Пример решения задач на сообщающиеся сосуды

Пример решения задач на сообщающиеся сосуды thumbnail

Определение

Соединенные между собой сосуды называют сообщающимися.

В таких сосудах жидкость имеет возможность перетекать из одной емкости в другую (рис.1). Форма сообщающихся сосудов может быть самая разная.

Сообщающиеся сосуды, рисунок 1

Допустим, что в сообщающиеся сосуды налита однородная жидкость, то в этих сосудах жидкость устанавливается на одном уровне, если давление над поверхностью жидкости одинаково, и не важно какую форму имеют сосуды. В неподвижной жидкости давление ($p$) на одном уровне в сообщающихся сосудах является равным, так как мы знаем, что:

[p=rho gh left(1right),]

где $rho $ – плотность жидкости; $g$ – ускорение свободного падения; $h$ – высота столба жидкости. Так как давление на одном уровне жидкости одинаково, то равными будут и высоты столбов жидкости.

Жидкости разной плотности в сообщающихся сосудах

Допустим, что в сообщающиеся сосуды налили жидкость разной плотности (рис.2(б)). В состоянии равновесия жидкостей, их уровни не будут находиться на одном уровне (высоты столбов жидкости равными не будут).

Сообщающиеся сосуды, рисунок 2

Жидкости в сосудах находятся в равновесии. Давления на уровне A (граница раздела разных жидкостей) (рис. 2 (б)) равны:

[{rho }_1gh_1={rho }_2gh_2left(2right),]

где ${rho }_1$ и ${rho }_2$ – плотности жидкостей. Найдем отношение высот столбов жидкостей в сосудах:

[frac{h_1}{h_2}=frac{{rho }_2}{{rho }_1}left(3right).]

Формула (3) говорит о том, что в сообщающихся сосудах высоты столбиков жидкости над уровнем их раздела обратно пропорциональны плотностям этих жидкостей. При одинаковом давлении над поверхностями жидкостей, высота столба жидкости с меньшей плотностью будет больше, чем высота столба более плотной жидкости.

Гидравлический пресс и другие примеры использования сообщающихся сосудов

В технике сообщающиеся сосуды используют часто. Например, существует такое устройство, как гидравлический пресс. Его изготавливают из двух цилиндров разного радиуса, в которых находятся поршни (рис.3). Сообщающиеся сосуды пресса обычно заполняют минеральным маслом.

Сообщающиеся сосуды, рисунок 3

Пусть площадь первого поршня, к которому прикладывают силу ${overline{F}}_1,$ равна $S_1$, площадь второго $S_2$, к нему приложена сила ${overline{F}}_2$. Давление, которое создает первый поршень равно:

[p_1=frac{F_1}{S_1}left(4right).]

Второй поршень давит на жидкость:

[p_2=frac{F_2}{S_2}left(5right).]

Если система находится в состоянии равновесия, то по закону Паскаля давления $p_1$ и $p_2$ равны:

[frac{F_1}{S_1}=frac{F_2}{S_2}left(6right).]

Получим:

[F_1=F_2frac{S_1}{S_2}(7)]

величина первой силы больше модуля силы $F_2$ в $frac{S_1}{S_2}$ раз. Это означает, что при помощи гидравлического пресса, прикладывая небольшую силу к поршню малого сечения, можно получить большую по величине силу, которая будет действовать на большой поршень.

По принципу сообщающихся сосудов, в особенности раньше, действовал водопровод. Такой водопровод сейчас еще можно наблюдать на дачных участках. На относительно большой высоте устанавливается бак с водой, от бака идут водопроводные трубы, закрываемые кранами. Давление у кранов соответствует давлению столба воды, который равен разности высот уровень крана – уровень воды в баке.

Принципом сообщающихся сосудов пользовались, когда проектировали фонтаны, работающие без насосов, шлюзы на реках и каналах.

Примеры задач с решением

Пример 1

Задание. Имеются два цилиндрических сосуда. Высота столба жидкости в одном равна $h_1$, в другом $h_2$. Эти сосуды соединяют трубкой. Насколько изменится высота столба жидкости в левом сосуде, если площадь поперечного сечения его $S_1>S_2$ , $S_2$ – площадь сечения правого сосуда. Объемом трубки пренебречь.

Сообщающиеся сосуды, пример 1

Решение. После того как сосуды соединили, они стали сообщающимися. Часть жидкости из левого сосуда перетечет в правый. Так как жидкость в правом и левом сосудах одна и та же, то уровни жидкости в обоих сосудах будут находиться на одном уровне, то есть высота столбиков жидкости станет равна $H$ в обоих коленах емкости. Определим, какой объем воды перетечет из левого колена в правое:

[Delta V_1=left(h_1-Hright)S_{1 }left(1.1right),]

где $S_{1 }$ – площадь поперечного сечения левого сосуда (сосуда из которого вытекает жидкость). В правом сосуде эта жидкость займет объем равный:

[Delta V_2=left(H-h_2right)S_{2 }left(1.2right),]

где $S_{2 }$ – площадь поперечного сечения правого сосуда. Так как мы считаем, что жидкость не сжимаема, то имеем:

[Delta V_1=Delta V_2left(1.3right).]

Приравниваем правые части выражений (1.2) и (1.1), выражаем высоту столбиков жидкости в правой и левой части сообщающихся сосудов:

[left(h_1-Hright)S_{1 }=left(H-h_2right)S_{2 }to H=frac{h_1S_{1 }+S_{2 }h_2}{S_1+S_{2 }} left(1.4right).]

Используя выражение (1.4), изменение высоты жидкости в левом колене, получим равным:

[Delta h=h_1-H=h_1-frac{h_1S_{1 }+S_{2 }h_2}{S_1+S_{2 }}=frac{h_1S_1+h_1S_2-h_1S_{1 }-S_{2 }h_2}{S_1+S_{2 }}=]

[=frac{h_1S_2-S_{2 }h_2}{S_1+S_{2 }}=frac{h_1-h_2}{S_1+S_{2 }}S_2.]

Ответ. $Delta h=frac{h_1-h_2}{S_1+S_{2 }}S_2$

Пример 2

Задание. Какой будет сила давления на большой поршень (площадью $S_1$) гидравлического пресса, если площадь его малого поршня равна $S_2$, при этом на него действует сила равная $F_2$?

Решение. В теоретическом разделе сказано, что гидравлический пресс представляет собой систему из сообщающихся сосудов (рис.3). Из закона Паскаля следует, что, прикладывая небольшую силу ($F_2$) к поршню малого сечения ($S_2$) пресса, можно получить большую по величине силу, которая будет действовать на большой поршень ($S_1$):

[F_1=F_2frac{S_1}{S_2}(2.1)]

Ответ. $F_1=F_2frac{S_1}{S_2}$

Читать дальше: условия плавания тел.

Источник

В последнее время мы разбирали решения многих простейших физических задач по разным темам: законы Ньютона, сила трения, свободное падение и т.д. Пришла пора взяться за что-то посложнее. Сегодня решаем задачи по теме «гидростатика». 

За полезными лайфхаками и новостями студенческой жизни добро пожаловать на наш телеграм-канал.

Задачи по гидростатике с решениями

Задача №1 на гидростатику

Условие

B кувшине с водой плавает кусок льда. Как изменится уровень воды в сосуде, когда лед растает? 

Решение

Пример решения задач на сообщающиеся сосуды

По условию плавания тел:

Пример решения задач на сообщающиеся сосуды

V – объем погруженной в воду части льда. После таяния льда образуется объем воды:

Пример решения задач на сообщающиеся сосуды

Как видим, объемы совпадают. Это значит, что при таянии льда его объем будет заменен таким же объемом воды.

Ответ: уровень не изменится.

Задача №2 на гидростатику

Условие

Кочан капусты массой 8 кг и объемом 10 л опускают в воду. Какой объем кочана окажется над водой?

Решение

Кочан плавает на поверхности, на него действуют сила Архимеда и сила тяжести:

Пример решения задач на сообщающиеся сосуды

Здесь V – объем кочана, погруженный в воду. Чтобы узнать объем кочана над водой, нужно из общего объема вычесть погруженный:

Читайте также:  Профилактика тромбообразования в сосудах

Пример решения задач на сообщающиеся сосуды

В одном кубическом метре – тысяча литров.

Ответ: 2 литра.

Задача №3 на гидростатику

Условие

Каково давление на дне озера глубиной 5 м? Атмосферное давление принять равным 100 кПа.

Решение

Вспоминаем основное уравнение гидростатики и записываем:

Пример решения задач на сообщающиеся сосуды

Ответ: 150 кПа.

Задача №4 на гидростатику

Условие

Вес тела в вакууме 2,6Н, в воде 1,6Н. Плотность воды 1000кг/м3. Определите плотность тела.

Решение

Вес – сила, с которой тело действует на опору. В воде вес меньше, так как на тело действует сила Архимеда, которая стремиться «поднять» его. В вакууме вес тела равен силе тяжести.

Пример решения задач на сообщающиеся сосуды

Ответ: 2600 кг/м3.

Задача №5 на гидростатику

Условие

Гидростатическое давление жидкости увеличилось в 5 раз. Как при этом изменилась высота столба жидкости в сосуде?

Решение

Формула для гидростатического давления:

Пример решения задач на сообщающиеся сосуды

Так как плотность жидкости и ускорение свободного падения остаются неизменными, можно сделать вывод, что высота столба жидкости увеличилась в пять раз.

Ответ: высота увеличилась в 5 раз.

Кстати! Для наших читателей действует скидка 10% на любой вид работы.

Вопросы по гидростатике

Вопрос 1. Что такое гидростатический парадокс?

Ответ. Гидростатический парадокс – явление, когда вес жидкости в сосуде не совпадает с весовым давлением, которое она оказывает на стенки сосуда. Возникает в сосудах конусообразной формы.

Вопрос 2. Какие есть внесистемные единицы изменения давления:

Ответ. Внесистемные единицы давления:

  • миллиметр ртутного столба;
  • бар;
  • атмосфера.

Вопрос 3. В условиях физических задач часто можно встретить формулировку «нормальные условия». Что этот значить?

Ответ. Это значит, что давление нужно брать равным 101325 Па (или 760 мм рт. ст.), а температуру – 0 градусов Цельсия (или 273 Кельвина).

Вопрос 4. Что такое сообщающиеся сосуды?

Ответ. Сообщающиеся сосуды – это емкости, соединенные между собой. Жидкость может свободно перетекать из одного сосуда в другой. Уровень жидкости с одной плотностью в сообщающихся сосудах всегда одинаков. Простейший пример сообщающихся сосудов: обычный чайник. Если мы нальем в него воду, уровень будет одинаковым как в носике, так и в основном объеме. Если же плотности жидкостей разные, то выше будет уровень той, у которой плотность меньше.

Вопрос 5. Что такое гидравлический пресс?

Ответ. Гидравлический пресс – устройство, в основе действия которого лежит закон Паскаля и принцип сообщающихся сосудов. Пресс состоит из двух соединённых и заполненных маслом цилиндров: узкого и широкого. При нажатии на поршень узкого цилиндра, широкий цилиндр получает во столько раз большее давление, во сколько раз площадь большего поршня больше площади меньшего поршня.

Гидростатика: немного теории

Гидростатика – раздел физики, изучающий равновесие жидкостей.

Равновесие жидкостей – очень важный раздел. Например, если вы выпили много пива, просто необходимо, чтобы оно находилось в равновесии. Но шутки в сторону! Какие фундаментальные понятия нужно знать, чтобы решать задачи по гидростатике? 

Давление и плотность

Давление – физическая величина, равная отношению модуля силы, перпендикулярно действующей на поверхность, к площади этой поверхности. 

Пример решения задач на сообщающиеся сосуды

Давление столба жидкости называют гидростатическим, а измеряется оно в Паскалях. Гидростатическое давление столба жидкости высотой h на дно сосуда рассчитывается по формуле:

Пример решения задач на сообщающиеся сосуды

Греческое «ро» – плотность жидкости. Плотность измеряется в килограммах на кубический метр и равна отношению массы тела к его объему.

Жидкость – изотропная среда. Это значит, что ее свойства одинаковы в любой ее точке.

Закон Паскаля и основное уравнение гидростатики

Давление, оказываемое на жидкость или газ передается в любую точку этой жидкости одинаково и во всех направлениях.

Это и есть закон Паскаля. Согласно ему, давление жидкости зависит только от плотности жидкости и высоты ее столба. На глубине h жидкость оказывает одинаковое давление как на дно, так и на стенки сосуда.

Пример решения задач на сообщающиеся сосуды

В данном случае р нулевое – давление столба воздуха (атмосферы), которое действует на жидкость.

В своей другой формулировке основное уравнение гидростатики показывает, что гидростатический напор является постоянной величиной для всего объема неподвижной жидкости. Здесь мы не будем останавливаться на этом понятии, так как оно изучается в курсе гидравлики.

Закон Архимеда и условия плавания тел

Закон Архимеда – еще одна важнейшая часть гидростатики. Он гласит:

На тело, погруженное в газ или жидкость действует выталкивающая сила, равная весу жидкости (газа) в объеме погруженной части тела. Эта сила называется силой Архимеда.

Пример решения задач на сообщающиеся сосуды

Тело плавает, если выталкивающая сила Архимеда больше действующей на него силы тяжести. Это же условие можно переписать, используя понятие плотности: тело будет плавать, если плотность жидкости больше, чем плотность тела.

Подробнее о законе Архимеда и фактах из жизни этого выдающегося античного инженера читайте в нашем отдельном материале.

Нужна помощь в решении задач? Обращайтесь в профессиональный студенческий сервис за качественным и быстрым объяснением.

Источник

План-конспект открытого урока по физике в 7А классе на тему «Сообщающиеся сосуды. Решение задач на сообщающие сосуды».

Цели урока:

Образовательные:

  • Сформировать представление о сообщающихся сосудах и их свойствах;
  • Показать примеры применение сообщающихся сосудов в быту и технике.

Развивающие:

  • Развивать умения применять полученные знания на практике;
  • Развивать экспериментальные умения, умения наблюдать, навыки логического мышления, умение обосновывать свои высказывания, делать выводы.

Воспитывающие:

  • воспитывать интерес к познанию окружающего мира, любовь к родному краю;
  •  воспитывать коммуникативную культуру;
  • создать условия для развития исследовательских навыков, навыков общения и совместной деятельности.

Тип урока: комбинированный.

Структура урока.

Этапы урока

Время, мин

Приемы и методы

1

Организационный момент.

3

Рассказ учителя

2

Актуализация знаний.

22

Индивидуальные карточки, фронтальный опрос, индивидуальное задание, задание у доски.

3

Изучение нового материала.

25

Беседа. Записи на доске. Проведение эксперимента. Презентация на проекторе. Обсуждение результатов.

Выводы.

4

Физическая пауза.

3

Делаем зарядку для глаз. Слушаем релаксирующую музыку.

5

Развитие знаний при решении задач.

18

Решение задач.

6

Подведение итогов.

3

Выделение главного учителем. Выставление оценок за работу на уроке.

7

Домашнее задание.

1

Запись на доске.

Читайте также:  Формула закона сообщающихся сосудов

Ход урока.

  1. Организационный момент.

 (Поприветствовать класс, отметить отсутствующих, рассказать план урока)

План урока сегодня такой: проверяем д/з, изучаем новый учебный материал, учимся решать задачи по новой теме.

  1. Актуализация знаний.

Домой вам было задано повторить п.33-38. Проверим как вы выполнили Д/з.

  1. Выдать индивидуальные карточки на повторение материала (3-4 человека)
  2. Задание у доски (1-2 человека) – вывести формулу для расчета давления жидкости на дно и стенки сосуда.
  3. Провести фронтальный опрос по пройденному ранее материалу.

Остальные будут отвечать на мои вопросы:

– способы уменьшения давления (увеличивают площадь – шире колеса, гусеничный ход, фундамент зданий, широкие лямки рюкзака, лыжи, шпалы);

– способы увеличения давления (уменьшение площади – заточка инструментов, в природе – шипы, острый клюв, когти и зубы);

– чем вызвано давление газа (ударами молекул о станки сосуда);

– что происходит с газом при уменьшении объема (число ударов о стенки сосуда возрастет и давление увеличится);

– как зависит давление газа от температуры (увеличивается с увеличением температуры);

– почему сжатые газы содержат в специальных баллонах (т.к. при сжатии газа давление возрастает, что очень опасно, следовательно, баллоны должны быть очень прочные);

– сформулируйте Закон Паскаля (давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях);

– как показать на опыте, что давление внутри жидкости на разных уровнях разное (стеклянная колба с резиновой пленкой);

– почему во многих случаях не принимают во внимание давление газа, созданное его весом (из-за маленькой плотности газов);

– от каких величин зависит давление жидкости на дно сосуда (от плотности и от высоты столба жидкости);

– зависит ли давление жидкости на дно сосуда от формы сосуда, от площади поверхности (нет, нет).

  1. Проверяем правильность вывода формул у доски.
  1. Доклад учащегося на тему «Блез Паскаль. Биография и интересные факты жизни».
  2. Проверка карточек: 1 вариант (а, а, а, б, г, г) 

                                   2 вариант (в, б, г, в, в, а)

(Вопросы с ошибками предложить разобрать классу.)  

  1. Изучение нового материала

А теперь приступим к НУМ.

Объявить тему урока. (Запись в тетрадях – число и тема урока)

  1. Сообщающие сосуды (определение, эксперименты)

 Сегодня речь пойдет о сообщающихся сосудах. Как вы думаете, что это такое?

Записываем: «Сообщающимися сосудами называют сосуды, соединенные между собой в нижней части.»

Сообщающиеся сосуды мы встречаем в нашей жизни ежедневно. Попробуйте привести примеры (чайник, кофейник, лейка)

Научное открытие свойства сообщающихся сосудов датируется XI в (голландский ученый Стевин). Но оно было известно еще жрецам древней Греции. Археологи обнаружили в Грузии водопровод (XIII в), работающий по принципу сообщающихся сосудов.                        

С сообщающимися сосудами можно проделать простой опыт. Возьмем вот такие сообщающие сосуды (показываю). Наливаем воду и смотрим, что происходит (вода в обоих сосудах установилась на одном уровне).  Возьмем теперь сообщающиеся сосуды разных форм и тоже нальем воду. Что вы заметили? (Вода тоже установилась во всех сосудах на одном уровне) Какой же вывод мы можем сделать?

Записываем: «Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне».

Докажем это с помощью формул:

Вывод формулы для случая с однородными жидкостями:                            

                                    p1= ρgh1          p2= ρgh2  

                                                                 ρgh1= ρgh2

                                                h1= h2

Ответим на вопросы: Изменится ли уровень жидкости, если правый сосуд будет шире левого? уже левого? если сосуды будут иметь разную форму? (Нет, жидкость установиться в обоих сосудах на одном уровне.) При изменении формы сосудов может изменяться лишь высота уровня воды в сосудах, отмеренная от уровня стола (из-за того, что изменяется объем сосудов). Однако уровни воды в сообщающихся сосудах не зависят от формы сосудов и останутся равны.  

 А как вы думаете, что произойдет, если в сообщающиеся сосуды налить две несмешивающиеся жидкости разной плотности?

Проверим это теоретически:

                                    p1= ρ1gh1          p2= ρ2 gh2  

                                                                 ρ1gh1= ρ2gh2

                                             ρ1h1= ρ2h2

Следовательно, высота столбов жидкостей в сосудах будет разной.

Записываем: При равенстве давлений высота столба жидкости большей плотности меньше, чем высота столба жидкости меньшей плотности.

  1. Применение сообщающихся сосудов в быту, природе, технике.

Где же применяются сообщающиеся сосуды?

       Закон сообщающихся сосудов люди используют в разных технических устройствах: водопроводах с водонапорной башней; гидравлическом прессе; шлюзах; сифонах под раковиной, «водяных затворах» в системе канализации; действие артезианских колодцев и гейзеров основано на законе сообщающихся сосудов.

Еще один пример использования сообщающихся сосудов, это фонтаны. На них мы остановимся поподробнее.

Читайте также:  Что дает оценка состояния периферических сосудов

В России существует единственный в мире комплекс фонтанов, который работает на принципе сообщающихся сосудов. Есть идеи, что это за фонтаны? Подсказка – эти фонтаны были созданы по распоряжению Петра 1. Это фонтаны в Петергофе. (Презентация1)

Рассмотрим для начала принцип действия фонтана (слайд2) Если уровень жидкости в обоих сосудах одинаковый, то фонтан бить не будет. Струя фонтана возникает под напором (давлением), который можно создать, если изменить уровень жидкости в одном из сосудов.

      В современных фонтанах для создания давления на входе в трубы используются в большинстве случаев насосы (Слайд3). А в фонтанах Петергофа используется, как я уже говорила, принцип сообщающихся сосудов. Здесь нет ни насосов, ни сложных водонапорных сооружений. (Слайд4)

         Петр не случайно выбрал именно это место для строительства загородной резиденции – Петергофа. (Слайд5) Обследуя местность вблизи Финского залива, он обнаружил множество водоемов и ключей, бьющихся из-под земли. По этим ключам можно было установить, что где-то неподалеку есть источник воды, расположенный выше уровня местности. Такой источник действительно был найден на Ропшинских высотах, расположенных на 100 м выше уровня моря.

         Под руководством русского мастера Василия Туволкова в течение лета 1721 года были построены канал и другие водоводы, по ним из водоемов Ропшинских высот вода самотеком пошла в накопительные бассейны Верхнего сада Петродворца, объединив все озёра и ручьи. Здесь (в Верхнем саду) можно было уже устроить небольшие по высоте струи-фонтаны. А вот в Нижнем парке, на 16 метров ниже Верхнего сада, вода по трубам из накопительных бассейнов по принципу сообщающихся сосудов взмывает вверх множеством высоких струй в фонтанах парка. Далее она по прямому Морскому каналу, обрамленному множеством фонтанов, стекает в Финский залив.

У фонтанов есть свои секреты:

1. (Слайд6) Денег на возведение фонтанов в Петергофе потратили действительно немало, а вот энергии эти сооружения не расходуют совсем. Каждый фонтан в парке тратит 1000 литров в секунду, а в целом за день уходит до 8 млн литров воды. Однако, чтобы фонтан заработал, необходимо лишь с помощью вентиля открыть задвижку. При этом никакого постороннего звука от шумных моторов и механизмов вы не услышите, ведь их тут действительно нет.

2. (Слайд7) Под фонтанами находится огромное количество труб – маленьких и больших. Кстати, во времена Петра Великого не существовало прочных труб, их заменяли полые деревья, а чистить их приходилось изнутри очень худым детям. На ночь все фонтаны останавливают с помощью всё того же вентиля, а к утру всё вновь готово к полноценной работе. Зимой фонтаны не работают, а вода течёт задуманным ещё при Петре обходным путём через речку Шинкарка.

3. (Слайд8) Петергоф также известен своими фонтанами-шутками. По легенде, которую рассказывают экскурсоводы туристам, если наступить на один из камней, фонтан сразу же заработает. После рассказа все тут же спешат это проверить сами и тотчас попадают под брызги. Но никто из посетителей не замечает, что рядом с фонтаном сидит неприметный дяденька и держится за палку, которая со стороны похожа на трость. На самом деле именно он руководит процессом поступления воды. Рядом ещё с одним фонтаном находится будка с окошечком, в которой тоже сидит специальный человек. Такие невидимые сотрудники Петергофа несут свою вахту около каждого фонтана-шутки.

          Многие уверены, что шикарные фонтаны дворцового комплекса работают на насосах. Однако из-за дороговизны такого процесса даже фонтаны во французском королевском дворце Версале включают только на 2 часа 2 раза в неделю. А в России, благодаря гениальной задумке Петра I и точному расчету русского инженера Туволкова, тысячи российских и иностранных туристов могут наслаждаться великолепием этих фонтанов ежедневно в течение всего лета.

На этом теоретическая часть нового материала закончена, приступим к практике, т.е. к решению задач.

  1. Развитие знаний при решении задач.

 Физическая пауза.  Прежде, чем приступить к решению задач, проведем “Гимнастику для глаз”.

  1. Зажмурьте глаза, а потом откройте их. Повторите 5 раз.
  2. Делайте круговые движения глазами: налево – вверх – направо – вниз – направо – вверх – налево – вниз. Повторите 10 раз.
  3. Закроем глаза, откинемся на спинку стула и послушаем музыку – 1 минуту. (Включить релаксирующую музыку)

Задача1: (Презентация2)

 Какую высоту должен иметь столб нефти, чтобы уравновесить в сообщающихся сосудах столб ртути высотой 16см?

Дано:

hрт = 16см = 0,16м

ρрт = 13600 кг/м3

ρн = 800 кг/м3

Найти:

hн – ?

Решение:

Запишем формулу для давления:

Р = ρgh

По условию задачи Ррт = Рн, или ρрт ghрт = ρнghн, отсюда

hн = (ρртhрт) / ρн

hн = 2,7м

Ответ: hн = 2,7м

Задача2: №26.22 (Задачник, стр. 130) Прочитаем условие задачи. Предложить учащимся выйти у доске и решить задачу.

Решение: Уровни ртути будут совпадать, если давление столба воды и столба керосина одинаково:  pв = pк, т.к.  давление определяется по формуле:

p = ρ · g · h  ,

то ρв · g · h в = ρк · g · h к. Отсюда находим h к = ρв · g · h в/ ρк · g, производя математическое действие, получим: h к = ρв· h в/ ρк :  

h к = ρв· h в/ ρк = 1000 кг/м3 ·0,2м /800 кг/м3  =  0,25м=25см                              

Ответ: 25см

 Задача2: 26.7  

В сосуде с керосином уровень будет больше, т.к. плотность керосина меньше плотности воды.

Задача3: №26.23 (Задачник) ?

  1. Итоги урока.

Сегодня мы с вами изучили сообщающиеся сосуды. Что вы запомнили из урока? Что такое сообщающиеся сосуда? Какой будет уровень в сообщающихся сосудах при однородных жидкостях? При неоднородных жидкостях? Где используется принцип сообщающихся сосудов?

Выставляются оценки за работу на уроке, оценки озвучиваются.

  1. Домашнее задание. 

Запишите пожалуйста домашнее задание. На доске: п. 39, зад. 26.2, 26.13 (задачник)

Урок закончен. До свидания!

Источник