быть не менее 5 мин. Затем давление в испытываемом сосуде должно быть снижено до проектного и произведен осмотр сосуда. Результаты испытаний заносятся в паспорт сосуда.
Содержание и обслуживание сосудов, работающих под давлением. Аварийная остановка и ремонт сосудов.
К обслуживанию допускаются лица не моложе 18 лет, прошедшие медосмотр, обучение и проверку знаний, и имеющие удостоверение на право обслуживания. Подготовку и проверку знаний проводят в учебно-курсовых комбинатах, имеющих лицензию. Выдаются удостоверения, подписанные председателем комиссии. Отдельно проводится аттестация персонала, обслуживающего сосуды с вредными веществами. Периодическая проверка знаний персонала, обслуживающего сосуды, должна проводиться не реже одного раза в 12 мес. Внеочередная проверка знаний проводится: при переходе в другую организацию, изменения в инструкциях. Результаты проверки знаний оформляются протоколами. Организацией-владельцем сосуда должна быть разработана и утверждена инструкция по режиму работы и безопасному обслуживанию сосудов. Инструкция должна находиться на рабочих местах и выдаваться под расписку.
Аварийная остановка сосудов. Сосуд должен быть немедленно остановлен в случаях, предусмотренных инструкцией по режиму работы и безопасному обслуживанию, в частности:- если давление в сосуде поднялось выше разрешенного;- при выявлении неисправности предохранительных устройств в результате повышения давления;- при обнаружении в сосуде неплотностей, выпучин, разрыва прокладок;- при неисправности манометра и невозможности определить давление по другим приборам;- при возникновении пожара. Порядок аварийной остановки сосуда должен быть указан в инструкции. Причины аварийной остановки сосуда должны записываться в сменный журнал.
Ремонт сосудов. Для поддержания сосудов в работоспособном состоянии администрация организации-владельца сосуда обязана проводить своевременный ремонт сосудов по утвержденному графику ремонта. При ремонте следует соблюдать требования техники безопасности. Работы по ремонту выполняются организациями, имеющими лицензию Ремонт с применением сварки (пайки) сосудов должен проводиться по технологии, разработанной изготовителем, конструкторской организацией. До начала производства работ внутри сосуда, соединенного с другими работающими сосудами общим трубопроводом, сосуд должен быть отделен от них заглушками или отсоединен.
Общие положения безопасной эксплуатации котлов. Основные контрольно-измерительные и предохранительные устройства.
К ним относ. котлы, а также автономные пароперегреватели и экономайзеры. Проектирование, изготовление, монтаж и наладка котлов должны выполняться в соответствии с правилами устройства и безопасной эксплуатации паровых и водогрейных котлов, утвержденными специализированными организациями, располагающими условиями выполнения соответствующих работ и подготовленными работниками. Конструкция котла и его основных частей должна обеспечивать надежность, долговечность и безопасность эксплуатации на расчетных параметрах в течение расчетного ресурса безопасной работы котла. Электроборудование и заземление должны быть выполнены в соответствие с ПУЭ и ПТБ. Ростехнадзор устанавливает требования к проектированию, монтажу, ремонту и эксплуатации котлов с давлением 0,07 МПа и темп. Воды свыше 115оС. Правила не распространяются на: – котлы, устанавливаемые на морских и речных судах; – энергопоездов; – вагонов железнодорожного состава; – котлы с электрическим обогревом; – котлы с объемом парового и водяного пространства менее 10 л.
Арматура. В качестве предохранительных устройств допускается применять: – рычажно-грузовые предохранительные клапаны прямого действия; – пружинные; – импульсные. На каждом паровом котле должно быть установлено не менее двух указателей уровня воды прямого действия. Каждый указатель уровня воды должен иметь самостоятельное подключение к барабану котла и снабжен арматурой. На каждом паровом котле должен быть установлен манометр, показывающий давление пара. На котлах устанавливаются измерители температуры Различного типа: термометры расширения; термометры (темп. 500-2000); электротермометром Сопротивления (до 500). Арматура должна иметь четкую маркировку на корпусе, в которой должны быть указаны: – наименование или товарный знак организации-изготовителя; – условный проход; – условное давление и температура среды; – направление потока среды. Соответствие арматуры требованиям стандартов должно быть подтверждено паспортом. На каждом котле должны быть предусмотрены приборы безопасности, обеспечивающие своевременное и надежное автоматическое отключение котла или его элементов при недопустимых отклонениях от заданных режимов эксплуатации. На котлах должны быть установлены автоматически действующие звуковые и световые сигнализаторы верхнего и нижнего предельных положений уровней воды.
Источник