При повышении температуры газа в закрытом сосуде

Тема урока: «Давление газа». 7-й класс

Класс: 7

Презентация к уроку

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Учебник «Физика. 7 кл.» А.В. Перышкин – М. : Дрофа, 2011 г.

Тип урока: комбинированный на основе исследовательской деятельности.

Цели:

  • установить причину существования давления в газах с точки зрения молекулярного строения вещества;
  • выяснить:
  • от чего зависит давление газа
  • как можно его изменить.

Задачи:

  • сформировать знания о давлении газа и природе возникновения давления на стенки сосуда, в котором находится газ;
  • сформировать умение объяснять давление газа на основе учения о движении молекул, зависимости давления от объема при постоянной массе и температуре, а также и при изменении температуры;
  • развить общеучебные знания и умения: наблюдать, делать выводы;
  • способствовать привитию интереса к предмету, развития внимания, научного и логического мышления учащихся.

Оборудование и материалы к уроку: компьютер, экран, мультимедиапроектор, презентация к уроку, колба с пробкой, штатив, спиртовка, шприц, воздушный шар, пластиковая бутылка с пробкой.

План урока:

  1. Проверка домашнего задания.
  2. Актуализация знаний.
  3. Объяснение нового материала.
  4. Закрепление пройденного материала на уроке.
  5. Итог урока. Домашнее задание.

Я предпочитаю то, что можно увидеть, услышать и изучить. (Гераклит) (Слайд 2)

– Это девиз нашего урока

– На прошлых уроках мы с вами узнали о давлении твердых тел, от каких физических величин зависит давление.

1. Повторение пройденного материала

1. Что такое давление?
2. От чего зависит давление твердого тела?
3. Как давление зависит от силы, приложенной перпендикулярно опоре? Каков характер этой зависимости?
4. Как давление зависит от площади опоры? Каков характер этой зависимости?
5. В чем причина давления твердого тела на опору?

Качественная задача.

Одинаковы ли силы, действующие на опору, и давление в обоих случаях? Почему?

Проверка знаний. Тестирование (проверка и взаимопроверка)

Тест

1. Физическая величина, имеющая размерность паскаль (Па), называется:

а) сила; б) масса; в) давление; г) плотность.

2. Силу давления увеличили в 2 раза. Как изменится давление?

а) уменьшится в 2 раза; б) останется прежним; в) увеличится в 4 раза; г) увеличится в 2 раза.

3. Давление можно рассчитать по формуле:

4. Какое давление на пол оказывает ковёр весом 200 Н, площадью 4 м 2 ?

а) 50 Па; б) 5 Па; в) 800Па; г) 80 Па.

5. Два тела равного веса поставлены на стол. Одинаковое ли давление они производят на стол?

2. Актуализация знаний (в форме беседы)

– Почему воздушные шары и мыльные пузыри круглые?
Учащиеся надувают воздушные шары.
– Чем мы заполнили шары? (Воздухом) Чем еще можно заполнить шары? (Газами)
– Предлагаю сжать шары. Что вам мешает сжать шары? Что действует на оболочку шара?
– Возьмите пластиковые бутылки, закройте пробкой и попробуйте сжать.
– О чем пойдет речь на уроке?

– Тема урока: Давление газа

3. Объяснение нового материала

Газы, в отличии от твёрдых тел и жидкостей, заполняют весь сосуд, в котором находятся.
Стремясь расшириться, газ оказывает давление на стенки, дно и крышку любого тела, с которым он соприкасается.
(Слайд 9) Картинки стальных баллонов, в которых находится газ; камеры автомобильной шины; мяча
Давление газа обусловлено иными причинами, чем давление твердого тела на опору.

Вывод: давление газа на стенки сосуда (и на помещенное в газ тело) вызывается ударами молекул газа.
Например, число ударов молекул воздуха, находящегося в комнате, о поверхность площадью 1 см 2 за 1 с выражается двадцатитрехзначным числом. Хотя сила удара отдельной молекулы мала, но действие всех молекул на стенки сосуда значительно, оно и создает давление газа.
Учащиеся самостоятельно работают с учебником. Читают опыт с резиновым шаром под колоколом. Как объяснить этот опыт? (стр.83 рис. 91)

Учащиеся объясняют опыт.

(Слайд 11) Просмотр видеофрагмента с объяснением опыта для закрепления материала.

(Слайд 12) Минутка отдыха. Зарядка для глаз.

«Ощущение тайны – наиболее прекрасное из доступных нам переживаний. Именно это чувство стоит у колыбели настоящей науки».

(Слайд 14) ИМЕЮТ ЛИ ГАЗЫ ОБЪЁМ? ЛЕГКО ЛИ ИЗМЕНИТЬ ОБЪЁМ ГАЗОВ? ЗАНИМАЮТ ЛИ ГАЗЫ ВЕСЬ ПРЕДОСТАВЛЯЕМЫЙ ИМ ОБЪЁМ? ПОЧЕМУ?ПОЧЕМУ? ИМЕЮТ ЛИ ГАЗЫ ПОСТОЯННЫЙ ОБЪЁМ И СОБСТВЕННУЮ ФОРМУ? ПОЧЕМУ?

(Слайд 15) У учащихся сделаны модели из шприцов. Выполнение опыта.
Учащиеся делают вывод: при уменьшении объёма газа его давление увеличивается, а при увеличении объёма давление уменьшается при условии, что масса и температура газа остаются неизменными.

(Слайд 16) Опыт с колбой

– Как изменится давление газа, если нагреть его при постоянном объеме?
При нагревании давление газа в колбе будет постепенно возрастать до тех пор, пока пробка не вылетит из склянки.
Учащиеся делают вывод: давление газа в закрытом сосуде тем больше, чем выше температура газа,при условии, что масса газа и объём не изменяются. (Слайд 17)

Газы, заключенные в сосуде, можно сжимать или сдавливать, уменьшая при этом их объем. Сжатый газ равномерно распределяется во всех направлениях. Чем сильнее вы сжимаете газ, тем выше будет его давление.
Учащиеся делают вывод: давление газа тем больше, чем чаще и сильнее молекулы ударяют о стенки сосуда

4. Закрепление пройденного материала на уроке.

(Слайд 18) Подумай-ка

– Что происходит с молекулами газа при уменьшении объёма сосуда, в котором находится газ?

  • молекулы начинают быстрее двигаться,
  • молекулы начинают медленнее двигаться,
  • среднее расстояние между молекулами газа уменьшается,
  • среднее расстояние между молекулами газа увеличивается.

(Слайд 19) Сравни-ка свои ответы

  1. Чем вызвано давление газа?
  2. Почему давление газа увеличивается при его сжатии и уменьшается при расширении?
  3. Когда давление газа больше: в холодном или горячем состоянии? Почему?

Ответ 1. Давление газа вызвано ударами молекул газа о стенки сосуда или о помещенное в газ тело
Ответ 2. При сжатии плотность газа увеличивается, из-за чего возрастает число ударов молекул о стенки сосуда. Следовательно, увеличивается и давление. При расширении плотность газа уменьшается, что влечет за собой уменьшение числа ударов молекул о стенки сосуда. Поэтому давление газа уменьшается
Ответ 3. Давление газа больше в горячем состоянии. Это связано с тем, что молекулы газа при повышении температуры начинают двигаться быстрее, из-за чего удары их становятся чаще и сильнее.

(Слайд 20) Качественные задачи. (Сборник задач по физике В.И. Лукашик, Е.В.Иванова, Москва «Просвещение» 2007 г. стр. 64)

1. Почему при накачивании воздуха в шину автомобиля с каждым разом становится все труднее двигать ручку насоса?

2. Массы одного и того же газа, находящегося в разных закрытых сосудах при одинаковой температуре, одинаковы. В каком из сосудов давление газа наибольшее? Наименьшее? Ответ объясните

3. Объясните появление вмятины на мяче

Мяч при комнатной температуре

Мяч на снегу в морозный день

Решать загадки можно вечно.
Вселенная ведь бесконечна.
Спасибо всем нам за урок,
А главное, чтоб был он впрок!

Источник

Задачу которую никто не может решить. Так ли это? Как измениться давление воды в замкнутом сосуде при его нагреве?

Добрый день наш уважаемый читатель. Получая часто вопросы от наших клиентов в 90% процентов из всех случаев, мы даем быстрые, четкие и грамотные ответы нашему собеседнику. Дело в том, что нашего богатого опыта работа отлично хватает чтобы закрыть потребности среднестатистического клиента или спикера.

Развернуто и не очень мы уже отвечали в нашем блоге людям на следующие вопросы:

Поставленная задача

Сейчас перед нами встала следующая задача вот такого содержания: есть сосуд с неизменяемым объемом жидкости внутри него. Предположим, что сосуд состоит из обыкновенного железа, например, возьмем простой накопительный бойлер (V = 50 литров). Начальное давление в системе 2 атмосферы, начальная температура воды Т1 = 17 градусов цельсия, конечная температура после нагрева Т2 = 57 градусов цельсия. Исходные параметры могут быть разные, но конечная задача, на которую нужно получить ответ будет следующая: какое давление будет в закрытом сосуде при нагреве воды до указанной температуры Т2, если учесть, что краны на сосуде (вход и выход) находятся в положении закрыто, и начальный объем не изменяется. Давление можно снимать (измерять) при помощи встроенного или выносного трубного манометра. Расширительного бака нет. Все для эксперимента.

Читайте также:  Как быстро убрать бляшки в сосудах

Закон и формула Шарля

Начав решать эту задачу, каждый может прибегнуть к такому ответу: « да ладно, это же задачка за 7 класс , тут нужно применять формулу известного физика Шарля, Вы что учебник физики не читали?». Далее следует решение:

Формула: (273+t2)/(273+t1)=коэффициент увеличения давления от исходного.

1.13 умножаем на 2 получаем что давление будет равно 2.26 после нагрева жидкости с 17 до 57 на 40 единиц.

Ну дела, вот же решение, зачем страдать дальше? Но нет друзья, это решение конечно же хорошее – но применимо только для изохорных идеальных газов , но не в коем случае не для жидкости, представленной у нас на примере воды.

Едем дальше изучая попутно других известных святил физики, и в оуля мы натыкаемся на еще одно решение.

Для расчетов берем исходные данные из чего изготовлен сосуд, у нас это железо. Коэффициент объёмного расширения железа стабильно одинаковый, берем за основу среднее значение 0,000036, а вот коэффициент объема воды изменяется в зависимости от ее нагрева. Примерно 0,00015 при 20 градусах цельсия и 0,00045 при 60 градусах цельсия. Среднее значение путем сложения из двух данных получаем 0,00030.

Чтобы посчитать объем во сколько увеличиться объем в сосуде воспользуемся формулой: 1 + коэффициент расширения железа * (t2-t1).

В цифрах будет выглядеть так: 1 + 0,000036 * (57 — 17) = 1.002;

В качестве информационной нагрузки узнаем еще на сколько бы увеличился V воды если бы она была вне сосуда: 1 + 0,0003 * (57 — 17) = 1,012. Далее все упирается на сколько же прочный Ваш сосуд и не раздует ли его при повышении давления.

Чтобы узнать процентное увеличение объема воды с воздействием на сосуд воспользуемся следующей формулой подставим все цифры: 1,012 / 1,002 * 100 — 100 = 1 %.

Обратившись к учебнику физики, мы узнаем, что при давлении каждой атмосферы объем воды уменьшается на 0,000006. Например, 50 литров, при одной атмосфере сожмется на 0,001 и будет 49.999. Зато по сравнению с газами сжимаемость жидкостей действительно ничтожна: в десятки тысяч раз меньше.

Если объём воды при 2 атм = 50 литров, то при 500 атм объём станет примерно на 1 литр меньше. (разница в двух числах 2%).

1%/2% * 500 = 250 атмосфер, то значение при котором по идее должно разорвать Ваш бак и то давление которое будет у вас при нагреве. Честно, считаем это какой-то бред и не он никак не сочетается с реальными жизненными показателями, полученными в ходе эксперимента.

Изучав дальше интернет и опираясь на наши знания всех из коллег нашего отдела было перепробовано масса различных вариантов и изучено мнений других людей, которые потом можно было бы использоваться для выявления формулы по нашей задаче:

Вода при нагревании увеличивается в объеме до 4%, т.е. 50 наших литров должны превратиться в 52 литра за счет ее расширения, но применить данную теорию в нашем вопросе нам пока не удалось. Мы даже изучили соотношение плотности льда к плотности воды и поняли объем в этом случае увеличивается на 11 процентов.

Есть мнение (алгоритм) с нашей стороны что ни одну из формул применить тут нельзя, так как в баке или бойлере представленным нами невозможно заполнить его на все 100% жидкостью , какую часть в одной жидкости все равно будет составлять воздух, который в этом случае будет работать как расширительный бак и возможно поэтому те 800 атмосфер которые получаются у разных людей нормализуются тем количеством воздуха который содержаться в сосуде.

Если Вы физик или технически подкованный человек , разбираетесь в данном вопросе и готовы разрешить наш спор и получить ответ на поставленную задачу — ждем Ваших решений под этой записью в комментариях.

Со своей стороны хотим так же сказать, что при проведении реального эксперимента и нагрева воды в бойлере с 18-20 градусов до 50, давление поднялось по манометру с 1.5 очков (бар, атмосфер) примерно и до 5 бар.

Спасибо за проявленный труд, терпение и прочтение данной статьи. Надеемся что этот вопрос решится в ближайшее время и мы найдем грамотный ответ.

Всего Вам доброго и приятного дня.

Другие полезные записи в блоге — только для Вас!

  • Котел КСУВ наружного размещения. Почему он является лучшим из всех? Технические особенности, выбор большинства организаций. Котельная больше не нужна. Устанавливай прямо со зданием.
  • История на «миллион», как мы помогли ДОЛ «Лесное озеро». Крупный DIY проект России, сделай сам!
  • Тепловой пункт: какой промышленный котел выбрать?
  • Наглядный ремонт КЧМ руками наших специалистов.
  • ОАО «Кировский завод» банкрот. Какая судьба ожидает котлы КЧМ-5, КЧМ-5К, КЧМ-7 Гном?
  • Почему в котлах КЧМ-5К не используются колосники? Техническая информация и не только.
  • Все основные запасные части к котлу КЧМ, артикулы, описание и много полезной информации.
  • Лемакс — лучшее соотношение цена/качество в бытовых котлах.
  • 1000 колосников на складе компании МОНТАЖНИК — новый завоз.
  • Что такое колосник? Расскажем все очень подробно.
  • Почему котлы ИШМА покупают 90 из 100 клиентов. Лучшее соотношение цены-качества.
  • Лучший конкурент котла Buderus, Valliant, Protherm — это Кентатсу (Kentatsu) — или как мы его называем один в поле ВОИН! А так же там мы ответили на вопрос, что лучше русский КЧМ или Турецкояпонский гигант?
  • Полная подробная инструкция по монтажу промышленных котлов
  • Посмотреть все статьи и новости

Наши отправки (отгрузки), услуги и выполненные работы:

  • Котлы Rossen RS-A 100 кВт успешно доставлены в Актобе (Казахстан) — часть 1
  • Котел ФЕНИКС на 100 кВт успешно доставлен в Волгоград — часть 2. Собственная разработка. Уже более 2 лет делаем собственные котлы наружного размещения пользующиеся большим спросом.
  • Котел КСВа-0.25 мВт (250 кВт) успешно доставлен в Тамбов — часть 3. Школа готова к отопительному сезону!
  • Котлы КСУВ-500 успешно доставлены в г. Красный Сулин — часть 4. Теперь в больнице будет тепло!
  • Тыловая фронтальная секция КЧМ-5К успешно отправлена в г. Сыктывкар — часть 5.
  • Секция Факел-1Г задняя успешно отправлена в г. Пенза — часть 6.
  • Котлы КСУВ-30 успешно доставлены и смонтированы в г. Ростов на Дону.
  • Отличия между котлами промышленными чугунными У-5,6 и У-5М,6М. Отгрузка 78 секций нашему постоянному клиенту из г. Москвы.
  • Секция КЧМ-5К передняя успешно доставлена клиента в г. Воронеж ТК ПЭК. Постоянно в наличии — отличные цены для Вас. Отгрузка от 1 до 2 рабочих дней.
  • Крышная котельная на основе Rossen RS-A 500 в г. Брянск. Поставка и монтаж.

Статьи посвященные нашим отгрузкам не только поднимают наш авторитет как считаем мы, но они направлены на увеличение доверия со стороны потенциальных клиентов . Нам нечего скрывать — мы делимся с Вами своими продажами и успехами. У нас нет скрытых продаж и ухода от налогов. Мы стараемся делать наше с Вами сотрудничество и работу максимально прозрачными . Мы хотим чтобы Вы доверяли нашей команде!

Источник

Источник

§ 222. Зависимость давления газа от температуры

Начнем с выяснения зависимости давления газа от температуры при условии неизменного объема определенной массы газа. Эти исследования были впервые произведены в 1787 г. Жаком Александром Сезаром Шарлем (1746—1823). Можно воспроизвести эти опыты в упрощенном виде, нагревая газ в большой колбе, соединенной с ртутным манометром (M) в виде узкой изогнутой трубки (рис. 376).

Рис. 376. При опускании колбы в горячую воду присоединенный к колбе ртутный манометр (M) показывает увеличение давления. (T) — термометр

Пренебрежем ничтожным увеличением объема колбы при нагревании и незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, можно считать объем газа неизменным. Подогревая воду в сосуде, окружающем колбу, будем отмечать температуру газа по термометру (T) , а соответствующее давление — по манометру (M) . Наполнив сосуд тающим льдом, измерим давление (

_0) , соответствующее температуре (0^C) . Опыты подобного рода показали следующее.

1. Приращение давления некоторой массы газа при нагревании на (1^C) составляет определенную часть (alpha) того давления, которое имела данная масса газа при температуре (0^C) . Если давление при (0^C) обозначить через (

Читайте также:  Капельницы при проблемах с сосудами

_0) , то приращение давления газа при нагревании на (1^C) есть (

_0+alpha

_0) .

При нагревании на (tau) приращение давления будет в (tau) раз больше, т. е. приращение давления пропорционально приращению температуры.

2. Величина (alpha) , показывающая, на какую часть давления при (0^C) увеличивается давление газа при, нагревании на (1^C) , имеет одно и то же значение (точнее, почти одно и тоже) для всех газов, а именно ( >) . Величину (alpha) называют температурным коэффициентом давления. Таким образом, температурный коэффициент давления для всех газов имеет одно и то же значение, равное ( >) .

Закон Шарля
Давление некоторой массы газа при нагревании на (1^C) при неизменном объеме увеличивается на () часть давления, которое эта масса газа имела при (0^C) .

Следует, однако, иметь в виду, что температурный коэффициент давления газа, полученный при измерении температуры по ртутному термометру, не в точности одинаков для разных температур: закон Шарля выполняется только приближенно, хотя и с очень большой степенью точности.

Источник

Изопроцессы

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: изопроцессы — изотермический, изохорный, изобарный процессы.

На протяжении этого листка мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными. Иными словами, мы считаем, что:

• , то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

• , то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация — распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением, объёмом и температурой. Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева — Клапейрона).

Термодинамический процесс (или просто процесс) — это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров — давления, объёма и температуры.

Особый интерес представляют изопроцессы — термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: .
2. Изобарный процесс идёт при постоянном давлении газа: .
3. Изохорный процесс идёт при постоянном объёме газа: .

Изопроцессы описываются очень простыми законами Бойля — Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

Пусть идеальный газ совершает изотермический процесс при температуре . В ходе процесса меняются только давление газа и его объём.

Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны , а во втором — . Эти значения связаны уравнением Менделеева-Клапейрона:

Как мы сказали с самого начала,масса и молярная масса предполагаются неизменными.

Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части:

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным:

Данное утверждение называется законом Бойля — Мариотта.

Записав закон Бойля — Мариотта в виде

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму. Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки — давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

Графики изотермического процесса

Вообще, графики термодинамических процессов принято изображать в следующих системах координат:

• -диаграмма: ось абсцисс , ось ординат ;
• -диаграмма: ось абсцисс , ось ординат ;
• -диаграмма: ось абсцисс , ось ординат .

График изотермического процесса называется изотермой.

Изотерма на -диаграмме — это график обратно пропорциональной зависимости .

Такой график является гиперболой (вспомните алгебру — график функции ). Изотерма-гипербола изображена на рис. 1 .

Рис. 1. Изотерма на -диаграмме

Каждая изотерма отвечает определённому фиксированному значению температуры. Оказывается, что чем выше температура, тем выше лежит соответствующая изотерма надиаграмме.

В самом деле, рассмотрим два изотермических процесса, совершаемых одним и тем же газом (рис. 2 ). Первый процесс идёт при температуре , второй — при температуре .

Рис. 2. Чем выше температура, тем выше изотерма

Фиксируем некоторое значение объёма . На первой изотерме ему отвечает давление , на второй — p_1′ alt=’p_2 > p_1′/> . Но при фиксированном объёме давление тем больше, чем выше температура (молекулы начинают сильнее бить по стенкам). Значит, T_1′ alt=’T_2 > T_1′/> .

В оставшихся двух системах координат изотерма выглядит очень просто: это прямая, перпендикулярная оси (рис. 3 ):

Рис. 3. Изотермы на и -диаграммах

Изобарный процесс

Напомним ещё раз, что изобарный процесс — это процесс, проходящий при постоянном давлении. В ходе изобарного процесса меняются лишь объём газа и его температура.

Типичный пример изобарного процесса: газ находится под массивным поршнем, который может свободно перемещаться. Если масса поршня и поперечное сечение поршня , то давление газа всё время постоянно и равно

где — атмосферное давление.

Пусть идеальный газ совершает изобарный процесс при давлении . Снова рассмотрим два произвольных состояния газа; на этот раз значения макроскопических параметров будут равны и .

Выпишем уравнения состояния:

Поделив их друг на друга, получим:

В принципе, уже и этого могло бы быть достаточно, но мы пойдём немного дальше. Перепишем полученное соотношение так, чтобы в одной части фигурировали только параметры первого состояния, а в другой части — только параметры второго состояния (иными словами, «разнесём индексы» по разным частям):

А отсюда теперь — ввиду произвольности выбора состояний! — получаем закон Гей-Люссака:

Иными словами, при постоянном давлении газа его объём прямо пропорционален температуре:

Почему объём растёт с ростом температуры? При повышении температуры молекулы начинают бить сильнее и приподнимают поршень. При этом концентрация молекул падает, удары становятся реже, так что в итоге давление сохраняет прежнее значение.

Графики изобарного процесса

График изобарного процесса называется изобарой. На -диаграмме изобара является прямой линией (рис. 4 ):

Рис. 4. Изобара на -диаграмме

Пунктирный участок графика означает, что в случае реального газа при достаточно низких температурах модель идеального газа (а вместе с ней и закон Гей-Люссака) перестаёт работать. В самом деле, при снижении температуры частицы газа двигаются всё медленнее, и силы межмолекулярного взаимодействия оказывают всё более существенное влияние на их движение (аналогия: медленный мяч легче поймать, чем быстрый). Ну а при совсем уж низких температурах газы и вовсе превращаются в жидкости.

Разберёмся теперь, как меняется положение изобары при изменении давления. Оказывается, что чем больше давление, тем ниже идёт изобара надиаграмме.
Чтобы убедиться в этом, рассмотрим две изобары с давлениями и (рис. 5 ):

Рис. 5. Чем ниже изобара, тем больше давление

Зафиксируем некоторое значение температуры . Мы видим, что . Но при фиксированной температуре объём тем меньше, чем больше давление (закон Бойля — Мариотта!).

Стало быть, p_1′ alt=’p_2 > p_1′/> .

В оставшихся двух системах координат изобара является прямой линией, перпендикулярной оси (рис. 6 ):

Рис. 6. Изобары на и -диаграммах

Изохорный процесс

Изохорный процесс, напомним, — это процесс, проходящий при постоянном объёме. При изохорном процессе меняются только давление газа и его температура.

Изохорный процесс представить себе очень просто: это процесс, идущий в жёстком сосуде фиксированного объёма (или в цилиндре под поршнем, когда поршень закреплён).

Пусть идеальный газ совершает изохорный процесс в сосуде объёмом . Опять-таки рассмотрим два произвольных состояния газа с параметрами и . Имеем:

Делим эти уравнения друг на друга:

Как и при выводе закона Гей-Люссака, «разносим» индексы в разные части:

Ввиду произвольности выбора состояний мы приходим к закону Шарля:

Иными словами, при постоянном объёме газа его давление прямо пропорционально температуре:

Увеличение давления газа фиксированного объёма при его нагревании — вещь совершенно очевидная с физической точки зрения. Вы сами легко это объясните.

Читайте также:  Экспертиза промышленной безопасности сосудов что

Графики изохорного процесса

График изохорного процесса называется изохорой. На -диаграмме изохора является прямой линией (рис. 7 ):

Рис. 7. Изохора на -диаграмме

Смысл пунктирного участка тот же: неадекватность модели идеального газа при низких температурах.

Далее, чем больше объём, тем ниже идёт изохора надиаграмме (рис. 8 ):

Рис. 8. Чем ниже изохора, тем больше объём

Доказательство аналогично предыдущему. Фиксируем температуру и видим, что . Но при фиксированной температуре давление тем меньше, чем больше объём (снова закон Бойля — Мариотта). Стало быть, V_1′ alt=’V_2 > V_1′/> .

В оставшихся двух системах координат изохора является прямой линией, перпендикулярной оси (рис. 9 ):

Рис. 9. Изохоры на и -диаграммах

Законы Бойля — Мариотта, Гей-Люссака и Шарля называются также газовыми законами.

Мы вывели газовые законы из уравнения Менделеева — Клапейрона. Но исторически всё было наоборот: газовые законы были установлены экспериментально, и намного раньше. Уравнение состояния появилось впоследствии как их обобщение.

Источник

Тема урока: «Давление газа». 7-й класс

Класс: 7

Презентация к уроку

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Учебник «Физика. 7 кл.» А.В. Перышкин – М. : Дрофа, 2011 г.

Тип урока: комбинированный на основе исследовательской деятельности.

Цели:

  • установить причину существования давления в газах с точки зрения молекулярного строения вещества;
  • выяснить:
  • от чего зависит давление газа
  • как можно его изменить.

Задачи:

  • сформировать знания о давлении газа и природе возникновения давления на стенки сосуда, в котором находится газ;
  • сформировать умение объяснять давление газа на основе учения о движении молекул, зависимости давления от объема при постоянной массе и температуре, а также и при изменении температуры;
  • развить общеучебные знания и умения: наблюдать, делать выводы;
  • способствовать привитию интереса к предмету, развития внимания, научного и логического мышления учащихся.

Оборудование и материалы к уроку: компьютер, экран, мультимедиапроектор, презентация к уроку, колба с пробкой, штатив, спиртовка, шприц, воздушный шар, пластиковая бутылка с пробкой.

План урока:

  1. Проверка домашнего задания.
  2. Актуализация знаний.
  3. Объяснение нового материала.
  4. Закрепление пройденного материала на уроке.
  5. Итог урока. Домашнее задание.

Я предпочитаю то, что можно увидеть, услышать и изучить. (Гераклит) (Слайд 2)

– Это девиз нашего урока

– На прошлых уроках мы с вами узнали о давлении твердых тел, от каких физических величин зависит давление.

1. Повторение пройденного материала

1. Что такое давление?
2. От чего зависит давление твердого тела?
3. Как давление зависит от силы, приложенной перпендикулярно опоре? Каков характер этой зависимости?
4. Как давление зависит от площади опоры? Каков характер этой зависимости?
5. В чем причина давления твердого тела на опору?

Качественная задача.

Одинаковы ли силы, действующие на опору, и давление в обоих случаях? Почему?

Проверка знаний. Тестирование (проверка и взаимопроверка)

Тест

1. Физическая величина, имеющая размерность паскаль (Па), называется:

а) сила; б) масса; в) давление; г) плотность.

2. Силу давления увеличили в 2 раза. Как изменится давление?

а) уменьшится в 2 раза; б) останется прежним; в) увеличится в 4 раза; г) увеличится в 2 раза.

3. Давление можно рассчитать по формуле:

4. Какое давление на пол оказывает ковёр весом 200 Н, площадью 4 м 2 ?

а) 50 Па; б) 5 Па; в) 800Па; г) 80 Па.

5. Два тела равного веса поставлены на стол. Одинаковое ли давление они производят на стол?

2. Актуализация знаний (в форме беседы)

– Почему воздушные шары и мыльные пузыри круглые?
Учащиеся надувают воздушные шары.
– Чем мы заполнили шары? (Воздухом) Чем еще можно заполнить шары? (Газами)
– Предлагаю сжать шары. Что вам мешает сжать шары? Что действует на оболочку шара?
– Возьмите пластиковые бутылки, закройте пробкой и попробуйте сжать.
– О чем пойдет речь на уроке?

– Тема урока: Давление газа

3. Объяснение нового материала

Газы, в отличии от твёрдых тел и жидкостей, заполняют весь сосуд, в котором находятся.
Стремясь расшириться, газ оказывает давление на стенки, дно и крышку любого тела, с которым он соприкасается.
(Слайд 9) Картинки стальных баллонов, в которых находится газ; камеры автомобильной шины; мяча
Давление газа обусловлено иными причинами, чем давление твердого тела на опору.

Вывод: давление газа на стенки сосуда (и на помещенное в газ тело) вызывается ударами молекул газа.
Например, число ударов молекул воздуха, находящегося в комнате, о поверхность площадью 1 см 2 за 1 с выражается двадцатитрехзначным числом. Хотя сила удара отдельной молекулы мала, но действие всех молекул на стенки сосуда значительно, оно и создает давление газа.
Учащиеся самостоятельно работают с учебником. Читают опыт с резиновым шаром под колоколом. Как объяснить этот опыт? (стр.83 рис. 91)

Учащиеся объясняют опыт.

(Слайд 11) Просмотр видеофрагмента с объяснением опыта для закрепления материала.

(Слайд 12) Минутка отдыха. Зарядка для глаз.

«Ощущение тайны – наиболее прекрасное из доступных нам переживаний. Именно это чувство стоит у колыбели настоящей науки».

(Слайд 14) ИМЕЮТ ЛИ ГАЗЫ ОБЪЁМ? ЛЕГКО ЛИ ИЗМЕНИТЬ ОБЪЁМ ГАЗОВ? ЗАНИМАЮТ ЛИ ГАЗЫ ВЕСЬ ПРЕДОСТАВЛЯЕМЫЙ ИМ ОБЪЁМ? ПОЧЕМУ?ПОЧЕМУ? ИМЕЮТ ЛИ ГАЗЫ ПОСТОЯННЫЙ ОБЪЁМ И СОБСТВЕННУЮ ФОРМУ? ПОЧЕМУ?

(Слайд 15) У учащихся сделаны модели из шприцов. Выполнение опыта.
Учащиеся делают вывод: при уменьшении объёма газа его давление увеличивается, а при увеличении объёма давление уменьшается при условии, что масса и температура газа остаются неизменными.

(Слайд 16) Опыт с колбой

– Как изменится давление газа, если нагреть его при постоянном объеме?
При нагревании давление газа в колбе будет постепенно возрастать до тех пор, пока пробка не вылетит из склянки.
Учащиеся делают вывод: давление газа в закрытом сосуде тем больше, чем выше температура газа,при условии, что масса газа и объём не изменяются. (Слайд 17)

Газы, заключенные в сосуде, можно сжимать или сдавливать, уменьшая при этом их объем. Сжатый газ равномерно распределяется во всех направлениях. Чем сильнее вы сжимаете газ, тем выше будет его давление.
Учащиеся делают вывод: давление газа тем больше, чем чаще и сильнее молекулы ударяют о стенки сосуда

4. Закрепление пройденного материала на уроке.

(Слайд 18) Подумай-ка

– Что происходит с молекулами газа при уменьшении объёма сосуда, в котором находится газ?

  • молекулы начинают быстрее двигаться,
  • молекулы начинают медленнее двигаться,
  • среднее расстояние между молекулами газа уменьшается,
  • среднее расстояние между молекулами газа увеличивается.

(Слайд 19) Сравни-ка свои ответы

  1. Чем вызвано давление газа?
  2. Почему давление газа увеличивается при его сжатии и уменьшается при расширении?
  3. Когда давление газа больше: в холодном или горячем состоянии? Почему?

Ответ 1. Давление газа вызвано ударами молекул газа о стенки сосуда или о помещенное в газ тело
Ответ 2. При сжатии плотность газа увеличивается, из-за чего возрастает число ударов молекул о стенки сосуда. Следовательно, увеличивается и давление. При расширении плотность газа уменьшается, что влечет за собой уменьшение числа ударов молекул о стенки сосуда. Поэтому давление газа уменьшается
Ответ 3. Давление газа больше в горячем состоянии. Это связано с тем, что молекулы газа при повышении температуры начинают двигаться быстрее, из-за чего удары их становятся чаще и сильнее.

(Слайд 20) Качественные задачи. (Сборник задач по физике В.И. Лукашик, Е.В.Иванова, Москва «Просвещение» 2007 г. стр. 64)

1. Почему при накачивании воздуха в шину автомобиля с каждым разом становится все труднее двигать ручку насоса?

2. Массы одного и того же газа, находящегося в разных закрытых сосудах при одинаковой температуре, одинаковы. В каком из сосудов давление газа наибольшее? Наименьшее? Ответ объясните

3. Объясните появление вмятины на мяче

Мяч при комнатной температуре

Мяч на снегу в морозный день

Решать загадки можно вечно.
Вселенная ведь бесконечна.
Спасибо всем нам за урок,
А главное, чтоб был он впрок!

Источник

Источник