Прандтль давление жидкости во вращающемся сосуде

РАВНОВЕСИЕ ЖИДКОСТИ ВО ВРАЩАЮЩЕМСЯ СОСУДЕ (ОТНОСИТЕЛЬНЫЙ ПОКОЙ ЖИДКОСТИ)

Рассмотрим случай, когда на жидкость, помимо объемных сил тяжести, действует еще другая система объемных сил, например, система центробежных сил инерции.

Возьмем круглоцилиндрический сосуд, наполненный жидкостью, причем будем считать, что этот сосуд вращается вокруг своей вертикальной оси равномерно, т. е. с постоянной угловой скоростью (рис. 2-14). Благодаря силам трения стенки вращающегося сосуда будут вначале увлекать за собой жидкость, а по истечении некоторого времени вся жидкость начнет вращаться вместе с сосудом с той же угловой скоростью Ω, находясь по отношению к стенкам сосуда в покое. Силы трения при этом внутри жидкости, а также между жидкостью, стенками сосуда и его дном, будут отсутствовать.

Рис. 2-14. Цилиндрический сосуд, вращающийся относительно вертикальной оси Oz

АОВ – свободная поверхность жидкости

Если оси координат, расположенные, как показано на чертеже, будем считать скрепленными с вращающимся сосудом, то по отношению к таким вращающимся осям координат жидкость также будет находиться в покое. Поэтому для исследования вращающейся жидкости при указанных подвижных осях координат могут быть применены известные уравнения Эйлера (2-14).

В эти уравнения входит объемная сила

, действующая на единицу массы жидкости. В данном случае сила будет слагаться из двух сил: силы тяжести и центробежной силы.

С тем чтобы найти проекцию центробежной силы на оси координат, наметим внутри жидкости точку т и выделим у нее элементарную массу жидкости δM. Масса δM будет вращаться вокруг оси сосуда, двигаясь по окружности, имеющей радиус r и лежащей в плоскости, нормальной к оси сосуда. Центробежная сила, действующая на данную массу, будет

I’=

, (2-62)

где υ – скорость движения массы δM по окружности радиуса r.

Центробежная сила, отнесенная к единице массы жидкости, сосредоточенной в точке т,

I =

= Ω 2 r. (2-63)

Эта сила, так же как и сила I’, направлена по радиусу от оси сосуда наружу. Проекции силы I (отнесенной к единице м- ассы) на оси координат

Проекции объемной силы тяжести, отнесенной к единице массы, выражаются зависимостью (2-28). Складывая объемные силы тяжести и объемные центробежные силы, отнесенные к единице массы, получаем

= 0 +Ω 2 x = Ω 2 x;

= 0 + Ω 2 y = Ω 2 y;

= – (2-65)

Подставляя (2-65) в (2-17), найдем

dpA = ρ(Ω 2 xdx + Ω 2 ydy –

, (2-66)

что после интегрирования дает

dpA = ρ(

+ – ) + C = (x 2 + y 2 ) – ρ C. (2-67)

Постоянную интегрирования С устанавливаем, написав (2-67) применительно к точке, находящейся в начале координат, для которой x = y = z =0; p = p. Как видно,

причем (2-67) перепишется в виде:

pA = p +

(x2 +y2) – γz (2-69)

Это последнее уравнение и выражает закон распределения давления в рассматриваемой жидкости. Пользуясь таким уравнением, можно найти поверхности равного давления.

Действительно, уравнение поверхности, во всех точках которой давление pA = pi= const, запишется в виде

(x2 +y2) – γz = pi – p. (2-70)

Уравнение (2-70) выражает поверхность, являющуюся параболоидом вращения (с вертикальной осью).

Свободная поверхность жидкости, характеризуемая постоянным давлением pi = p, представляет собой также параболоид вращения; уравнение ее будет:

(x2 +y2) – γz = 0. (2-71)

Если учесть, что x 2 + y 2 = r 2 , то, решив (2-71) относительно z, получим следующее уравнение, по которому легко построить параболу АОВ, дающую свободную поверхность:

z =

r 2 (2-72)

где z- ордината кривой АОВ.

Распределение давления в горизонтальной плоскости MN, лежащей ниже начала координат на величину a, можно найти, пользуясь (2-69):

pA = p +

(x 2 +y 2 ) +γa = p + ρ r 2 + γa = p + γ( r 2 + a). (2-73)

Учитывая (2-72), получаем

где h = a +z показано на рис. 2-14.

Таким образом, давление в жидкости, находящейся внутри равномерно вращающегося сосуда, выражается зависимостью того же вида, что и для случая тяжелой покоящейся жидкости [см. (2-39)]; под величиной h здесь надо понимать только заглубление рассматриваемой точки под криволинейной свободной поверхностью.

Дата добавления: 2015-12-29 ; просмотров: 1253 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Поверхность жидкости во вращающемся сосуде

Определим, какую форму принимает поверхность жидкости в равномерно вращающемся сосуде. Свободная поверхность и в здесь будет поверхностью уровня, только на этот раз это будет уже не горизонтальная плоскость, поскольку на жидкость из объемных сил действует не только сила тяжести.

При равномерном вращении сосуда с жидкостью поставленную задачу можно рассматривать как гидростатическую, жидкость будет находиться в покое относительно стенок сосуда, т. е. здесь будет наблюдаться случай «относительного покоя». При этом жидкость будет находиться в равновесии под действием двух объемных сил: силы тяжести и силы инерции – центробежной силы.

На каждую частицу жидкости во вращающемся сосуде действуют обе эти силы.

Читайте также:  Чистка сосудов организма человека

Центробежная сила, действующая на частицу жидкости, находящуюся в некоторой произвольной точке М (рис. 2.7), для кругового движения определится по формуле

.

Здесь r – радиус окружности (расстояние от точки до оси вращения), по которой вращается частица жидкости, находящаяся в точке М,

ω – угловая скорость вращения,

m – масса частицы жидкости.

Удельная центробежная сила, т. е. сила, отнесенная к единице массы, будет равна

Проекции удельной центробежной силы на оси координат определятся как (рис. 2.7)

Проекции удельной силы тяжести на оси

Суммарно для проекций удельных объемных сил, действующих на частицу жидкости, получаем

Вспомним дифференциальное уравнение равновесия жидкости:

.

Подставим в него значения проекций объемных сил:

Проинтегрируем уравнение, считая ρ величиной постоянной. Имеем

Заметим, что при вращении жидких частиц по круговым траекториям

.

Для определения константы интегрирования сформулируем граничные условия. Обратим внимание на то, что при вращении свободная поверхность жидкости примет симметричную вогнутую форму. Расположим начало координат в низшей точке свободной поверхности. На свободной поверхности жидкости давление равно атмосферному.

Тогда граничное условие формулируется так:

при x = y = z = 0 давление p = pатм.

Определяя из этого условия константу интегрирования, получим:

Уравнение для определения давления примет вид:

(2.10)

По этой формуле можно вычислить давление в любой точке внутри объема жидкости, находящейся в сосуде, вращающемся с постоянной угловой скоростью.

Как определить форму свободной поверхности жидкости? Свободная поверхность является поверхностью уровня, т. е. поверхностью равного давления. Давление во всех ее точках равно атмосферному p = pатм. Используя это условие, из уравнения (2.10) получаем

,

где индекс «п» относится к координатам точек, находящихся на поверхности жидкости. Окончательно имеем

(2.11)

Уравнение (2.11) дает зависимость вертикальной координаты точек, расположенных на свободной поверхности жидкости, от расстояния до оси вращения:

. Это и есть уравнение свободной поверхности жидкости, находящейся в равномерно вращающемся сосуде. Видно, что форма свободной поверхности – параболоид вращения с вертикальной осью симметрии.

Источник

Распределение давления во вращающейся жидкости

Размешивая чай в стакане, можно наблюдать поверхность вращающейся жидкости – она принимает параболическую форму. Представим себе стакан или другой цилиндрический сосуд на диске центробежной машины (рис. 296).

Если диск вращается с угловой скоростью со, то через некото­рое время все частицы жидкости будут двигаться по окружности так, что жидкость останется неподвижной относительно стенок стакана. Так как частицы по трубке тока движутся по кругу ра­диуса r, то давление в горизонтальной плоскости будет возрастать по мере удаления от оси вращения. Градиент давления вдоль ра­диуса r по (107.3) будет равен 1 )

(108.1)

Заменим в (108.1) окружную скорость частицы v через wr и получим

(108.2)

это уравнение можно проинтегрировать по r:

(108.3)

1 ) Так как движение стационарное, то давление р в горизонтальной пло­скости можно считать функцией только от r.

Отсюда видно, что давление в горизонтальном сечении сосуда возрастает пропорционально квадрату расстояния от оси враще­ния. Как известно, давление в каждой точке жидкости должно быть одинаково по всем направлениям, поэтому и уровень жид­кости должен повышаться с расстоянием от оси. Действительно, изменение давления в вертикальном направлении возникает только за счет веса жидкости; поэтому для того, чтобы частица жидкости покоилась относительно стакана, необходимо, чтобы уровень жид­кости над кольцевой пло­щадкой радиуса r1был выше уровня жидкости в центре на величину h. Давление, создаваемое весом жидкости на го­ризонтали, проходящей через нижнюю точку свободной поверхности (точку О на рис. 296), равно hg, и оно дол­жно равняться давлению

rw 2 r 2 1/2 где r1 – расстоя­ние рассматриваемой точки до оси. Поэтому

так как g=rg, где g – ускорение силы тяго­тения. Высота уровня жидкости растет пропорционально квадрату расстояния от оси вращения, т. е. свободная поверхность предста­вляет собой параболоид вращения, как и наблюдается в опытах.

Форма свободной поверхности показывает изменение давления вдоль радиуса. Но можно это проверить еще и таким образом: бросить в стакан с водой, вращающийся на центробежной машине, небольшие кусочки вещества тяжелее воды, все они через некоторое время расположатся внизу у стенки стакана. Кусочки вещества, плавающего на поверхности воды, будут собираться вблизи точки О.

Интересно проследить, как будут вести себя в стакане кусочек свинца и шарик воска, связанные ниткой, (воск легче воды). По­пробуйте в качестве упражнения сами проанализировать резуль­тат такого опыта. Каково будет распределение давления во вращаю-

Рис. 296.

щемся сосуде, если он закрыт со всех сторон? Каковы будут распре­деление давления и форма поверхности, если центр стакана с водой расположен не на оси машины?

Читайте также:  Тонус сосудов повышен симптомы

Отметим, что в рассмотренном случае движения частиц жид­кости при вращении сосуда постоянная Бернулли сохраняет свою величину только для одной трубки тока и различна для разных линий тока. Вспоминая (102.5) и учитывая (108.3), можно записать для трубки тока

так как трубки тока горизонтальны, то член, в который входит h, можно не принимать во внимание. Величина р – давление на оси – зависит только от глубины и равна gН (см. рис. 296). Сле­довательно, постоянная Бернулли (Э) изменяется и с глубиной, и с расстоянием от оси вращения.

Дата добавления: 2015-06-28 ; Просмотров: 2361 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Источник

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему постоянную угловую скорость w вращения вокруг вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная поверхность ее видоизменится: в центральной части уровень жидкости понизится, у стенок – повысится, и вся свободная поверхность жидкости станет некоторой поверхностью вращения (рис. 2.11).

На жидкость в этом случае будут действовать две массовые силы, сила тяжести и центробежная сила, которые, будучи отнесенными к единице массы, соответственно равны g и w2r. Равнодействующая массовая сила j увеличивается с увеличением радиуса за счет второй составляющей, а угол наклона ее к горизонту уменьшается. Эта сила нормальна к свободной поверхности жидкости, поэтому угол наклона поверхности к горизонту возрастает с увеличением радиуса. Найдем уравнение положения свободной поверхности.

Рис. 2.11

Учитывая, что сила j нормальна к свободной поверхности, получим

отсюда

или после интегрирования

В точке пересечения свободной поверхности с осью вращения C = h, поэтому окончательно будем иметь

(2.10)

т. е. свободная поверхность жидкости является параболоидом вращения.

Максимальную высоту подъема жидкости можно определить исходя из равенства объемов неподвижной жидкости и жидкости во время вращения.

На практике очень часто приходится иметь дело с вращением сосуда, заполненного жидкостью, вокруг горизонтальной оси. При этом угловая скорость w столь велика, что сила тяжести на порядок меньше центробежных сил, и ее действие можно не учитывать. Закон изменения давления в жидкости для этого случая получим из рассмотрения уравнения равновесия элементарного объема с площадью основания dS и высотой dr, взятой вдоль радиуса (рис. 2.12). На выделенный элемент жидкости действуют силы давления и центробежная сила.

Обозначив давление в центре площадки dS, расположенной на радиусе r, через p, а в центре другого основания объема (на радиусе r + dr) через p + dp, получим следующее уравнение равновесия выделенного объема в направлении радиуса

или

Рис. 2.12

После интегрирования

Постоянную C найдем из условия, что при r = r0 p = p0.

Следовательно

Подставив ее значение в предыдущее уравнение, получим связь между p и r в следующем виде:

(2.11)

Очевидно, что поверхностями уровня в данном случае будут цилиндрические поверхности с общей осью – осью вращения жидкости.

Часто бывает необходимо определить силу давления вращающейся вместе с сосудом жидкости на его стенку, нормальную к его оси вращения. Для этого определим силу давления, приходящуюся на элементарную кольцевую площадку радиусом r и шириной dr. Используя формулу (2.11), получим

а затем следует выполнить интегрирование в требуемых пределах.

При большой скорости вращения жидкости получается значительная суммарная сила давления на стенку. Это используется в некоторых фрикционных муфтах, где для сцепления двух валов требуется создание больших сил давления.



Источник

Сегодня я заварил себе чай и задумался

Сегодня утром я задумался, пока размешивал два кубика сахара в чашке с только что заваренным чаем. Задумался о форме жидкости, которую она принимает при вращении. Безусловно, все представляют себе что будет, если очень быстро начать размешивать сахар в чашке с чаем. Мне захотелось рассмотреть этот банальный и привычный процесс подробнее и попытаться рассказать Вам немного интересного из физики окружающих нас в быту явлений.

Идея эксперимента

Давайте представим, что мы имеем некоторую цилиндрическую тару, в которой находится некоторая жидкость. Вращаться жидкость можно заставить, как минимум, двумя очевидными способами: размешать её каким-нибудь предметом или начать вращать цилиндрическую тару, что, благодаря силам трения между жидкостью и поверхностью сосуда, приведет к вращению жидкости, увлекаемой содержащим её вращающимся сосудам.

Физическая модель

Остановимся на втором варианте. Итак, у нас есть вращающийся с постоянной циклической частотой сосуд, в котором при динамическом равновесии с постоянной циклической частотой вращается жидкость в том же направлении.

Читайте также:  При гипокапнии тонус сосудов

Вырежем из всей жидкости элементарный бесконечно малый объем около поверхности и рассмотрим какие силы на него действуют. В силу симметрии задачи, будем ориентироваться на цилиндрические координаты, что заметно упростит расчеты.

Качественный расчет формы поверхности

Запишем второй закон Ньютона для элементарного кусочка объема жидкости:

К примеру, после размешивания ложкой сахара в чашке только что заваренного чая, жидкость вращается вокруг оси симметрии, отсюда наш элементарный кусочек объема имеет центростремительное ускорение. Поэтому спроецируем наш закон Ньютона на ось, совпадающую с радиусом-вектором от элементарного объема до оси симметрии. Не будем учитывать вязкость и поверхностное натяжение. Сила, сообщающая центростремительное ускорение (в правой части нашего закона движения) возникнет из-за разности давлений столбов жидкости, что можно увидеть на увеличенной части первого рисунка.

Таким образом, у нас получится следующее выражение:

, где , а та самая сила определится как , где площадью эффективного сечения обозначена та площадь нашего элементарного объема, на которую действует разница давлений столбов жидкости .

Получаем силу

Масса нашего элемента объема определяется по знакомой всем формуле , а сам объем будет равен (элементарный объем в цилиндрических координатах).

В итоге, 2 закон Ньютона для нашей маленькой задачки расписывается в следующее выражение:

После небольших сокращений и преобразований получаем:

Теперь проинтегрируем обе части выражения, используя неопределенные интегралы:

Детальный расчет формы поверхности

Теперь мы получили вполне ясную зависимость для формы поверхности и с уверенностью можем сказать, что это параболоид. Но нам неизвестна постоянная величина . Давайте её определим для полного понимания физики процесса.

Так как объем жидкости не меняется (мы считаем, что не пролили ни капли, пока размешивали наш чай ツ), то запишем объемы до вращения и во время вращения с постоянной циклической частотой.

До вращения:

, где – это высота жидкости в цилиндрической поверхности в спокойном состоянии (вращения нет).

Во время вращения:

Данные объемы равны, поэтому:

Отсюда выражается ранее неизвестная постоянная:

И окончательное уравнение формы поверхности вращающейся жидкости имеет вид:

или преобразовав

Некоторые заметки

Хотелось бы обратить внимание на то, что форма поверхности зависит от частоты вращения, ускорения свободного падения, геометрических параметров сосуда, первоначального объема жидкости, но не зависит от плотности жидкости. Это выражение мне показалось довольно интересным, так как с его помощью можно легко смоделировать примерное расположение жидкости внутри вращающегося вокруг своей оси симметрии цилиндрического сосуда. Для этого можно воспользоваться MathCAD’ом и построить несколько графиков.

Графическое представление результатов расчета

Возьмем вполне реальные параметры системы, соизмеримые с размерами чашки или стакана.

Радиус цилиндрической поверхности:

Высота жидкости в цилиндрической поверхности без вращения:

Ускорение свободного падения:

Циклическая частота вращения цилиндрической поверхности:

(Все значения этих величин заданы в системе Си)

Далее перепишем нашу функцию для её отображения в MathCAD.

Для 2D отображения сечения:

Для 3D отображения поверхности:

В качестве изменяющегося параметра будем менять циклическую частоту вращения . Результаты можно наблюдать на рисунках ниже:

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

Выводы

Видно, что если циклическая частота превысит значение , то мы увидим дно вращающегося цилиндрического сосуда, и, начиная с этой частоты, жидкость будет плавно «переходить» на стенки сосуда, всё сильнее оголяя дно. Очевидно, что при очень больших частотах вся жидкость растечется по стенкам сосуда. Теперь мы знаем все параметры такой жидкости. Зная её уравнение, не составит большого труда рассчитать толщину слоя жидкости на стенке сосуда на определенной высоте при определенной частоте.

upd. Отдельно хотелось бы подчеркнуть те противоречащие друг другу допущения, которые были приняты при рассмотрении задачи:

1. Считалось что, жидкость вращается благодаря вращению сосуда, который её содержит. Это может быть только при учете внутреннего трения, вязкости и поверхностного натяжения.

2. Но при выводе формы поверхности эти явления не учитываются для того, чтобы упростить решение и показать только качественный результаты моделирования. Т.е. решение немного противоречит описываемой изначально модели. Учет всех явлений, включая нелинейность процесса при высоких частотах, настолько бы усложнил задачу, что её вряд ли можно было бы решить аналитически и показать примерную и понятную модель для человека, который не связан с математикой/физикой.

3. Цель состоялась в том, чтобы показать лишь очень приближенное и самое простое решение, включающее в себя ряд допущений.

Источник