Работа в сосудах схемы

Работа в сосудах схемы thumbnail

    Разделительные сосуды предназначены для предохранения внутренних полостей измерительных приборов от воздействия агрессивных измеряемых сред, а также предотвращения поступления вязких сред в эти полости. Отделение прибора от измеряемой среды происходит посредством разделительной жидкости.

    Конструктивное исполнение разделительного сосуда не сложное (рис. 8.15,а): к стальному сосуду  приварены подводящий, отводящий и контрольный патрубки. В одной части (верхней или нижней) разделительного сосуда находится измеряемая жидкость (например, газ), поступающая от измеряемого пространства, в другой – иная, не смешивающаяся с измеряемым веществом жидкость, удовлетворяющая требованиям, предъявляемым к заполнению внутренней полости прибора. 

 рис 8.15.jpg

Рис. 8.15. Внешний вид (а) и схема подсоединения (б) разделительного сосуда:

а – вид сосуда; б – схема подсоединения; 1 – металлический объем;   2 – присоединительный патрубок; 3 – трубопровод; 4 – разделительный сосуд; 5 – измерительный прибор

    Применение разделительного сосуда поясняет рис. 8.15,б. Если по трубопроводу протекает мазут, попадание которого во внутренние полости прибора из-за его высокой вязкости (а при низкой температуре и застывании) не желательно, то на выходе пробоотбора через коренной клапан устанавливается разделительный сосуд. Расстояние между ними невелико. Этот сосуд с отводящим трубопроводом и измерительным прибором наполовину заполняется водой. Разогретый мазут из-за более низкой плотности заполняет верхнюю часть разделительного сосуда, а в нижней его части остается вода. Изменение давления приводит к варьированию уровня раздела мазута и воды. При значительно превосходящем объеме сосуда относительно объема внутренней полости чувствительного элемента измерительного прибора варьирование уровня разделения в сосуде мало.

В табл. 8.3 приведены основные параметры и размеры разделительных сосудов.

Таблица 8.3

Основные параметры и усредненные размеры

разделительных сосудов

Внутренний объем сосуда, см3

Внутренний диаметр, мм

Размеры, мм

Высота

Ширина 1

Ширина 2

1100

140

530

280

210

470

90

490

230

160

90

35

440

175

100

     По рабочему давлению сосуды производятся для измерений давлений 6,3; 25 и 40 МПа.

    Рис. 8.13,б иллюстрирует применение разделительного сосуда при условии, что измеряемое вещество легче разделительной жидкости. Если удельный вес измеряемой среды выше удельного веса разделительной жидкости, то разделительный сосуд и измерительный прибор устанавливаются выше пробоотбора.

    В качестве разделительной жидкости могут использоваться вода, глицерин, водоглицериновые смеси, минеральные масла.

    Для разделения измеряемой среды и полости чувствительного элемента применяют также устройства, используемые в качестве разделительных камер кислородсодержащих сред (см. п.2.2.3).

    Уравнительные сосуды применяются для исключения влияния на результат измерения дифманометров-расхо-домеров и перепадомеров, а также дифманометров-уровнемеров столба жидкости в импульсных подводящих линиях. Причем величина такого воздействия столба может определяться как его высотой, так и плотностью находящейся в нем жидкости. Плотность жидкости в значительной степени зависит от ее температуры. Этим обусловлена необходимость прокладки обеих импульсных линий («плюсовой» и «минусовой») в одинаковых температурных условиях.

    Необходимость применения уравнительных сосудов при измерении перепада давления на сужающем устройстве можно продемонстрировать рис. 8.16. Измерительный преобразователь разности давлений с мембранными коробками в качестве чувствительного элемента установлен на трубопроводе с сужающим устройством. Измеряемая среда в трубопроводе – газ. В определенный момент времени при оптимальном заполнении импульсных линий рабочей жидкостью и дифференциальном давлении, равном нулю, «минусовая» и «плюсовая» камеры имеют одну степень объемной деформации. При увеличении перепада на сужающем устройстве возрастает давление в импульсной линии «плюсового» давления, и «плюсовая» камера сжимается, вытесняя рабочую жидкость в «минусовую». При этом из-за уменьшения объема «плюсовой» камеры снижается уровень рабочей жидкости в импульсной линии «плюсового» давления на величину h. Соответственно выходной сигнал преобразователя будет, согласно выражению (3.6), пропорционально уменьшен на величину hrg. При увеличении перепада давления будут возрастать h и погрешность проводимых измерений. Этим обстоятельством обусловлена необходимость применения уравнительных сосудов.

    Конструктивная особенность уравнительного сосуда состоит в значительном превышении его площади поперечного сечения над площадью поперечного сечения импульсной линии. Механизм этого явления более подробно описан в 3.2 (о чашечных манометрических приборах), где показана возможность снижения погрешности из-за варьирования гидростатическим столбом путем увеличения поперечного сечения сосуда. Таким образом, конструкция уравнительного сосуда предусматривает значительную площадь его поперечного сечения. Эти сосуды устанавливаются как основная цилиндрическая образующая вертикально.

 рис 8.16.jpg 

Рис. 8.16. Схема работы измерительного преобразователя разности давлений на трубопроводе:

 а – при отсутствии перепада давления; б – при воздействии дифференциального давления; 1 – трубопровод с сужающим устройством;    2 – измерительный преобразователь разности давлений; 3, 4 – «плюсовая» и «минусовая» камеры соответственно

     Размеры уравнительных сосудов, а они по конструкции идентичны разделительным (рис. 8.15а), приведены в табл. 8.4.

   Меньший уравнительный сосуд предназначается для работы в комплекте с сильфонными и мембранными дифманометрами, больший – для поплавковых измерителей.

    При использовании современных дифманометров из-за незначительного объема их «плюсовой» и «минусовой» камер применять уравнительные сосуды нецелесообразно.

 Таблица 8.4

Основные параметры и усредненные размеры

уравнительных сосудов

Внутренний диаметр сосуда, мм

Объем вытесняемой жидкости, см3

Размеры, мм

Высота

Ширина 1

Ширина 2

90

250

320

210

160

140

610

360

260

210

     По рабочему давлению уравнительные сосуды аналогичны разделительным и производятся для измерения давлений 6,3; 25 и 40 МПа.

Читайте также:  Операция на сердечные сосуды стенты

    В паровых средах для обеспечения заполнения подводящих к измерителю импульсных линий жидкой фазой, поддержания этого заполнения постоянным применяются уравнительные конденсационные сосуды. их отличительной особенностью служит горизонтальное расположение образующего сосуд цилиндра (рис. 8.17).

 рис 8.17.jpg 

Рис. 8.17. Схема уравнительного конденсационного сосуда

     Отводящий патрубок расположен снизу по оси цилиндра. Его ось для увеличения высоты рабочего пространства сосуда смещена вверх. Диаметр сосуда составляет 89 или 108 мм, длина – 200…270 мм. Рабочее давление – 4 или 10 МПа. Для более высоких давлений уравнительные конденсационные сосуды изготавливаются по документации, определяемой межведомственными нормами.

   Импульсные линии, особенно в условиях измерения давления пара, не должны теплоизолироваться. Это требуется для охлаждения жидкости, контактирующей с измерительным прибором, до допустимой температуры, а также для конденсации жидкости из измеряемого пара и заполнения импульсных линий.

Источник

Содержание

  • Строение системы кровообращения
    • Сердце
    • Сосуды
    • Кровь
    • Круги кровообращения
  • Функции
  • Особенности системы в разные периоды жизни

Сердечно-сосудистая система человека (кровеносная – устаревшее название) – это комплекс органов, обеспечивающих снабжение всех участков организма (за небольшим исключением) необходимыми веществами и удаляющих продукты жизнедеятельности. Именно сердечно-сосудистая система обеспечивает все участки тела необходимым кислородом, а потому является основой жизни. Нет кровообращения только в некоторых органах: хрусталик глаза, волос, ноготь, эмаль и дентин зуба. В сердечно-сосудистой системе выделяют две составные части: это собственно комплекс органов кровообращения и лимфатическая система. Традиционно они рассматриваются отдельно. Но, несмотря на их разность, они выполняют ряд совместных функций, а также имеют общее происхождение и план строения.

Строение системы кровообращения

Анатомия системы кровообращения подразумевает ее разделение на 3 компонента. Они значительно различаются по строению, но в функциональном отношении представляют собой единое целое. Это следующие органы:

  • сердце;
  • сосуды;
  • кровь.

Сердце

Своеобразный насос, перекачивающий кровь по сосудам. Это мышечно-фиброзный полый орган. Находится в полости грудной клетки. Гистология органа различает несколько тканей. Самая главная и значительная по размерам – мышечная. Внутри и снаружи орган покрыт фиброзной тканью. Полости сердца разделены перегородками на 4 камеры: предсердия и желудочки.

У здорового человека частота сердечных сокращений составляет от 55 до 85 ударов в минуту. Это происходит на протяжении всей жизни. Так, за 70 лет происходит 2,6 млрд сокращений. При этом сердце перекачивает около 155 млн литров крови. Вес органа колеблется от 250 до 350 г. Сокращение камер сердца называется систолой, а расслабление – диастолой.

Сосуды

Это длинные полые трубки. Они отходят от сердца и, многократно разветвляясь, идут во все участки организма. Сразу по выходу из его полостей сосуды имеют максимальный диаметр, который по мере удаления становится меньше. Различают несколько типов сосудов:

  • Артерии. Они несут кровь от сердца к периферии. Сама крупная из них – аорта. Выходит из левого желудочка и несет кровь ко всем сосудам, кроме легких. Ветви аорты делятся многократно и проникают во все ткани. Легочная артерия несет кровь к легким. Она идет из правого желудочка.
  • Сосуды микроциркуляторного русла. Это артериолы, капилляры и венулы – самые маленькие сосуды. Кровь по артериолам идет в толще тканей внутренних органов и кожи. Они ветвятся на капилляры, которые осуществляют обмен газами и другими веществами. После чего кровь собирается в венулы и течет дальше.
  • Вены – сосуды, несущие кровь к сердцу. Они образуются при увеличении диаметра венул и их многократном слиянии. Самые крупные сосуды данного типа – нижняя и верхняя полые вены. Именно они непосредственно впадают в сердце.

Кровь

Своеобразная ткань организма, жидкая, состоит из двух главных компонентов:

  • плазма;
  • форменные элементы.

Плазма – жидкая часть крови, в которой находятся все форменные элементы. Процентное соотношение – 1:1. Плазма представляет собой мутную желтоватую жидкость. В ней содержится большое количество белковых молекул, углеводов, липидов, различных органических соединений и электролитов.

К форменным элементам крови относят: эритроциты, лейкоциты и тромбоциты. Они образуются в красном костном мозге и циркулируют по сосудам всю жизнь человека. Только лейкоциты при некоторых обстоятельствах (воспаление, внедрение чужеродного организма или материи) могут проходить через сосудистую стенку в межклеточное пространство.

У взрослого человека содержится 2,5-7,5 (зависит от массы) мл крови. У новорожденного – от 200 до 450 мл. Сосуды и работа сердца обеспечивают важнейший показатель кровеносной системы – артериальное давление. Оно колеблется от 90 мм рт.ст. до 139 мм рт.ст. для систолического и 60-90 – для диастолического.

Круги кровообращения

Все сосуды образуют два замкнутых круга: большой и малый. Это обеспечивает бесперебойное одновременное снабжение кислородом организма, а также газообмен в легких. Каждый круг кровообращения начинается из сердца и там же заканчивается.

Малый идет от правого желудочка по легочной артерии в легкие. Здесь она несколько раз ветвится. Кровеносные сосуды образуют густую капиллярную сеть вокруг всех бронхов и альвеол. Через них происходит газообмен. Кровь, богатая углекислым газом, отдает его в полость альвеол, а взамен получает кислород. После чего капилляры последовательно собираются в две вены и идут в левое предсердие. Малый круг кровообращения заканчивается. Кровь идет в левый желудочек.

Читайте также:  Атеросклероз сосудов при диабете

Большой круг кровообращения начинается от левого желудочка. Во время систолы кровь идет в аорту, от которой ответвляются множество сосудов (артерий). Они делятся несколько раз, пока не превратятся в капилляры, снабжающие кровью весь организм – от кожи до нервной системы. Здесь происходит обмен газов и питательных веществ. После чего кровь последовательно собирается в две крупные вены, идущие в правое предсердие. Большой круг заканчивается. Кровь из правого предсердия попадает в левый желудочек, и все начинается заново.

Функции

Сердечно-сосудистая система выполняет в организме ряд важнейших функций:

  • Питание и снабжение кислородом.
  • Поддержание гомеостаза (постоянства условий внутри всего организма).
  • Защита.

Снабжение кислородом и питательными веществами заключается в следующем: кровь и ее компоненты (эритроциты, белки и плазма) доставляют кислород, углеводы, жиры, витамины и микроэлементы до любой клетки. При этом из нее они забирают углекислый газ и вредные отходы (продуты жизнедеятельности).

Постоянные условия в организме обеспечиваются самой кровью и ее компонентами (эритроциты, плазма и белки). Они не только выступают переносчиками, но и регулируют важнейшие показатели гомеостаза: ph, температуру тела, уровень влажности, количество воды в клетках и межклеточном пространстве.

Непосредственную защитную функцию играют лимфоциты. Эти клетки способны обезвреживать и уничтожать чужеродную материю (микроорганизмы и органические вещества). Сердечно-сосудистая система обеспечивает их быструю доставку в любой уголок организма.

Особенности системы в разные периоды жизни

Во время внутриутробного развития сердечно-сосудистая система имеет ряд особенностей.

  • Установлено сообщение между предсердиями (“овальное окно”). Оно обеспечивает прямой переход крови между ними.
  • Малый круг кровообращения не функционирует.
  • Кровь из легочной вены переходит в аорту по специальному открытому протоку (Баталов проток).

Кровь обогащается кислородом и питательными веществами в плаценте. Оттуда по пупочной вене она идет в полость живота через одноименное отверстие. Затем сосуд впадает в печеночную вену. Откуда, проходя через орган, кровь поступает в нижнюю полую вену, к оторая впадает в правое предсердие. Оттуда почти вся кровь идет в левое. Только ее малая часть выбрасывается в правый желудочек, а затем в легочную вену. Кровь от органов собирается в пупочные артерии, которые идут к плаценте. Здесь она вновь обогащается кислородом, получает питательные вещества. При этом углекислый газ и продукты обмена малыша переходят в кровь матери, организм который их и выводит.

Сердечно-сосудистая система у детей после рождения претерпевает ряд изменений. Баталов проток и овальное отверстие зарастают. Пупочные сосуды запустевают и превращаются в круглую связку печени. Начинает функционировать малый круг кровообращения. К 5-7 дням (максимум – 14) сердечно-сосудистая система приобретает те черты, которые сохраняются у человека на протяжении всей жизни. Изменяется только количество циркулирующей крови в разные периоды. Вначале оно увеличивается и к 25-27 годам достигает максимума. Только после 40 лет объем крови начинает несколько снижаться, и после 60-65 лет остается в пределах 6-7% от массы тела.

В некоторые периоды жизни количество циркулирующей крови увеличивается или уменьшается временно. Так, при беременности объем плазмы становится больше исходного на 10%. После родов он снижается до нормы за 3-4 недели. Во время голодания и непредвиденных физических нагрузок количество плазмы становится меньше на 5-7%.

Источник

Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости в каждом из сосудов. Таким образом жидкость может перемещаться из одного сосуда в другой.

Перед тем как понять принцип действия сообщающихся сосудов и варианты их использования необходимо определиться в понятиях, а точнее разобраться с основным уравнением гидростатики.

Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.

Основное уравнение гидростатики

P = P1 + ρgh

где P1 – это среднее давление на верхний торец призмы,

P – давление на нижний торец,
g – ускорение свободного падения,
h – глубина погружения призмы под свободной поверхностью жидкости.

ρgh – сила тяжести (вес призмы).

Звучит уравнение так:

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости

Доказательство закона сообщающихся сосудов

Возвращаемся к разговору про сообщающиеся сосуды.

Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.

Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.

Читайте также:  Повышенное давление в сосудах что это

Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики

P = P1 + ρgh1

если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.

Это давление можно определить следующим образом

P = P2 + ρgh2

где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2

P1 + ρ1gh1 = P2 + ρ2gh2

В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем

ρ1h1 = ρ2h2

или

ρ1 / ρ2 = h2 / h1

т.е. закон сообщающихся сосудов состоит в следующем.

В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.

Свойства сообщающихся сосудов

Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.

Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.

Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.

В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.

Приборы основанные на законе сообщающихся сосудов

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.

Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.

В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.

Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.

Применение сообщающихся сосудов

Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.

Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.

Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.

Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.

В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.

Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.

В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.

Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.

Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.

Видео по теме

Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.

Вместе со статьей “Закон сообщающихся сосудов и его применение.” читают:

Источник