Постоянные величины в газах в закрытом сосуде

Постоянные величины в газах в закрытом сосуде thumbnail

5.4. Практическое применение уравнения состояния идеального газа

5.4.2. Уравнение состояния для газа в закрытом сосуде

При рассмотрении идеального газа, находящегося в закрытом сосуде (баллоне), необходимо учитывать, что изменение термодинамических параметров происходит при постоянной массе газа.

Для идеального газа, находящегося в закрытом сосуде, необходимо учитывать следующее:

  • масса газа, находящегося в закрытом сосуде, вследствие изменения его термодинамических параметров не изменяется:

m = const;

  • объем газа, заполняющего сосуд определенного объема, также фиксирован: V = const;
  • постоянными также остаются следующие параметры газа:

ρ = const; ν = const; n = const;

где ρ – плотность газа; ν – количество вещества (газа); n – концентрация молекул (атомов) газа.

Для идеального газа, находящегося в закрытом сосуде и изменяющего свое состояние, уравнение Менделеева – Клапейрона записывается в виде системы (рис. 5.8):Рис. 5.8

p 1 V = ν R T 1 , p 2 V = ν R T 2 , }

где p 1, T 1 – давление и температура газа в начальном состоянии; p 2, T 2 – давление и температура газа в конечном состоянии; V – объем баллона; ν – количество газа; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Термин избыточное давление, встречающийся в задачах об идеальном газе в закрытом сосуде (баллоне), означает абсолютную разность между давлением газа, находящегося в сосуде, и давлением на стенки сосуда снаружи:

p изб = |p − p 0|,

где p – давление газа, находящегося внутри сосуда; p 0 – давление (атмосферное либо гидростатическое) на стенки сосуда снаружи.

Пример 13. Баллон рассчитан на максимальное избыточное давление 150 МПа. В него накачали газ при температуре 300 К до давления 120 МПа. Постепенно нагревая газ, баллон погружают в воду плотностью 1000 кг/м3 на глубину 1000 м. До какой максимальной температуры можно нагреть газ в баллоне, чтобы он не взорвался?

Решение. Запишем уравнение Менделеева – Клапейрона для двух состояний газа, находящегося в баллоне:

  • в начале нагревания

p 1V = νRT 1;

  • в конце нагревания

p 2V = νRT 2;

где p 1 – первоначальное давление газа в баллоне; p 2 – давление газа в баллоне в конце нагревания; V – объем газа (баллона), V = const; ν – количество вещества (газа) в баллоне; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура газа в начале процесса; T 2 – температура газа в конце процесса.

Отношение уравнений

p 1 V p 2 V = ν R T 1 ν R T 2

позволяет определить давление газа в конце процесса:

p 2 = p 1 T 2 T 1 .

В условии задачи задано максимальное избыточное давление, определяемое формулой

p изб max = | p 2 − p 0 | ,

где p 0 – давление снаружи баллона; p 2 – давление газа внутри баллона.

При погружении баллона в воду с одновременным нагреванием указанные давления снаружи и внутри баллона определяются следующими формулами:

  • снаружи (сумма атмосферного и гидростатического давлений) –

p 0 = p атм + p гидр = p атм + ρ0gh,

где p атм – атмосферное давление; p гидр – гидростатическое давление, p гидр = ρ0gh; ρ0 – плотность воды; g – модуль ускорения свободного падения; h – глубина погружения баллона;

  • внутри (давление газа) –

p 2 = p 1 T 2 T 1 ,

где T 2 – максимальная температура газа (искомая величина).

Подстановка выражений для давлений внутри и снаружи баллона в формулу для избыточного давления дает

p изб max = | p 1 T 2 T 1 − ρ 0 g h − p атм | ≈ | p 1 T 2 T 1 − ρ 0 g h | ,

так как p атм << ρ0gh, p атм << p 2.

Данное уравнение содержит модуль разности, что приводит к двум независимым уравнениям:

p изб max = p 1 T 2 T 1 − ρ 0 g h , p изб max = ρ 0 g h − p 1 T 2 T 1 ,

из которых следуют две формулы для расчета искомой величины:

T 2 = T 1 ⋅ ρ 0 g h + p изб max p 1 , T 2 = T 1 ⋅ ρ 0 g h − p изб max p 1 .

Максимальному значению искомой температуры соответствует значение, рассчитанное по первой формуле:

T 2 = 300 ⋅ 1000 ⋅ 10 ⋅ 1000 + 150 ⋅ 10 6 120 ⋅ 10 6 = 400 К.

Чтобы баллон не взорвался, его можно погрузить на заданную глубину, одновременно нагревая до температуры 400 К.

Пример 14. Бутылка емкостью 0,75 л выдерживает максимальное избыточное давление 150 кПа. Из бутылки откачивают воздух и запечатывают некоторое количество твердого углекислого газа с молярной массой 44,0 г/моль. Атмосферное давление равно 100 кПа. Считая, что объем твердого углекислого газа пренебрежимо мал по сравнению с объемом бутылки, найти его максимальную массу, которая не вызовет взрыва бутылки при температуре 300 К?

Решение. Запишем уравнение Менделеева – Клапейрона для углекислого газа, находящегося в бутылке, после его превращения в газообразное состояние:

p V = m M R T ,

где p – давление углекислого газа в бутылке; V – объем газа (бутылки); m – масса углекислого газа в бутылке; M – молярная масса углекислого газа; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа.

Записанное уравнение позволяет получить выражение для расчета давления газа внутри бутылки:

p = m R T V M .

В условии задачи задано максимальное избыточное давление, определяемое формулой

p изб max = | p − p 0 | ,

где p 0 – давление снаружи бутылки.

Указанные давления снаружи и внутри бутылки определяются следующим образом:

  • снаружи (атмосферное давление) – p 0;
  • внутри (давление углекислого газа) –

p = m R T V M ,

где m соответствует искомой величине – максимальной массе углекислого газа.

Подстановка выражений для давлений внутри и снаружи баллона в формулу для избыточного давления дает

p изб max = | m R T V M − p 0 | .

Данное уравнение содержит модуль разности, что приводит к двум независимым уравнениям:

p изб max = m R T V M − p 0 , p изб max = p 0 − m R T V M ,

из которых следуют две формулы для расчета искомой величины:

m = V M ( p 0 + p изб max ) R T , m = V M ( p 0 − p изб max ) R T .

Максимальному значению искомой массы соответствует значение, рассчитанное по первой формуле:

m = 0,75 ⋅ 10 − 3 ⋅ 44,0 ⋅ 10 − 3 ( 100 + 150 ) ⋅ 10 3 8,31 ⋅ 300 = 3,3 ⋅ 10 − 3 кг = 3,3 г .

Чтобы бутылка не взорвалась, в нее можно запечатать не более 3,3 г твердого углекислого газа.

Пример 15. В наличии имеется неограниченное количество баллонов объемом по 4,0 л, заполненных некоторым идеальным газом до давления 500 кПа. Баллоны предназначены для наполнения газом оболочки аэрозонда и их можно соединять между собой. Сколько баллонов с газом необходимо одновременно подсоединить к пустой оболочке аэрозонда объемом 800 дм3, чтобы наполнить ее до давления 100 кПа, равного атмосферному? Температура газа при заполнении оболочки не изменяется.

Решение. Для осуществления процесса, описанного в условии задачи, требуется определенное количество газа ν.

Необходимое количество газа заполняет следующий объем:

  • в начале процесса (до заполнения оболочки)

V 1 = NV бал,

где N – количество баллонов; V бал – объем одного баллона, V бал = 4,0 л;

  • в конце процесса (после заполнения оболочки)

V 2 = NV бал + V обол,

где V обол – объем оболочки, V обол = 800 дм3.

Указанное количество газа находится при давлении:

  • в начале процесса (до заполнения оболочки) –

p 1 = 500 кПа

и совпадает с давлением газа в каждом из баллонов;

  • в конце процесса (после заполнения оболочки) –

p 2 = 100 кПа

и совпадает с давлением в оболочке.

Считая процесс заполнения газом оболочки аэрозонда изотермическим, запишем уравнение Менделеева – Клапейрона следующим образом:

  • в начале процесса (до заполнения оболочки) –
Читайте также:  Лиственницы сибирской для сосудов

p 1V 1 = νRT,

где ν – количество вещества (газа) в оболочке; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

  • в конце процесса (после заполнения оболочки) –

p 2V 2 = νRT.

Равенство

p 1V 1 = p 2V 2,

записанное в явном виде

p 1NV бал = p 2(NV бал + V обол),

позволяет получить формулу для вычисления искомого числа баллонов:

N = V обол V бал ⋅ p 2 p 1 − p 2 .

Произведем расчет:

N = 800 ⋅ 10 − 3 4,0 ⋅ 10 − 3 ⋅ 100 ⋅ 10 3 ( 500 − 100 ) ⋅ 10 3 = 50 .

Следовательно, для заполнения оболочки до указанного давления необходимо 50 баллонов с газом.

Пример 16. Аэростат, оболочка которого заполнена азотом с молярной массой 28 г/моль, находится в воздухе. Молярная масса воздуха равна 29 г/моль. Массы гондолы и оболочки аэростата пренебрежимо малы. Во сколько раз возрастет подъемная сила аэростата, если азот в его оболочке заменить на водород с молярной массой 2,0 г/моль, не изменяя при этом объем аэростата?

Решение. Силы (сила тяжести m g → и сила Архимеда F → A ), действующие на аэростат, показаны на рисунке.

Подъемная сила – это векторная сумма силы тяжести и силы Архимеда:

F → под = F → A + m g → ,

где F → A – сила Архимеда, действующая на оболочку со стороны воздуха; m g → – сила тяжести; m – масса газа, заполняющего оболочку аэростата; g → – ускорение свободного падения.

В проекциях на вертикальную ось подъемная сила определяется следующими выражениями:

  • при заполнении оболочки азотом –

F под1 = F A1 − m 1g,

где F A1 – модуль силы Архимеда, действующей на оболочку аэростата при заполнении оболочки азотом, F A1 = ρ0gV 1; ρ0 – плотность воздуха; V 1 – объем оболочки аэростата при заполнении ее азотом (объем воздуха, вытесненного оболочкой); m 1 – масса азота, заполняющего оболочку, m 1 = ρ1V 1; ρ1 – плотность азота;

  • при заполнении оболочки водородом –

F под2 = F A2 − m 2g,

где F A2 – модуль силы Архимеда, действующей на оболочку аэростата при заполнении оболочки водородом, F A2 = ρ0gV 2; V 2 – объем оболочки аэростата при заполнении ее водородом (объем воздуха, вытесненного оболочкой); m 2 – масса водорода, заполняющего оболочку, m 2 = ρ2V 2; ρ2 – плотность водорода.

Искомой величиной является отношение

F под 2 F под 1 = F A 2 − m 2 g F A 1 − m 1 g .

С учетом записанных выражений для сил Архимеда, масс азота и водорода, а также равенства объемов оболочки при заполнении ее азотом и водородом (V 1 = V 2), указанное отношение принимает вид

F под 2 F под 1 = ρ 0 g V 2 − ρ 2 V 2 g ρ 0 g V 1 − ρ 1 V 1 g = ( ρ 0 − ρ 2 ) V 2 g ( ρ 0 − ρ 1 ) V 1 g = ρ 0 − ρ 2 ρ 0 − ρ 1 .

Плотности воздуха, азота и водорода определим как отношения:

  • для воздуха

ρ 0 = M 0 V μ 0 ,

где M 0 – молярная масса воздуха; V µ0 – молярный объем воздуха;

  • для азота

ρ 1 = M 1 V μ 1 ,

где M 1 – молярная масса азота; V µ1 – молярный объем азота;

  • для водорода

ρ 2 = M 2 V μ 2 ,

где M 2 – молярная масса водорода; V µ2 – молярный объем водорода.

Молярные объемы (объемы одного моля) воздуха, азота и водорода равны между собой, так как газы находятся при одних и тех же условиях:

V µ0 = V µ1 = V µ2 = V µ.

Поэтому формула для расчета искомого отношения приобретает вид

F под 2 F под 1 = ρ 0 − ρ 2 ρ 0 − ρ 1 = M 0 − M 2 M 0 − M 1 .

Расчет дает значение:

F под 2 F под 1 = 29 ⋅ 10 − 3 − 2,0 ⋅ 10 − 3 29 ⋅ 10 − 3 − 28 ⋅ 10 − 3 = 27 .

При замене азота на водород в оболочке аэростата его подъемная сила возрастет в 27 раз.

Пример 17. Воздушный шар с температурой 300 К находится в воздухе при атмосферном давлении 100 кПа. Молярная масса воздуха составляет 29,0 г/моль. Объем воздушного шара равен 830 дм3, а масса его оболочки равна 333 г. На сколько градусов необходимо нагреть газ в оболочке, чтобы шар взлетел? Воздух в оболочке шара сообщается с атмосферой.

Решение. Силы, действующие на воздушный шар, показаны на рисунке:

  • сила Архимеда

F A = ρ0gV,

где ρ0 – плотность воздуха, окружающего шар; g – модуль ускорения свободного падения; V – объем оболочки шара (объем вытесненного оболочкой воздуха);

  • сила тяжести

mg = (m обол + m возд)g,

где m обол – масса оболочки; m возд – масса воздуха в оболочке, m возд = ρV; ρ – плотность воздуха внутри оболочки.

Шар взлетает, когда выполняется равенство

F → A + m g → = 0,

или, в проекции на вертикальную ось, –

F A − mg = 0.

Преобразуем равенство (условие равновесия шара в воздухе)

F A = mg

с учетом записанных выше выражений

ρ0gV = (m обол + m возд)g, или (ρ0 − ρ)V = m обол.

Входящие в равенство плотности воздуха не известны, но фигурируют в качестве параметра в уравнении состояния:

  • для воздуха снаружи оболочки воздушного шара

p 0 = ρ 0 R T 1 M ,

где p 0 – атмосферное давление; ρ0 – плотность воздуха снаружи оболочки; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура окружающего шар воздуха; M – молярная масса воздуха;

  • для воздуха внутри оболочки воздушного шара

p = ρ R T 2 M ,

где p – давление воздуха внутри оболочки; ρ – плотность воздуха внутри оболочки; T 2 – температура воздуха внутри оболочки.

Давления воздуха внутри и снаружи оболочки воздушного шара одинаковы, так как воздух, находящийся в оболочке, сообщается с атмосферой; поэтому

p = p 0.

Плотности:

  • для воздуха снаружи оболочки воздушного шара

ρ 0 = p 0 M R T 1 ;

  • для воздуха внутри оболочки воздушного шара

ρ = p 0 M R T 2 .

Подставим выражения для плотностей в условие равновесия шара в воздухе:

( 1 T 1 − 1 T 2 ) p 0 M V R = m обол .

Температура воздуха внутри оболочки, при которой шар начинает взлетать, определяется как

T 2 = p 0 M V T 1 p 0 M V − R T 1 m обол ,

а искомая разность –

Δ T = T 2 − T 1 = p 0 M V T 1 p 0 M V − R T 1 m обол − T 1 = T 1 p 0 M V R T 1 m обол − 1 .

Произведем вычисление:

Δ T = 300 100 ⋅ 10 3 ⋅ 29,0 ⋅ 10 − 3 ⋅ 830 ⋅ 10 − 3 8,31 ⋅ 300 ⋅ 333 ⋅ 10 − 3 − 1 = 158 К.

Следовательно, чтобы воздушный шар начал взлетать, воздух в его оболочке необходимо нагреть на 158 К, или 158 °С.

Пример 18. Камеру футбольного мяча объемом 3,00 л накачивают с помощью насоса, забирающего из атмосферы 0,150 л воздуха при каждом качании. Атмосферное давление составляет 100 кПа. Определить давление в камере после 30 качаний, если первоначально она была пустой. Температура постоянна.

Решение. За N качаний насос забирает из атмосферы определенное количество воздуха ν. Это же количество воздуха попадает в камеру футбольного мяча.

Указанное количество воздуха имеет следующий объем:

  • воздух, забранный из атмосферы за N качаний насоса, –

V 1 = NV нас,

где V нас – объем насоса, V нас = 0,150 л; N – количество качаний;

  • воздух, накачанный в камеру футбольного мяча, –

V 2 = V мяч,

где V мяч – объем камеры мяча, V мяч = 3,00 л.

Данное количество воздуха находится при следующем давлении:

  • воздух, забранный из атмосферы за N качаний насоса, –

p 1 = 100 кПа

совпадает с атмосферным давлением;

  • воздух, накачанный в камеру футбольного мяча, – p 2 (является искомой величиной).
Читайте также:  Йод помогает при сосудах

Считая процесс заполнения воздухом камеры мяча изотермическим, запишем уравнение Менделеева – Клапейрона следующим образом:

  • для воздуха, забранного из атмосферы за N качаний насоса, –

p 1V 1 = νRT,

где R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

  • для воздуха, накачанного в камеру футбольного мяча, –

p 2V 2 = νRT.

Равенство

p 1V 1 = p 2V 2,

записанное в явном виде

p 1NV нас = p 2V мяч,

позволяет получить формулу для вычисления давления в камере футбольного мяча:

p 2 = p 1 N V нас V мяч .

Произведем вычисление:

p 2 = 100 ⋅ 10 3 ⋅ 30 ⋅ 0,15 ⋅ 10 − 3 3,00 ⋅ 10 − 3 = 150 ⋅ 10 3 Па = 150 кПа.

Источник

Уравнение состояния идеального газа было открыто экспериментально. Оно носит название уравнения Клапейрона – Менделеева. Это уравнение устанавливает математическую зависимость между параметрами идеального газа, находящегося в одном состоянии. Математически его можно записать следующими способами:

Уравнение состояния идеального газаВнимание! При решении задач важно все единицы измерения переводить в СИ.

Пример №1. Кислород находится в сосуде вместимостью 0,4 м3 под давлением 8,3∙105 Па и при температуре 320 К. Чему равна масса кислорода? Молярная масса кислорода равна 0,032 кг/моль.

Из основного уравнения состояния идеального газа выразим массу:

Уравнение состояния идеального газа следует использовать, если газ переходит из одного состояния в другое и при этом изменяется его масса (количество вещества, число молекул) или молярная масса. В этом случае необходимо составить уравнение Клапейрона – Менделеева отдельно для каждого состояния. Решая систему уравнений, легко найти недостающий параметр.

Подсказки к задачам

Давление возросло на 15%p2 = 1,15p1
Объем увеличился на 2%V2 = 1,02V1
Масса увеличилась в 3 разаm2 = 3m1
Газ нагрелся до 25 оСT2 = 25 + 273 = 298 (К)
Температура уменьшилась на 15 К (15 оС)T2 = T1 – 15
Температура уменьшилась в 2 раза
Масса уменьшилась на 20%m2 = 0,8m1
Выпущено 0,7 начальной массы

Важна только та масса, что осталась в сосуде. Поэтому:

m2 = 0,3m1

Какую массу следует удалить из баллона?Нужно найти разность начальной и конечной массы:

m1 – m2

Газ потерял половину молекул
Молекулы двухатомного газа (например, водорода), диссоциируют на атомы
Озон (трехатомный кислород) при нагревании превращается в кислород (двухатомный газ)M (O3) = 3Ar (O)∙10-3 кг/моль M (O2) = 2Ar (O)∙10-3 кг/моль
Открытый сосудОбъем V и атмосферное давление pатм остаются постоянными
Закрытый сосудМасса m, молярная масса M, количество вещества ν, объем V, число N и концентрация n частиц, плотность ρ- постоянные величины
Нормальные условияТемпература T0 = 273 К Давление p0 = 105 Па
Единицы измерения давления1 атм = 105 Па

Пример №2. В баллоне содержится газ под давлением 2,8 МПа при температуре 280 К. Удалив половину молекул, баллон перенесли в помещение с другой температурой. Определите конечную температуру газа, если давление уменьшилось до 1,5 МПа.

2,8 МПа = 2,8∙106 Па

1,5 МПа = 1,5∙106 Па

Так как половина молекул была выпущена, m2 = 0,5m1. Объем остается постоянным, как и молярная масса. Учитывая это, запишем уравнение состояния идеального газа для начального и конечного случая:

Преобразим уравнения и получим:

Приравняем правые части и выразим искомую величину:

Задание EF19012 На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

1.Указать, в каких координатах построен график.

2.На основании основного уравнения МКТ идеального газа и уравнения Менделеева – Клапейрона выяснить, как меняются указанные физические величины во время процессов 1-2 и 2-3.

Решение

График построен в координатах (V;Ek). Процесс 1-2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

T=2−Ek3

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева – Клапейрона:

pV=νRT

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

νR=p1V1T1=p2V2T2

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1-2 является изобарным, давление во время него не меняется.

Процесс 2-3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2-3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление – обратно пропорциональные величины, то давление на участке 2-3 увеличивается.

Ответ:

• Участок 1-2 – изобарный процесс. Температура увеличивается, давление постоянно.

• Участок 2-3 – изотермический процесс. Температура постоянно, давление увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22473

На высоте 200 км давление воздуха составляет примерно 10-9 от нормального атмосферного давления, а температура воздуха Т – примерно 1200 К. Оцените плотность воздуха на этой высоте.

Ответ:

а) 8,31⋅ 10-11 кг/м3

б) 1,38⋅ 10-9 кг/м3

в) 3⋅ 10-10 кг/м3

г)29⋅ 10-8 кг/м3

Алгоритм решения

1.Записать исходные данные.

2.Записать уравнение Менделеева – Клапейрона.

3.Выразить из уравнения плотность.

4.Подставить известные данные и сделать вычисления.

Решение

Запишем исходные данные:

• Давление воздуха на высоте 200 км: p = 10-9∙105 Па. Или p = 10-4 Па.

• Температура воздуха на этой же высоте: T = 1200 К.

Запишем уравнение Менделеева – Клапейрона:

pV=mMRT

Плотность определяется формулой:

ρ=mV

Следовательно, масса равна произведению плотности на объем. Перепишем уравнение состояния идеального газа, учитывая, что объем сократится слева и справа:

p=ρMRT

Молярная масса воздуха – табличная величина, равная 28,97 г/моль. Переведем в СИ и получим 28,97∙10-3 кг/моль.

Выразим и вычислим плотность:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22749 Одноатомный идеальный газ в количестве ν моль помещают в открытый сверху сосуд под лёгкий подвижный поршень и начинают нагревать. Начальный объём газа V0, давление p0. Масса газа в сосуде остаётся неизменной. Трением между поршнем и стенками сосуда пренебречь. R- универсальная газовая постоянная.

Установите соответствие между физическими величинами, характеризующими газ, и формулами, выражающими их зависимость от абсолютной температуры T газа в условиях данной задачи.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Читайте также:  Проблемы с сосудами полового органа

Алгоритм решения

1.Записать уравнение состояния идеального газа и выразить из него объем. Выбрать из таблицы соответствующий номер формулы.

2.Определить, от чего зависит внутренняя энергия идеального газа.

3.Записать основное уравнение МКТ и выразить внутреннюю энергию идеального газа. Выбрать из таблицы соответствующий номер формулы.

Решение

Уравнение состояния идеального газа имеет вид:

pV=mMRT

Учтем, что отношение массы к молярной массе есть количество вещества.Отсюда объем равен:

V=νRTp

Следовательно, первой цифрой ответа будет «1».

Внутренняя энергия идеального газа равна сумме кинетических энергий всех молекул этого газа:

E=N−Ek

Запишем основное уравнение МКТ:

p=nkT

Отсюда температура газа равна:

T=pnk

Но температура прямо пропорциональна средней кинетической энергии молекул газа:

T=2−Ek3k

Следовательно:

pnk=2−Ek3k

−Ek=3p2n

E=N−Ek=N3p2n

Но концентрация определяется отношением количества молекул к объему. Следовательно:

E=N3pV2N=3pV2

А произведение давления на объем можно выразить через уравнение Менделеева – Клапейрона. Следовательно:

E=32νRT

Вторая цифра ответа будет «3».

Ответ: 13

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22795 На рисунке показан график зависимости давления газа в запаянном сосуде от его температуры. Объём сосуда равен 0,25 м3. Какое приблизительно количество газообразного вещества содержится в этом сосуде? Ответ округлите до целых.

Алгоритм решения

1.Записать исходные данные.

2.Выбрать любую точку графика и извлечь из нее дополнительные данные.

3.Записать уравнение состояния идеального газа.

4.Выполнить решение задачи в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные. Объем сосуда равен: V = 0,25 м3. На графике выберем точку, соответствующую температуре T = 300 К. Ей соответствует давление p = 2∙104 Па.

Запишем уравнение состояния идеального газа:

pV=νRT

Отсюда количества вещества равно:

ν=pVRT=2·104·0,258,31·300≈2 (моль)

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF17664

Зависимость объёма идеального газа от температуры показана на VТ-диаграмме (см. рисунок). В какой из точек давление газа максимально? Масса газа постоянна.

Ответ:

A

B

C

D

Алгоритм решения

1.Записать уравнение состояния идеального газа.

2.Установить, как зависит давление от объема и температуры газа.

3.На основании графика, отображающего изменение температуры и объема газа, установить, в какой точке давление газа максимально.

Решение

Запишем уравнение состояния идеального газа:

pV=νRT

Отсюда видно, что давление прямо пропорционально температуре. Это значит, что с ростом температуры давление увеличивается.

Также видно, что давление обратно пропорционально объему. Следовательно, давление увеличивается с уменьшением объема.

Отсюда следует, что давление будет максимальным в той точке, в которой температура максимальна, а объем минимален. Такой точкой является точка D.

Ответ: D

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18093

В камере, заполненной азотом, при температуре

К находится открытый цилиндрический сосуд (см. рис. 1). Высота сосуда см. Сосуд плотно закрывают цилиндрической пробкой и охлаждают до температуры К. В результате расстояние от дна сосуда до низа пробки становится равным h (см. рис. 2). Затем сосуд нагревают до первоначальной температуры T0. Расстояние от дна сосуда до низа пробки при этой температуре становится равным см (см. рис. 3). Чему равно h? Величину силы трения между пробкой и стенками сосуда считать одинаковой при движении пробки вниз и вверх. Массой пробки пренебречь.

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения физических величин в СИ.

2.Записать уравнение Менделеева – Клапейрона и применить его ко всем состояниям газа.

3.Определить условие равновесия пробки.

4.Выполнить решение задачи в общем виде.

5.Вычислить искомую величину.

Решение

Запишем исходные данные:

• Начальная температура азота: T0 = 300 К.

• Высота сосуда: L = 50 см.

• Температура азота после охлаждения: T1 = 240 К.

• Высота столба азота после нагревания: H = 46 см.

50 см = 0,5 м

46 см = 0,46 м

Запишем уравнение Менделеева – Клапейрона:

pV=νRT

Так как количество азота не меняется, можем принять, что:

pVT=const

Применим уравнение Менделеева – Клапейрона для всех трех состояний азота. Учтем, что

p0V0T0=p1V1T1=p2V2T2

Пусть S – площадь поперечного сечения сосуда. Тогда объемы столба азота для каждого из состояний будут равны:

V0=SL

V1=Sh

V2=SH

Известно, что в состоянии 3 температура азота поднимается до первоначальной. Поэтому уравнение Менделеева – Клапейрона примет вид:

p0SLT0=p1ShT1=p2SHT0

p0LT0=p1hT1=p2HT0

Неизвестными остались только давления. Их можно определить, записав условие равновесия пробки.

В состоянии 1 сила давления азота на пробку определяется формулой:

p0S=pатмS

В состоянии 2 на пробку действует сила давления со стороны азота и атмосферного давления, я а также сила трения, направленная вверх. Следовательно:

p1S=pатмS−Fтр=p0S−Fтр

В состоянии 3 на пробку действуют те же силы, но сила трения теперь действует не вверх, а вниз. Поэтому:

p2S=pатмS+Fтр=p0S+Fтр

Выразим из этих уравнений силу трения:

Fтр=p0S−p1S

Fтр=p2S−p0S

Приравняем правые части и получим:

p0S−p1S=p2S−p0S

Отсюда:

p0−p1=p2−p0

2p0=p2+p1

p0=p2+p12

Подставим это значение в уравнение Менделеева – Клапейрона и получим:

p2+p12LT0=p1hT1=p2HT0

Отсюда:

p2+p12L=p2H

p2L+p1L=2p2H

p1L=2p2H−p2L=p2(2H−L)

p1=p2(2H−L)L

Отсюда:

p2(2H−L)LhT1=p2HT0

Давление слева и справа взаимоуничтожается. Остается:

T0(2H−L)Lh=HT1

Отсюда выразим h:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18873 В сосуде неизменного объёма при комнатной температуре находилась смесь неона и аргона, по 1 моль каждого. Половину содержимого сосуда выпустили, а затем добавили в сосуд 1 моль аргона. Как изменились в результате парциальное давление неона и давление смеси газов, если температура газов в сосуде поддерживалась неизменной?

Для каждой величины определите соответствующий характер изменения:

  1. увеличилась
  2. уменьшилась
  3. не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Алгоритм решения

1.Записать исходные данные.

2.Установить характер изменения парциального давления неона.

3.Применить закон Менделеева – Клапейрона, чтобы установить характер изменения общего давления смеси газов.

Решение

Исходные данные:

• Количество неона: ν1 = 1 моль.

• Количество аргона: ν2 = 1 моль.

• Количество впущенного аргона: ν4 = 1 моль.

Сначала парциальное давление неона и аргона равно. Это объясняется тем, что давление газов при неизменном количестве вещества зависит только от объема и температуры. Эти величины постоянны.

Когда из сосуда выпустили половину газовой смеси, в нем оказалось по половине моля каждого из газов. Затем в сосуд впустили 1 моль аргона. Следовательно, в сосуде стало содержаться 0,5 моль неона и 1,5 моль аргона. Запишем уравнение Менделеева – Клапейрона:

pV=νRT

Из уравнения видно, что давление и количество вещества – прямо пропорциональные величины. Следовательно, если количество неона уменьшилось, то его парциальное давление тоже уменьшилось.

Общая сумма количества вещества равна сумме количеств вещества 1 (неона) и 2 (аргона): 0,5 + 1,5 = 2 (моль). Изначально в сосуде тоже содержалось 2 моль газа. Так как количество вещества, температура и объем сохранились, давление тоже осталось неизменным.

Ответ: 23

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алиса Никитина | ???? Скачать PDF | Просмотров: 866 | Оценить:

Источник