Расчет абсолютного давления в сосуде

Расчет абсолютного давления в сосуде thumbnail

Любое вещество может быть описано своими физико-химическим параметрами. В отличие от жидких и твердых веществ, чье состояние может быть охарактеризовано температурой и плотностью, газы имеют еще один показатель, который называется «давление». Эта физическая величина для газообразного вещества может быть представлена итоговым значением сил ударов молекул о стенки сосуда, содержащего газ. Чем больше молекул ударяется о стенки, чем больше их масса, скорость и сила воздействия на стенки сосуда– тем выше показатель давления.

Классификация

Физики различают атмосферное, абсолютное и избыточное давление. Эти виды величин связаны между собой посредством физических формул.

Единицы измерения давления

Существует множество традиционных единиц давления, которые сложились в результате развития физических дисциплин. Наиболее распространенными их них являются «бар», «атмосфера», “мм ртутного столба” и другие производные от них величины. В физических процессах этот параметр обозначается литерой Р, измеряется в паскалях и производных от него единицах. В письменном виде паскаль отображается так: [Па].

Понятие атмосферного давления

Окружающий нас воздух состоит из постоянно движущихся молекул, которые сталкиваются с земной поверхностью,находящимися на ней предметами и между собой. Из ударов крохотных частиц складывается итоговое давление. Данный параметр называется атмосферными, или барометрическим давлением.

абсолютное давление воздуха

Но, как показали измерения, Ратм в значительной степени зависит от температуры окружающей среды и высоты над уровнем моря. Поэтому для объяснения физических процессов и решения задач текущие параметры атмосферного давления сводят к нормальным условиям. Начальные параметры Ратм определяются при показателе температуры 0⁰ С над нулевым уровнем моря.

Что такое абсолютное давление

Стандартные способы измерения давления обычно используют атмосферное давление в качестве точки отсчета. Обычно этот параметр измеряется различными приборами. Наиболее популярными из которых являются барометры.

абсолютное давление

В других случаях применяют отношение наблюдаемого давления к вакууму или к другой выбранной отметке. Чтобы обозначить выбранные категории, применяют такие определения:

  • Абсолютное давление газа: является параметром точки перехода между вакуумом и наблюдаемым давлением.
  • Избыточное давление: для него точкой отсчета становится давление атмосферное. Вычисляется этот показатель как разность между абсолютным и атмосферным давлением.

    абсолютное и избыточное давление

  • Дифференциальное давление – является разностью показателей между двумя произвольными точками измерений.

Дифференциальное, абсолютное и избыточное давление визуально может быть представлено так:

Избыточное и абсолютное давление логически связаны между собой. Значение абсолютного давления можно получить, измерив наблюдаемое давление и прибавив к нему величину атмосферного Р.

В случае избыточного давления точкой отсчета служит значение атмосферного P. Таким образом, эта величина может быть представлена как разность между абсолютным давлением и атмосферным. Абсолютное и избыточное давление не может быть отрицательным. При Рабс=0 давление становится равным атмосферному показателю этой величины. Если быть точным, то Рабс не может быть равно вакууму – всегда остается какая-то величина, сформированная, например, давлением насыщенных паров в жидкости. Но в случае тяжелых жидкостей этот параметр очень незначителен, поэтому в первоначальных расчетах, не требующих точного вычисления, вполне допустимо.

Что такое абсолютное давление воздуха

Абсолютное давление воздуха можно измерить лишь в сосудах с другими веществами – с жидкостями или газами. Так, данный параметр довольно часто измеряется в закрытых сосудах с жидкостями. Как и в первом случае, абсолютное давление воздуха в закрытом сосуде можно измерить,как разницу между наблюдаемым Р и атмосферным.

Пьезометрическая высота

Как это часто бывает, наряду с общепринятыми единицами измерения физических величин, используются и исторические. Пьезометрическая высота -это одна из таких величин. Она может быть измерена специальным прибором, представляющим собой стеклянную трубку, верхняя часть которой незапечатана и открыто сообщается с атмосферой, а нижняя присоединена к сосуду, в котором измеряется давление. Прибор, при помощи которого можно провести подобные измерения, представлен ниже:

абсолютное давление газа

Если к давлению, наблюдаемому в сосуде, применить законы гидростатики, можно получить такое выражение для абсолютного давления:

Здесь ра – атмосферное давление, а выражение gρhp представляет собой произведение высоты столба жидкости на ее плотность и на значение силы тяжести. Так можно измерить абсолютное значение газа в любом сосуде.

Источник

Баннер

КМЗ:
от ремонта двигателей
к серийному производству

ЗапомнитьВосстановить пароль

Главная / Издания / Литература / Книжная полка / Справочник водолаза

В водолазной практике часто приходится встречаться с
вычислением механического, гидростатического и газового
давления широкого диапазона величин. В зависимости от
значения измеряемого давления применяют различные единицы.

В системах СИ и МКС единицей давления служит
паскаль (Па)
, в системе МКГСС — кгс/см2 (техническая
атмосфера — ат). В качестве внесистемных единиц давления применяются тор (мм рт. ст.), атм (физическая атмосфера),м вод. ст., а в английских мерах — фунт/дюйм2. Соотношения между различными единицами давления приведены в табл, 10.1.

Механическое давление измеряется силой, действующей
перпендикулярно на единицу площади поверхности тела:

где р — давление, кгс/см2;

F — сила, кгс;

S — площадь, см2.

Пример 10.1. Определить давление, которое водолаз оказывает
на палубу судна и на грунт под водой, когда он делает шаг
(т. е. стоит на одной ноге). Вес водолаза в снаряжении на воздухе 180 кгс, а под водой 9 кгс. Площадь подошвы водолазной
галоши принять 360 см2.
Решение. 1) Давление, передаваемое водолазной галошей
на палубу судна, по (10.1):

р = 180/360 = 0.5 кгс/см

или в единицах СИ

р = 0,5 * 0,98.105 = 49000 Па = 49 кПа.

Таблица 10.1.
Соотношения между различными единицами давления

Расчет абсолютного давления в сосуде


2) Давление, передаваемое водолазной галошей на грунт под
водой:


или в единицах СИ
р = 0,025*0,98*105 = 2460 Па = 2,46 кПа.

Гидростатическое давление жидкости везде перпендикулярно к поверхности, на которую оно действует, и возрастает с глубиной, но остается постоянным в любой горизонтальной плоскости.

Если поверхность жидкости не испытывает внешнего
давления (например, давления воздуха) или его не учитывают, то давление внутри жидкости называют избыточным
давлением

где p — давление жидкости, кгс/см2;

р — плотность жидкости, гс» с4/см2;

g — ускорение свободного падения, см/с2;

Y — удельный вес жидкости, кг/см3, кгс/л;

Н — глубина, м.

Если поверхность жидкости испытывает внешнее давление пп. то давление внутри жидкости


Если на поверхность жидкости действует атмосферное
давление воздуха, то давление внутри жидкости называют
абсолютным давлением (т. е. давлением, измеряемым от
нуля — полного вакуума):


где Б — атмосферное (барометрическое) давление, мм рт. ст.

В практических расчетах для пресной воды принимают

Y = l кгс/л и атмосферное давление p0 = 1 кгс/см2 =
= 10 м вод. ст., тогда избыточное давление воды в кгс/см2


а абсолютное давление воды

Пример 10.2. Найти абсолютное давление морской воды действующее на водолаза на глубине 150 м, если барометрическое
давление равно 765 мм рт. ст., а удельный вес морской воды
1,024 кгс/л.

Решение. Абсолютное давление волы по (10/4)

приолиженное значение абсолютного давления по (10.6)

В данном примере использование для расчета приближенной
формулы (10.6) вполне оправданно, так как ошибка вычисления
не превышает 3%.

Пример 10.3. В полой конструкции, содержащей воздух под
атмосферным давлением рa = 1 кгс/см2, находящейся под водой,
образовалось отверстие, через которое стала поступать вода
(рис. 10.1). Какую силу давления будет испытывать водолаз, если
он попытается это отверстие закрыть рукой? Площадь «У сечения
отверстия равна 10X10 см2, высота столба воды Н над отверстием
50 м.

Расчет абсолютного давления в сосуде
Рис. 9.20. Наблюдательная камера
«Галеацци»:
1 — рым; 2 — устройство
отдачи троса и среза кабеля; 3 — штуцер для телефонного
ввода; 4 — крышка люка;
5 – верхний иллюминатор; 6 — резиновое привальное кольцо; 7 — нижний иллюминатор; 8 —
корпус камеры; 9 — баллон кислородный с манометром; 10 — устройство отдачи аварийного
балласта; 11 — аварийный балласт; 12 — кабель
светильника; 13 — светильник; 14 — электровентилятор; 15—телефон-
микрофон ; 16 — аккумуляторная батарея; 17 —
коробка регенеративная
рабочая; 18 — иллюминатор крышки люка

Решение. Избыточное давление воды у отверстия по (10.5)
P = 0,1-50 = 5 кгс/см2.

Сила давления на руку водолаза из (10.1)

F = Sp = 10*10*5 = 500 кгс =0,5 тс.

Давление газа, заключенного в сосуд, распределяется
равномерно, если не принимать во внимание его весомость,
которая при размерах сосудов, применяемых в водолазной
практике, оказывает ничтожное влияние. Величина давления неизменной массы газа зависит от объема, который
он занимает, и температуры.

Зависимость между давлением газа и его объемом при
неизменной температуре устанавливается выражением

P1 V1 = p2V2 (10.7)

где р1 и р2 — первоначальное и конечное абсолютное давление, кгс/см2;

V1 и V2 — первоначальный и конечный объем газа, л.
Зависимость между давлением газа и его температурой
при неизменном объеме устанавливается выражением

где t1 и t2 — начальная и конечная температура газа, °С.

При неизменном давлении аналогичная зависимость
существует между объемом и температурой газа

Зависимость между давлением, объемом и температурой
газа устанавливается объединенным законом газового состояния

Пример 10.4. Емкость баллона 40 л, давление воздуха в нем
по манометру 150 кгс/см2. Определить объем свободного воздуха
в баллоне, т. е. объем, приведенный к 1 кгс/см2.

Решение. Начальное абсолютное давление р = 150+1 =
151 кгс/см2, конечное р2 = 1 кгс/см2, начальный объем V1 =40 л.
Объем свободного воздуха из (10.7)

Пример 10.5. Манометр на баллоне с кислородом в помещении
с температурой 17° С показывал давление 200 кгс/см2. Этот баллон
перенесли на палубу, где на другой день при температуре —11° С
его показания снизились до 180 кгс/см2. Возникло подозрение на
утечку кислорода. Проверить правильность подозрения.

Решение. Начальное абсолютное давление p2 =200 + 1 =
=201 кгс/см2, конечное р2 = 180 + 1 = 181 кгс/см2, начальная температура t1 = 17°С, конечная t2 =—11° С. Расчетное конечное давление из (10.8)

Подозрения лишены оснований, так как фактическое и расчетное давления равны.

Пример 10.6. Водолаз под водой расходует 100 л/мин воздуха,
сжатого до давления глубины погружения 40 м. Определить расход свободного воздуха (т. е. при давлении 1 кгс/см2).

Решение. Начальное абсолютное давление на глубине погружения по (10.6)

Р1 = 0,1*40 =5 кгс/см2.

Конечное абсолютное давление Р2 = 1 кгс/см2

Начальный расход воздуха Vi = l00 л/мин.

Расход свободного воздуха по (10.7)

Парциальное давление газа, входящего в состав воздуха
(искусственной дыхательной смеси), определяется по номо-
грамме рис. 10.2 или из выражения

где рсм — парциальное давление газа в смеси, кгс/см2;
Рсм — абсолютное давление газовой смеси, кгс/см2;
С — объемное содержание газа в смеси, %.

Пример 10.7. Определить парциальное давление газов, входя
щих в состав воздуха, подаваемого в скафандр водолаза на поверхности и на глубине 40 м, если анализ показал содержание
азота 79%, кислорода 20% и углекислого газа 1%.

Решение. Абсолютное давление воздуха на поверхности
Рсм -1 кгс/см2.

Расчет абсолютного давления в сосуде
Рис. 10.2. Номограмма для определения парциального давления газа рг в зависимости от процентного содержания газа С и абсолютного давления газовой смеси РСМ

Парциальное давление газов на поверхности по (10.11):

Расчет абсолютного давления в сосуде


Приближенно эти же результаты можно получить и по номограмме рис. 10.2.

Остаточное давление газа в баллонах. Для получения
газовых смесей способом перепуска (см. схему а рис. 8.15)
часто необходимо знать остаточное давление газа (кислорода) в баллоне подачи газа (баллон К), которое равно

где por —остаточное абсолютное давление газа (кислорода) в баллоне подачи, кгс/см2;
Рсм — абсолютное давление газовой смеси в смесительном баллоне, кгс/см2;
С — содержание газа (кислорода) в газовой смеси
по объему, %.

Вперед
Оглавление
Назад

Читайте также:  Через какие органы проходят сосуды малого круга кровообращения

Источник

27 октября 2011

Автор
КакПросто!

Давлением (P) вещества, находящегося в одном из трех агрегатных состояний, именуется сила, равномерно действующая на площадь его поверхности. На практике наиболее часто используются понятия абсолютного (P), вакуумметрического (Pв) и избыточного (Pи) давления, различие между которыми состоит в их отношении к атмосферному (или барометрическому) давлению (Pо). Как вычислить абсолютное давление?

Инструкция

Молекулярно-кинетическая теория рассматривает давление как результат ударов молекул газа, находящихся в непрерывном хаотическом движении, о стенку сосуда. Иными словами, его величина будет связана со средней кинетической энергией поступательного движения молекул mv² (где m – масса молекулы, а v² – средний квадрат скорости молекулы) и их числом N в объеме V:P = Nmv²/3V.

Понятие «абсолютное давление» используется при расчетах парциального давления газов (то есть расчетов давления каждого газа в отдельности) и отсчитывается от абсолютного нуля давления (абсолютного вакуума). Вне зависимости от того, меньше или больше давление сосуда атмосферного давления, абсолютное давление рассчитывается по формуле:P = Pо + Pи.

Избыточным давлением (Pи) называют разность между давлением газа (жидкости) и давлением окружающей среды. Для того чтобы определить величину избыточного давления, воспользуйтесь манометром. Если вы собираетесь измерять давление кислорода, выберите манометр, корпус которого голубой, водорода – темно-зеленый и т.п. Кроме того, обычно производители этих приборов указывают на внутренней поверхности манометра, для измерения избыточного давления какого газа он предназначен. Манометры производства СССР до 1982 года указывают избыточное давление в кгс/см². 1 кгс/см² равен 98, кПа (килопаскалям), единицам измерения, принятым в СССР с 1982 года.

Для измерения атмосферного давления воспользуйтесь ртутным барометром. Один миллиметр ртутного столба равен 133,32 Па. Однако для удобства постоянных расчетов атмосферное давление принято считать нормальным. Нормальное атмосферное давление – 760 мм ртутного столба (то есть 101, 32 кПа).

Читайте также:  Идешь по пустыне и видишь сосуд

Используйте формулу:P = Pо + Pи.Определите величину абсолютного давления.

Статьи медицинского характера на Сайте предоставляются исключительно в качестве справочных материалов и не считаются достаточной консультацией, диагностикой или назначенным врачом методом лечения. Контент Сайта не заменяет профессиональную медицинскую консультацию, осмотр врача, диагностику или лечение. Информация на Сайте не предназначена для самостоятельной постановки диагноза, назначения медикаментозного или иного лечения. При любых обстоятельствах Администрация или авторы указанных материалов не несут ответственности за любые убытки, возникшие у Пользователей в результате использования таких материалов.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google
Privacy Policy and
Terms of Service apply.

Источник

Абсолютное и избыточное давление

Давление, отсчитываемое от абсолютного нуля, называется абсолютным давлением и обозначается pабс. Абсолютный нуль давления означает полное отсутствие сжимающих напряжений.

В открытых сосудах или водоемах давление на поверхности равно атмосферному pатм. Разность между абсолютным давлением pабс и атмосферным pатм называется избыточным давлением

Когда давление в какой-либо точке, расположенной в объеме жидкости, больше атмосферного, т. е.

, то избыточное давление положительно и его называют манометрическим.

Если давление в какой-либо точке оказывается ниже атмосферного, т. е.

, то избыточное давление отрицательно. В этом случае его называют разрежениемили вакуумметрическим давлением. За величину разрежения или вакуума принимается недостаток до атмосферного давления:

Максимальный вакуум возможен, если абсолютное давление станет равным давлению насыщенного пара, т. е. pабс = pн.п. Тогда

В случае если давлением насыщенного пара можно пренебречь, имеем

Единицей измерения давления в СИ является паскаль (1 Па = 1 Н/м 2 ), в технической системе – техническая атмосфера (1 ат = 1 кГ/см 2 = 98,1 кПа). При решении технических задач атмосферное давление принимается равным 1 ат = 98,1 кПа.

Манометрическое (избыточное) и вакуумметрическое (разрежение) давление часто измеряются с помощью стеклянных, открытых сверху трубок – пьезометров, присоединяемых к месту измерения давления (рис. 2.5).

Пьезометры измеряют давление в единицах высоты подъема жидкости в трубке. Пусть трубка пьезометра присоединена к резервуару на глубине h1. Высота подъема жидкости в трубке пьезометра определяется давлением жидкости в точке присоединения. Давление в резервуаре на глубине h1 определится из основного закона гидростатики в форме (2.5)

,

где

– абсолютное давление в точке присоединения пьезометра;

– абсолютное давление на свободной поверхности жидкости.

Давление в трубке пьезометра (открытой сверху) на глубине h равно

.

Из условия равенства давлений в точке присоединения со стороны резервуара и в пьезометрической трубке получаем

.(2.6)

Если абсолютное давление на свободной поверхности жидкости больше атмосферного (p > pатм) (рис. 2.5.а), то избыточное давление будет манометрическим, и высота подъема жидкости в трубке пьезометра h > h1. В этом случае высоту подъема жидкости в трубке пьезометра называют манометрической или пьезометрической высотой.

Манометрическое давление в этом случае определится как

.

Если абсолютное давление на свободной поверхности в резервуаре будет меньше атмосферного (рис. 2.5.б), то в соответствии с формулой (2.6) высота подъема жидкости в трубке пьезометра h будет меньше глубины h1. Величину, на которую опустится уровень жидкости в пьезометре относительно свободной поверхности жидкости в резервуаре, называют вакуумметрической высотой hвак (рис. 2.5.б).

Читайте также:  Если потрескались сосуды глаз

Рассмотрим еще один интересный опыт. К жидкости, находящейся в закрытом резервуаре, на одинаковой глубине присоединены две вертикальные стеклянные трубки: открытая сверху (пьезометр) и запаянная сверху (рис. 2.6). Будем считать, что в запаянной трубке создано полное разряжение, т. е. давление на поверхности жидкости в запаянной трубке равно нулю. (Строго говоря, давление над свободной поверхностью жидкости в запаянной трубке равно давлению насыщенных паров, но ввиду его малости при обычных температурах, этим давлением можно пренебречь).

В соответствии с формулой (2.6) жидкость в запаянной трубке поднимется на высоту, соответствующую абсолютному давлению на глубине h 1:

.

А жидкость в пьезометре, как показано ранее, поднимется на высоту, соответствующую избыточному давлению на глубине h 1.

Вернемся к основному уравнению гидростатики (2.4). Величина H, равная

,(2.7)

где z – расстояние по вертикали от рассматриваемой точки до некоторой плоскости сравнения, называется гидростатическим напором в некоторой точке объема жидкости относительно плоскости сравнения.

Если в выражении (2.7) давление равно избыточному (p = pизб), то величина

(2.8)

называется пьезометрическим напором.

Как следует из формул (2.7), (2.8), напор измеряется в метрах.

Согласно основному уравнению гидростатики (2.4) как гидростатический, так и пьезометрический напоры в покоящейся жидкости относительно произвольно выбранной плоскости сравнения являются постоянными величинами. Для всех точек объема покоящейся жидкости гидростатический напор одинаков. То же самое можно сказать и про пьезометрический напор.

Это значит, что если к резервуару с покоящейся жидкостью подключить на разной высоте пьезометры, то уровни жидкости во всех пьезометрах установятся на одинаковой высоте в одной горизонтальной плоскости, называемой пьезометрической.

Поверхности уровня

Во многих практических задачах бывает важно определить вид и уравнение поверхности уровня.

Поверхностью уровня или поверхностью равного давления называется такая поверхность в жидкости, давление во всех точках которой одно и то же, т. е. на такой поверхности dp = 0.

Так как давление является некоторой функцией координат, т. е. p = f(x,y,z), то уравнение поверхности равного давления будет:

p = f(x, y, z) = C = const.(2.9)

Придавая константе C разные значения, будем получать различные поверхности уровня. Уравнение (2.9) есть уравнение семейства поверхностей уровня.

Свободная поверхность – это поверхность раздела капельной жидкости с газом, в частности, с воздухом. Обычно про свободную поверхность говорят только для несжимаемых (капельных) жидкостей. Понятно, что свободная поверхность является и поверхностью равного давления, величина которого равна давлению в газе (на поверхности раздела).

По аналогии с поверхностью уровня вводят понятие поверхности равного потенциала илиэквипотенциальной поверхности – это поверхность, во всех точках которой силовая функция имеет одно и то же значение. Т. е. на такой поверхности

.

Тогда уравнение семейства эквипотенциальных поверхностей будет иметь вид

где постоянная C принимает различные значения для разных поверхностей.

Из интегральной формы уравнений Эйлера (уравнения (2.3)) следует, что

Из этого соотношения можно сделать вывод, что поверхности равного давления и поверхности равного потенциала совпадают, потому что при dp =dU = 0.

Важнейшее свойство поверхностей равного давления и равного потенциала состоит в следующем: объемная сила, действующая на частицу жидкости, находящуюся в любой точке, направлена по нормали к поверхности уровня, проходящей через эту точку.

Докажем это свойство.

Пусть частица жидкости из точки с координатами

переместилась по эквипотенциальной поверхности в точку с координатами . Работа объемных сил на этом перемещении будет равна

.

Но, поскольку частица жидкости перемещалась по эквипотенциаль-ной поверхности, dU = 0. Значит работа объемных сил, действующих на частицу, равна нулю. Силы не равны нулю, перемещение не равно нулю, тогда работа может быть равна нулю только при условии, что силы перпендикулярны перемещению. То есть объемные силы нормальны к поверхности уровня.

Обратим внимание на то, что в основном уравнении гидростатики, записанном для случая, когда на жидкость действует только один вид объемных сил – силы тяжести (см. уравнение (2.5))

,

величина p – не обязательно давление на поверхности жидкости. Это может быть давление в любой точке, в которой оно нам известно. Тогда h – это разность глубин (по направлению вертикально вниз) между точкой, в которой давление известно, и точкой, в которой мы хотим его определить. Таким образом, с помощью этого уравнения можно определить значение давления p в любой точке через известное давление в известной точке – p.

Заметим, что величина

не зависит от p. Тогда из уравнения (2.5) следует вывод: насколько изменится давление p, настолько же изменится и давление в любой точке объема жидкости p. Поскольку точки, в которых фиксируем p и p, выбраны произвольно, это означает, что давление, создаваемое в любой точке покоящейся жидкости, передается ко всем точкам занимаемого объема жидкости без изменения величины.

Как известно, в этом и состоит закон Паскаля.

По уравнению (2.5) можно определить форму поверхностей уровня покоящейся жидкости. Для этого надо положить p = const. Из уравнения следует, что это выполнимо лишь при h = const. Значит, что при действии на жидкость из объемных сил только сил тяжести, поверхности уровня представляют собой горизонтальные плоскости.

Такой же горизонтальной плоскостью будет и свободная поверхность покоящейся жидкости.

Источник

Источник