Расчет сосудов на сжатие

4.5.2.1.Общие положения, понятие критического давления и метод его определения.
При работе цилиндрических тонкостенных обечаек под внутренним давлением в стенках аппарата возникают растягающие напряжения, а при работе под давлением наружным (или вакуумом) – сжимающие напряжения.
Из теории расчета на устойчивость упругих стержней следует, что стержень легко выдерживает растягивающие нагрузки и не выдерживает определенной (критической) нагрузки при сжатии.
Нарушение геометрической формы тонкостенных цилиндрических аппаратов под действием сжимающих нагрузок и называется потерей устойчивости.
Давление, при котором тонкостенный элемент теряет устойчивость, называется критическим. Под действием такого давления поперечное сечение первоначально круглой оболочки приобретает эллипсоидную или волнообразную форму, а при снятии критического давления продеформированная оболочка не принимает первоначальной формы.
Потеря устойчивой формы может произойти при напряжении сжатия в стенках оболочки гораздо ниже разрушающих, если тонкостенная оболочка имеет овальность поперечного сечения. Поэтому согласно техническим требованиям для стальных сварных сосудов и аппаратов при нагружении их наружным давлением допускается овальность < 0,5% , но не более 0,02 м, а для корпусов теплообменных аппарато не более 0,007 м. Эти данные можно применить и для аппаратов из цветных металлов и сплавов.
Посколько в процессе эксплуатации сохранение первоначальных размеров и формы аппаратов является неприменным условием нормальной работы большинства аппаратов, то определение размеров, обеспечивающих жесткость и устойчивость сосудов и оболочек, представляет важную задачу.
В зависимости от длины цилиндрической оболочки под наружным давлением выше критического принимают волнообразную форму с разным количеством волн. На длинных аппаратах или трубах возникают всего две волны, т.е. они просто сплющиваются, а на коротких оболочках может образовываться не две, а несколько волн. Разному числу волн соответствует разные критические давления. Задача конструктора сводится к определению минимального критического давления. Сущестует несколько методов определения критических давлений. Например, из теории устойчивости круглого кольца для динных цилиндров >
имеем:
,
где Е – модуль упругости материала цилиндра;
– коэффициент Пуассона.
Имея значение для цилиндрических оболочек можем определить величину допускаемого рабочего давления, выбрав коэффициент запаса устойчивости пу:
Подставим в формулу по определению ркр рабочее р ( т.е. [р] = р ) и определим толщину стенки длинных оболочек:
Условие прочности и справедливость выше приведенных уравнений определяются следущим уравнением:
РАСЧЕТ ОБЕЧАЙКИ ПО ГОСТ 14249 – 89. НАРУЖНОЕ ДАВЛЕНИЕ.
В соответствии с ГОСТ 14249 – 89 расчетная и исполнительная толщина стенки приблеженно определяется:
s = sp + с,
где К2 – коэффициент, определяемый по номограмме (см.ГОСТ 14249 – 89 черт.5; 6).
Допускаемое наружное давление для гладких обечаек из условиия прочности в пределах упругости определяется по следущей формуле:
; где
– из условиия прочности , а из условиия упругости [РН]Е – по формуле см. ГОСТ 14249-89.
Производить расчет на прочность для условий испытаний не требуется, если расчетное давление в условиях испытания будет меньше, чем расчетное давление в рабочих условиях, умноженное на 1,35 .
При совместном действии на оболочку наружного давления, осево сжимающей силы, поперечной силы и избыточного момента необходима проверить на условие устойчивости:
где РРН , [РН] – соответственно расчетное и допускаемое наружное давление;
[F] – допускаемое значение осевой сжимающей силы.
[Q] – допускаемое поперечное усилие;
[M] – – допускаемое значение изгибающего момента.
,
,
,
,
где [РН]σ , [Р]Е – допускаемое наружное давление соответственно, но из условий прочности и устойчивости в пределах упругости.
[F]σ , [F]E- допускаемая осевая сжимающая сила соответственно из условий прочности и устойчивости в пределах упругости.
[M]σ ,[M]Е – допускаемый изгибающий момент соответственно из условий прочности и устойчивости в пределах упругости.
[Q]σ , [Q]E – допускаемая поперечная сила соответственно из условий прочности и устойчивости в пределах упругости.
ОПРЕДЕЛЕНИЕ РАСЧЕТНОЙ ДЛИНЫ ОБЕЧАЙКИ.
Длина, разделяющая цилиндрические оболочки на длинные и короткие, определяется по формуле:
Если расчетная длина гладкой (неподкрепленной кольцами ) обечайки
lР > l0 , то оболочка является длинной, а при lР < l0 – короткая.
Для сосудов и аппаратов с выпуклыми днищами:
где l – длина цилиндричской части обечайки, находящаяся под действием наружного давления;
ho – высота цилиндрической части отбортовки днища;
Н – внутренняя высота выпуклой части днища.
Для аппаратов с коническими днищами :
l p = l + hцк + h1
Для конического днища с отбортовкой:
h1 – расчетная длина конического днища без отбортовки:
,
где ro – внутренний радиус отбортовки;
α – угол полураствора конуса;
h1– расчетная длина конического днища с отбортовкой, но не длина конического элемента.
Для аппаратов с плоскими днищами за расчетную длину обечайки применяют неукрепленную длину.
Для обечайки, подкрепленной кольцами жесткости, в качестве расчетной длины принимают максимальное расстояние между кольцами жесткости.
При работе аппаратов под вакуумом расчетное наружное давление определяется:
Рнар = РА – РОСТ
где РОСТ– остаточное давление в аппарате, МПа ;
РА = 0,1 МПа – атмосферное давление.
Конструкции укрепления цилиндров с помощью колец жесткости
При конструировании технологического оборудования наиболее часто приходится выполнять рассчёты на устойчивость колец жесткости, которые применяются для укрепления цилиндров, работающих под наружным давлением. ( рис. см. А.А.Лащинский Конструир. сварных хим. аппаратов)либо ГОСТ 14249-89
Рис. Аппарат с наружными и внутренними кольцами жесткостями
Кольйа жесткости применяются для повышения несущей способности корпусов тонкостенных аппаратов, сжимаемых наружным давлением.
Конструкции колец жесткости имеют различные поперечные сечения некоторые из них представлены на рисунке:
( рис. см. А.А.Лащинский Конструир. сварных хим. аппаратов)либо см. конспект рукописный
Кольцо жосткости Кольцо жосткости Кольцо жосткости
прямоугольного се- из углового сорто- фасонного сортового
чения для любых вого проката при проката при
материалов D ≥ 1000мм D ≥ 2000 мм
Приваривают кольца жосткости сварочным швом с каждой строны кольца так, чтобы общая длина каждого шва составляла не менее половины длины наружной окружности кольца жосткости в месте его соединения.
Кольцо жосткости целесообразно распологать с той стороны подкрепляемой оболочки, которая подвергается меньшему коррозионному износу. Чем меньше длина обечайки между кольцами жесткостями, тем меньше будет толщина стенки,рассчитанная от действия наружного давления.Поэтому во многих случаях для сохранения устойчивой формы аппарата целесообразно не увеличивать толщину стенки его, а устанавливать кольца жосткости и уменьшать расстояние между ними.
При осевом сжатии и изгибе кольца жесткости не оказывают существенного влияния на устойчивость обечаек, а поэтому в расчёте не учитывается и могут устанавливаться, исходя из особености конструкции, технологии изготовления и монтажа.
Расчёт кольца жесткости на устойчивость
При достижении наружным давлением определённого критического значения первоначально круглое кольцо жесткости теряет устойчивость и сплющивается (число волн для длинных обечаек равно двум).
При расстоянии между кольцами L>3,1 линейная сжимающая сила на единицу длинны кольца жесткости может быть определена
,
где R – внутренний радиус обечайки;
РН.Р. – наружное расчётное давление;
S –полная толщина стенки.
Критическую нагрузку, при которй сжатое кольцо теряет устойчивость, определяют по формуле:
РКР = qКР = ,
где I – момент инерции поперечного сечения кольца ( без учёта примыкающей стенки корпуса) относительно оси У – У , проходящей через центр тяжести кольца параллельно образующей цилиндра;
R1 – расстояние от оси цилиндра до оси У – У ;
Е – модуль продольной упругости при рабочей температуре.
Для обеспечения устойчивости кольца коэффициент запаса устойчивости рекомендуется принимать nКУ = 5 , если кольцо является податливым элементом и воспринимает лишь часть нагрузки сжимающей оболочки.
Минимальный момент инерции сечения кольца:
r wsp:rsidR=”00000000″><w:pgSz w:w=”12240″ w:h=”15840″/><w:pgMar w:top=”1134″ w:right=”850″ w:bottom=”1134″ w:left=”1701″ w:header=”720″ w:footer=”720″ w:gutter=”0″/><w:cols w:space=”720″/></w:sectPr></w:body></w:wordDocument>”>
где ЕК- модуль упругости материала кольца;
nКУ- коэффициент запаса устойчивости, который рекомендуют принимать nКУ = 3, для абсолютно жестких колец, подкрепляющих цилиндрическую обечайку;
q – величина линейной (окружной) рабочей нагрузки
q = РН.Р.Минимальная площадь сечения кольца из условия прочности на сжатие
.
Кроме проверки на устойчивость, кольцо жесткости необходимо рассчитать на прочность. Напряжение сжатие, возникающее в сечении кольца:
где А – площадь поперечного сечения кольца.
Источник
Шаг 1: для начала расчета задайте давление
Расчетное давление р = МПа
Расчетная температура Т = ºС
Шаг 2: выберите тип днища
Тип днища (см. эскиз днища):
Коэффициент конструкции днища К =
Шаг 3: задайте диаметр и толщину днища
мм
Толщина стенки днища s1 = мм
Толщина
цилиндрической части днища s = мм
Шаг 4: выберите материал днища
Марка стали днища
Допускаемое напряжение [σ] = МПа
Шаг 5: уточните прибавки к толщине стенки
Прибавка на коррозию c1 = мм
Компенсация минусового допуска c2 = мм
Технологическая прибавка c3 = мм
Шаг 6: уточните коэффициент сварного соединения
Шаг 7: если выбран тип дниша 1,2 или 6
Катет приварки днища a = мм
Шаг 8: если выбран тип дниша 9
Высота цилиндрической части
днища h1 = мм
Радиус закругления r = мм
Шаг 9: если выбран тип дниша 10
Толщина днища
в зоне кольцевой проточки s2 = мм
Радиус закругления r = мм
Угол γ = º
Шаг 10: если выбран тип дниша 11 или 12
Толщина днища
в зоне уплотнения s2 = мм
Наименьший наружный диаметр
утоненной части крышки D2 = мм
Шаг 11: задайте отверстия в днище
Количество отверстий
Диаметр отверстия 1 d1 = мм
Диаметр отверстия 2 d2 = мм
Диаметр отверстия 3 d3 = мм
Коэффициенты запаса прочности днища
По толщине S1:
Эскиз днища
Результаты расчета днища
При расчете обратите внимание на допускаемые напряжения сталей:
1. При расчетных температурах ниже 20°С допускаемые напряжения принимают такими же, как и при 20°С, при условии допустимого применения материала при данной температуре.
2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют линейной интерполяцией с округлением результатов до 0,5 МПа в сторону меньшего значения.
3. Для стали марки 20 при Re20e20 / 220.
4. Для стали марки 10Г2 при Rр0,220р0,220 / 270.
5. Для стали марок 09Г2С, 16ГС классов прочности 265 и 296 по ГОСТ 19281 допускаемые напряжения независимо от толщины листа определяют для толщины свыше 32 мм.
6. При расчетных температурах ниже 200°С сталь марок 12МХ, 12ХМ, 15ХМ применять не рекомендуется.
7. Допускаемые напряжения для поковок из стали марки 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т умножают на 0,83 при темепературах до 550°С.
8. Допускаемые напряжения для сортового проката из стали марки 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т умножают на отношение Rр0,2 / 240 при темепературах до 550°С, где Rр0,2 – предел текучести материала сортового проката определен по ГОСТ 5949.
9. Допускаемые напряжения для поковок и сортового проката из стали марки 08Х18Н10Т умножают на 0,95 при темепературах до 550°С.
10. Допускаемые напряжения для поковок из стали марки 03Х17Н14М3 умножают на 0,9.
11. Допускаемые напряжения для поковок из стали марки 03Х18Н11 умножают на 0,9, для сортового проката допускаемые напряжения умножают на 0,8.
12. Допускаемые напряжения для труб из стали марки 03Х21Н21М4ГБ умножают на 0,88.
13. Допускаемые напряжения для поковок из стали марки 03Х21Н21М4ГБ умножают на на отношение Rр0,2 / 250, где Rр0,2 – предел текучести материала поковок определен по ГОСТ 25054 (по согласованию).
Примечания:
1. Расчет толщины стенки плоской крышки и днища проводится по методике ГОСТ-34233.2-2017.
2. Значения полей, выделенных цветом заполняются автоматически из внутренней базы данных, при желании можно вводить свои значения.
3. Допускаемые напряжения определены согласно ГОСТ-34233.1-2017.
ВАЖНО:
4. Используя данный сервис Вы подтверждаете, что используете программу на свой страх и риск исключительно в ознакомительных целей. Администрация ресурса ответственности за результаты расчета не несет. Назначение программы – предварительные расчеты для последующего самостоятельного расчета но действующим Нормам расчетов прочности.
Методика расчета по ГОСТ 34233.2-2017:
7.2 Расчет плоских круглых днищ и крышек.
7.2.1 Толщину плоских круглых днищ и крышек сосудов и аппаратов, работающих под внутренним избыточным давлением, вычисляют по формулам
, где
.
7.2.2 Коэффициент К в зависимости от конструкции днищ или крышек определят по таблице 4.
Таблица 4.
7.2.3 Ко для днищ и крышек, имеющих одно отверстие, вычисляют по формуле
7.2.4 Ко для днищ и крышек, имеющих несколько отверстий, вычисляют по формуле
Коэффициент Ко определяют для наиболее ослабленного сечения. Максимальную сумму для длин хорд отверстий в наиболее ослабленном диамтральном сечении днища или крышки определяют согласно рисунку 19 по формуле .
Основные расчетные размеры отверстий указаны на рисунках 16,17.
7.2.5 Ко для днищ и крышек без отверстий принимают равным 1.0.
7.2.6 Во всех случаях присоединения днища к обечайке минимальная толщина плоского круглого днища должна быть не менее толщины обечайки, вычисленной в соотвествии с 5.3.
7.2.7 Допускаемое давление на плоское днище или крышку вычисляют по формуле
7.2.8 Толщину s2 для типов соединения 10,11 и 12 (см. таблицу 4) вычисляют по формулам:
Количество посетителей, выполняющих расчеты On-line:
Возникли вопросы, пожелания? Оставьте свой отзыв!
Михаил (22.07.2020)
очень удобно.Спасибо
Александр (24.04.2020)
необходим расчёт согласно ГОСТ 34233.2-2017 рис. 18
Admin (17.04.2020)
Спасибо за отзыв. Стали будут добавлены.
Babay Alex (17.04.2020)
Хотелось бы увидеть в применяемых сталях марки 40Х и 30ХГСА. Очень часто использую этот сервис, но теряю много времени на подгонку расчетов под эти марки сталей. А в целом удобный сервис. Спасибо!
Admin (04.03.2020)
Проверил, всё работает. ГОСТ исправим. Спасибо за отзыв.
Павел (04.03.2020)
Разбираться некогда, но для типа 11 именно у меня (мож глюк браузера, не знаю) при изменении исходных данных изменяются подставляемые значения в результатах расчета, но сам результат не меняется. Ввел ошибочно, исправил и вот случайно заметил. Проверьте. Ну и ГОСТ конечно новый 34233.2-2017
юрий (18.10.2019)
что означает в формулах точка с запятой?
Виталий (05.07.2019)
Спасибо, очень полезно. Для типа 11 не понятно как учитываются болтовые отверстия. В поле “Шаг 11” предусмотрены только 3 отверстия в центральной части фланца. Хотелось бы побольше.
Дмитрий (12.04.2019)
Спасибо. Добавьте, пожалуйста, расчет для типа 18. Бывает очень нужно по работе.
Дмитрий (27.03.2019)
Спасибо, ребята. Можно ли добавить возможность распечатки результатов?
Александр (уФА конструктор) (20.03.2018)
Спасибо. Очень удобно. Спасибо.
Алексей (03.12.2017)
В 95% случаев используется плоская крышка с дополнительным краевым моментом по рис 18 ГОСТ Р 52857.2-2007. Очень хотелось бы увидеть тут данный расчёт.
Алексей (21.11.2017)
нет расчёта крышки с дополнительным краевым моментом по рис 18 ГОСТ Р 52857.2-2007
Azamat (19.03.2017)
Thanks a iot
Источник
Шаг 1: для начала расчета задайте давление
Расчетное давление р = МПа
Расчетная температура Т = ºС
Шаг 2: задайте диаметр и толщину обечайки
Внутренний диаметр обечайки D = мм
Толщина стенки обечайки s = мм
Шаг 3: выберите материал обечайки
Марка стали обечайки
Допускаемое напряжение [σ] = МПа
Шаг 4: уточните прибавки к толщине стенки
Прибавка на коррозию c1 = мм
Компенсация минусового допуска c2 = мм
Технологическая прибавка c3 = мм
Шаг 5: уточните коэффициент сварного соединения
Коэффициент запаса прочности обечайки
Толщина стенки:
Результаты расчета цилиндрической обечайки
Суммарная прибавка к толщине стенки обечайки:
c = c1 + c2 + c3 =
Расчетная толщина стенки обечайки:
sр = p * D / (2 * [σ] * φр – p) =
=
Расчетная толщина обечайки с учетом прибавок:
sр + c =
Допускаемое внутреннее избыточное давление:
[p] = 2* [σ] * φр * (s – c) / (D + (s – c) ) =
=
Расчет на прочность выполняется в режиме он-лайн с использованием технологий JavaScript.
Внимание!
Если расчет не проводится, значения допускаемых напряжений не вычисляются автоматически – попробуйте включить в браузере JavaScript. Инструкция здесь
При расчете обратите внимание на допускаемые напряжения сталей:
1. При расчетных температурах ниже 20°С допускаемые напряжения принимают такими же, как и при 20°С, при условии допустимого применения материала при данной температуре.
2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют линейной интерполяцией с округлением результатов до 0,5 МПа в сторону меньшего значения.
3. Для стали марки 20 при Re20e20 / 220.
4. Для стали марки 10Г2 при Rр0,220р0,220 / 270.
5. Для стали марок 09Г2С, 16ГС классов прочности 265 и 296 по ГОСТ 19281 допускаемые напряжения независимо от толщины листа определяют для толщины свыше 32 мм.
6. При расчетных температурах ниже 200°С сталь марок 12МХ, 12ХМ, 15ХМ применять не рекомендуется.
7. Допускаемые напряжения для поковок из стали марки 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т умножают на 0,83 при темепературах до 550°С.
8. Допускаемые напряжения для сортового проката из стали марки 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т умножают на отношение Rр0,2 / 240 при темепературах до 550°С, где Rр0,2 – предел текучести материала сортового проката определен по ГОСТ 5949.
9. Допускаемые напряжения для поковок и сортового проката из стали марки 08Х18Н10Т умножают на 0,95 при темепературах до 550°С.
10. Допускаемые напряжения для поковок из стали марки 03Х17Н14М3 умножают на 0,9.
11. Допускаемые напряжения для поковок из стали марки 03Х18Н11 умножают на 0,9, для сортового проката допускаемые напряжения умножают на 0,8.
12. Допускаемые напряжения для труб из стали марки 03Х21Н21М4ГБ умножают на 0,88.
13. Допускаемые напряжения для поковок из стали марки 03Х21Н21М4ГБ умножают на на отношение Rр0,2 / 250, где Rр0,2 – предел текучести материала поковок определен по ГОСТ 25054 (по согласованию).
Примечания:
1. Расчет толщины стенки обечайки проводится по методике ГОСТ-34233.2-2017.
2. Значения полей, выделенных цветом заполняются автоматически из внутренней базы данных, при желании можно вводить свои значения.
3. Допускаемые напряжения определены согласно ГОСТ-34233.1-2017.
ВАЖНО:
4. Используя данный сервис Вы подтверждаете, что используете программу на свой страх и риск исключительно в ознакомительных целей. Администрация ресурса ответственности за результаты расчета не несет. Назначение программы – предварительные расчеты для последующего самостоятельного расчета но действующим Нормам расчетов прочности.
Количество посетителей, выполняющих расчеты On-line:
Методика расчета по ГОСТ 34233.2-2017:
5.1 Расчетные схемы
5.1.1 Расчетные схемы цилиндрических обечаек приведены на рисунках 1 – 4.
Примечание. Рисунки 1 – 4 не определяют конструкцию и приведены только для указания расчетных размеров.
5.2 Условия применения расчетных формул
5.2.1 Расчетные формулы применимы при отношении толщины стенки к диаметру:
(s – c) / D ≤ 0.1 для обечаек и труб при D ≥ 200 мм;
(s – c) / D ≤ 0.3 для труб при D
5.3 Гладкие цилиндрические обечайки
5.3.1 Обечайки, нагруженные внутренним избыточным давлением
5.3.1.1 Толщину стенки вычисляют по формуле
s ≥ sp + c,
где расчетную толщину стенки вычисляют по формуле
5.3.1.2 Допускаемое внутреннее избыточное давление вычисляют по формуле
5.3.1.3 При изготовлении обечайки из листов разной толщины, соединенных продольными швами, расчет толщины обечайки проводят для каждого листа с учетом имеющихся в них ослаблений.
Возникли вопросы, пожелания? Оставьте свой отзыв!
https://www.stresscalc.ru/vessels/image_shell/3.gif (19.03.2020)
https://www.stresscalc.ru/vessels/image_shell/2.gif
Андрей (17.03.2020)
Очень удобно работать в приложении, хотелось бы увидеть у вас модуль, по расчету толстостенной трубы находящейся под внешним избыточным давлении! Благодарю вас и вашу команду за прекрасную программу!
сергей (27.01.2020)
спасибо программа класс
Алексей (10.01.2020)
Просто супер!!!
Сергей (28.11.2019)
спасибо программа класс
Александр (19.02.2019)
Посчитал камеру ошибок нет.Прекрасная программа.Спасибо Команде.
Лиля (18.01.2019)
Спасибо!!!
mexman Ibraqimov (12.01.2019)
Он-лайн калькулятор расчета на прочность толщину стенки t_omб=(γ_f ” n” P_n d_e)/(2(R+0.6γ_f P_n)) Спасибо!
Рамиль (09.01.2019)
Молодцы! Спасибо!
Admin (11.12.2018)
Расширение планируется
Денис (11.12.2018)
Давно пользуюсь stresscalc. Планируется расширение возможностей калькулятора таких как, расчет конических обечаек и обечаек под наружным давлением?
Александр (26.10.2018)
Супер!!! Респект и уважение команде программистов!!!
Алексей (17.09.2018)
Всё ок! когда будет расчёт по ГОСТ 34233.3-2017?
Наталья (10.08.2018)
Большое спасибо !!!
Алексей (27.02.2018)
ОГРОМНАЯ БЛАГОДАРНОСТЬ. ВЫ МЕНЯ СПАСЛИ.
Алексей (28.11.2017)
а есть расчёт отвода крутоизогнутого?
Дмитрий (19.10.2017)
все отлично, но нужно учитывать характер среды (взрывоопасная, пожаро- и тд) для расчета допускаемого напряжения. а тут такого нет
Сергей (28.03.2017)
Можете рассчитать толщину стенки обечайки нагружённой наружным давлением l =7500 D=1800 РN=2МПа сталь 09Г2С
Денис (09.03.2017)
Здравствуйте! Планируется создание расчёта конических обечаек на избыточное давление?
Михаил (15.02.2017)
очень хорошо
Admin (09.02.2017)
На вакуум пока только вручную по ГОСТ. Расчет обечаек на наружное давление находится в разработке
карен (09.02.2017)
все работает спасибо!!! хотелось уточнить как можно рассчитывать емкости на вакуум
Валерий (27.01.2017)
good
Двигатель ресурса:
ФОРУМ:
Актуальные темы:
Выборка тем:
Основные определения:
Источник