Расчет стенок сосудов в вакууме
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ
ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Кафедра технологических машин и оборудования
Отбраковка элементов сосудов, работающих под давлением ниже 0,07 МПа и вакуумом, определение скорости коррозии основных конструктивных элементов сосуда, работающего под давлением ниже 0,07 МПа и вакуумом и периодичности технического освидетельствования
Учебно-методическое пособие
к выполнению практической работы по дисциплине
«Техническое освидетельствование технологического оборудования»
Уфа 2015
Учебно-методическое пособие предназначено для студентов очной и заочной форм обучения направлений подготовки 151000, 15.03.02 «Технологические машины и оборудование» профиля «Оборудование нефтегазопереработки».
Составители: Рубцов А.В., доцент, канд. техн. наук
Закирничная М.М., докт. техн. наук, профессор
Ковшова Ю.С., канд. техн. наук
Рецензенты: Габбасова А.Х., канд. техн. наук, доцент каф. ТМО
Хасбутдинова Е.В., канд. техн. наук, доцент каф. ТМО
© Уфимский государственный нефтяной технический университет, 2015
Содержание
С | |
Введение | 4 |
Практическая работа. Отбраковка элементов сосудов, работающих под давлением ниже 0,07 МПа и вакуумом, определение скорости коррозии основных конструктивных элементов сосуда, работающего под давлением ниже 0,07 МПа и вакуумом и периодичности технического освидетельствования | 5 |
Пример выполнения задания | 12 |
Контрольные вопросы | 18 |
Перечень вариантов к практической работе | 19 |
Список использованных источников | 19 |
Приложение А. Допускаемые напряжения для материала элемента аппарата при расчетной температуре | 21 |
Приложение Б. Требования к оформлению отчета о практической работе | 23 |
Приложение В. Пример оформления титульного листа отчета о практической работе | 24 |
ВВЕДЕНИЕ
На предприятиях нефтегазопереработки и нефтехимии эксплуатируется большое количество сосудов и аппаратов, работающих под давлением ниже 0,07 МПа и вакуумом, которые участвуют в различных технологических процессах. В процессе эксплуатации сосуды и аппараты подвергаются воздействию эксплуатационных нагрузок и рабочих сред. Это приводит к развитию различных дефектов, которые снижают эксплуатационную безопасность оборудования и могут привести к возникновению аварийных ситуаций.
Основным мероприятием по обеспечению безопасной и надежной эксплуатации сосудов и аппаратов являются периодическое техническое освидетельствование и своевременная отбраковка дефектных элементов.
Целью данного учебно-методического пособия является приобретение навыков студентами по определению отбраковочных толщин основных конструктивных элементов сосудов и аппаратов, работающих под давлением ниже 0,07 МПа и вакуумом, а также определению периодичности их технического освидетельствования по скорости коррозионного износа основных конструктивных элементов.
Практическая работа. Отбраковка элементов сосудов, работающих под давлением ниже 0,07 МПа и вакуумом, определение скорости коррозии основных конструктивных элементов сосуда, работающего под давлением ниже 0,07 МПа и вакуумом и периодичности технического освидетельствования
Цель работы:
1. Определение отбраковочных толщин основных конструктивных элементов сосудов (аппаратов) работающих под давлением ниже 0,07 МПа и вакуумом;
2. Определение периодичности технического освидетельствования сосудов давления, исходя из максимальной скорости коррозии основных элементов сосуда (аппарата).
ОБЩИЕ ПОЛОЖЕНИЯ
Определение отбраковочных толщин сосудов, работающих под давлением ниже 0,07 МПа и вакуумом
Отбраковка элементов сосудов (аппаратов) работающих под давлением ниже 0,07 МПа и вакуумом производится согласно РУА-93 «Руководящие указания по эксплуатации и ремонту сосудов и аппаратов, работающих под давлением ниже 0,07 МПа (0,7 кгс/см2) и вакуумом».
Элементы сосудов и аппаратов (в том числе и литых), определяющие их прочность, должны отбраковываться если при толщинометрии выявится, что под действием коррозии и эрозии уменьшилась толщина металла стенки (обечаек корпуса, днищ, крышек, заглушек, штуцеров и др.) до значений, определенных расчетами по действующим методикам (ГОСТ Р 52857.1¸12-2007. и др.) или по паспорту, с учетом всех действующих нагрузок (внутреннего или наружного давления, весовых, ветровых, сейсмических, температурных и пр.) без учета прибавки на коррозию (отбраковочный размер);
Если расчетная толщина стенки (без учета прибавки на коррозию) оказалась меньше величины, указанной ниже, то за отбраковочный размер принимается величина:
– для обечаек и днищ сосудов и аппаратов при диаметре 2000 мм и ниже – 3 мм, а при диаметре более 2000 мм – 4 мм;
– для патрубков – в соответствии с таблицей 1.
Таблица 1 – Минимальный отбраковочный размер для толщины стенки патрубка
Наружный диаметр, мм | £ 25 | £ 57 | £ 108(114) | £ 219 | ³ 325 |
Наименьшая допустимая толщина стенки, мм | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 |
Расчетные толщины стенок элементов сосудов, работающих под давлением ниже 0,07 МПа и вакуумом, определяются по ГОСТ Р 52857.1-2007 «Сосуды и аппараты. Нормы и методы расчета на прочность. Общие требования.», ГОСТ Р 52857.2-2007 «Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет цилиндрических и конических обечаек, выпуклых и плоских днищ и крышек», ГОСТ Р 52857.3-2007. «Сосуды и аппараты. Нормы и методы расчета на прочность. Укрепление отверстий в обечайках и днищах при внутреннем и внешнем давлениях. Расчет на прочность обечаек и днищ при внешних статических нагрузках на штуцер».
Для цилиндрических обечаек расчетная толщина стенки определяется по формуле (1):
, (1)
где p – расчетное внутреннее избыточное давление, МПа;
D – внутренний диаметр, мм;
[s] – допускаемое напряжение для материала, из которого изготовлен элемент, МПа. Выбирается в зависимости от материала и расчетной температуры из приложения А;
j – коэффициент сварного шва, который выбирается по таблице 2.
Таблица 2 – Коэффициенты прочности сварных швов
Вид сварного шва | Значение коэффициентов прочности сварных швов | |
Длина контролируемых швов от общей длины составляет 100 % | Длина контролируемых швов от общей длины составляет от 10 до 50 % | |
Стыковой или тавровый с двусторонним сплошным проваром, выполняемый автоматической и полуавтоматической сваркой | 1,0 | 0,9 |
Стыковой с подваркой корня шва или тавровый с двусторонним сплошным проваром, выполняемый вручную | 1,0 | 0,9 |
Стыковой, доступный сварке только с одной стороны и имеющий в процессе сварки металлическую подкладку со стороны корня шва, прилегающую по всей длине шва к основному металлу | 0,9 | 0,8 |
Втавр, с конструктивным зазором свариваемых деталей | 0,8 | 0,65 |
Стыковой, выполняемый автоматической и полуавтоматической сваркой с одной стороны с флюсовой или керамической подкладкой | 0,9 | 0,8 |
Стыковой, выполняемый вручную с одной стороны | 0,9 | 0,65 |
Для эллиптических и полусферических днищ расчетная толщина стенки определяется по формуле (2):
, (2)
где R – радиус кривизны в вершине днища, который равен:
R = D – для эллиптических днищ с Н = 0,25 D;
R = 0,5 D – для полусферических днищ с Н = 0,5 D.
Для плоских днищ расчетная толщина стенки определяется по формуле (3):
, (3)
где К- коэффициент, который в зависимости от конструкции днищ и крышек определяют по таблице 4 ГОСТ Р 52857.2-2007 «Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет цилиндрических и конических обечаек, выпуклых и плоских днищ и крышек» (в данной работе принимаем К=0,53).
К0 – коэффициент, который равен 1 для днищ (крышек) без отверстий; для днищ и крышек, имеющих одно отверстие коэффициент К0 определяется по формуле (4):
, (4)
где dp – диаметр отверстия в днище или крышке;
Dр – расчетный диаметр днища (крышки), мм
В рассматриваемых вариантах Dр=D, где D – внутренний диаметр сосуда, мм.
Для штуцеров расчетная толщина стенки определяется по формуле (5):
, (5)
где p – расчетное внутреннее избыточное давление, МПа;
d – внутренний диаметр штуцера, мм;
cs – прибавка на коррозию к расчетной толщине стенки штуцера, мм. Зависит от коррозионности среды. В работе принимаем cs=1;
[s]1 – допускаемое напряжение для материала, из которого изготовлен штуцер, МПа. Выбирается в зависимости от материала и расчетной температуры из приложения А;
j1 – коэффициент сварного шва. Если ось сварного шва обечайки (днища) удалена от наружной поверхности штуцера на расстояние более чем три толщины укрепляемого элемента (3s, рисунок 1б), то коэффициент прочности этого сварного соединения при расчете укрепления отверстий следует принимать j1 = 1. В исключительных случаях, когда сварной шов пересекает отверстие или удален от наружной поверхности штуцера на расстояние менее 3s, принимают j1 £ 1в зависимости от вида и качества сварного шва.
Если плоскость, проходящая через продольный шов вальцованного штуцера и ось этого штуцера, образует угол не менее 600 с плоскостью продольного осевого сечения цилиндрической или конической обечайки (рисунок 2), то принимают j1 = 1. В остальных случаях j1 £ 1 в зависимости от вида и качества сварного шва.
Рисунок 1
Рисунок 2
Определение периодичности технического освидетельствования работающих под давлением ниже 0,07 МПа и вакуумом, исходя из максимальной скорости коррозии основных элементов сосуда (аппарата)
Для определения периодичности технического освидетельствования сосудов (аппаратов) необходимо знать скорость равномерной коррозии
Скорость равномерной коррозии а определяется по формуле (6):
, (6)
где SИ – исполнительная (проектная) толщина стенки элемента, мм;
SФ – минимальная измеренная толщина стенки элемента, мм;
– плюсовой допуск на толщину стенки, мм;
t1 – время от момента начала эксплуатации до момента обследования, лет.
Проведение периодических технических освидетельствований сосудов (аппаратов), как правило, приурочивается к планово-предупредительным ремонтам отдельных агрегатов и установок. При этом периодичность технических освидетельствований сосудов (аппаратов) не должна выходить за пределы, установленные таблицей 3.
Таблица 3- Периодичность технического освидетельствования сосудов и аппаратов, эксплуатирующихся по РУА-93
Назначение сосудов | Наружный и внутренний осмотр не реже одного раза в | Гидравлическое испытание пробным давлением не реже одного раза в |
Сосуды (аппараты) группы 5а, работающие со средой, вызывающей коррозию металла корпуса со скоростью: | ||
– не более 0,1 мм/год | 6 лет | 12 лет |
– более 0,1 мм/год до 0,3 мм/год | 2 года | 8 лет |
– более 0,3 мм/год | 1 год | 8 лет |
Сосуды (аппараты) группы 5б, работающие со средой, вызывающей коррозию металла корпуса со скоростью: | ||
– не более 0,1 мм/год | 12 лет | 12 лет |
– более 0,1 мм/год до 0,3 мм/год | 4 года | 8 лет |
– более 0,3 мм/год | 2 года | 8 лет |
Пример выполнения задания
Определение отбраковочных толщин сосудов, работающих под давлением ниже 0,07 МПа и вакуумом
Необходимо назначить отбраковочные толщины основных конструктивных элементов емкости. Необходимые исходные данные берутся из акта изучения и анализа технической документации, выдаваемого преподавателем.
Данные, которые необходимы для выполнения задания:
Срок ввода в эксплуатацию 1959 год
Расчетные параметры
Расчетное давление – 0,25 МПа
Расчетная температура – 200 0С
Внутренний диаметр
Цилиндрическая обечайка – 1000 мм
Эллиптические днища – 1000 мм
Исполнительная толщина стенки:
Цилиндрическая обечайка – 8 мм
Эллиптические днища – 8 мм
Материал, из которого изготовлен элемент:
Цилиндрическая обечайка – Ст3сп по ГОСТ 380
Эллиптические днища – Ст3сп по ГОСТ 380
Сведения о штуцерах.
Обозначение | Назначение | Ду, мм | Патрубок | ||
толщина, мм | Материал | ||||
Марка | ГОСТ | ||||
А | Вход продукта | 80 | 4,5 | сталь 10 | 1050 |
Б | Выход продукта | 40 | 3,5 | сталь 10 | 1050 |
В | Для уровнемера | 50 | 3,5 | сталь 10 | 1050 |
Г | Люк лаз | 500 | 8,0 | Ст3 | 380 |
Д | Подача ингаза | 40 | 3,5 | сталь 10 | 1050 |
Группа сосуда – 5б
Сведения о сварке:
– ручная электродуговая сварка (обечайка) электродами Э 42 ГОСТ 2523-51.
Объем контроля при изготовлении, эксплуатации и проведении экспертизы промышленной безопасности:
25 %.
Эскиз емкости приведён на рисунке А.1.
Рисунок А.1 – Эскиз емкости
По формуле (1) определим расчетные толщины стенок для цилиндрической обечайки корпуса:
По формуле (2) определим расчетные толщины стенок для эллиптических днищ:
Так как диаметр емкости равен 1000 мм, что меньше 2000 мм и расчетные толщины стенок цилиндрической обечайки и днищ получились меньше 3 мм, то за отбраковочный размер этих конструктивных элементов согласно РУА-93 принимаем толщину равную 3 мм.
Теперь по формуле (5) определяем расчетные толщины патрубков штуцеров:
Для штуцера А:
Для штуцера Б:
Для штуцера В:
Для штуцера Г:
Для штуцера Д:
Так как расчетные толщины штуцеров получились меньше указанных в таблице 4, то принимаем отбраковочные толщины для:
штуцера А Ду80– 2,0 мм;
штуцеров Б, Д Ду40– 1,5 мм;
штуцера В Ду50 – 1,5 мм;
штуцера Г Ду500 – 3,0 мм.
Определение периодичности технического освидетельствования работающих под давлением ниже 0,07 МПа и вакуумом, исходя из максимальной скорости коррозии основных элементов сосуда (аппарата).
Для емкости рассмотренной выше необходимо определить скорость коррозии для каждого конструктивного элемента и по максимальному значению определить периодичность освидетельствования.
Данные, которые необходимы для выполнения задания:
Приводятся результаты толщинометрии основных конструктивных элементов емкости, а также на рисунке А.2 схема обследования с указанием мест точек замеров. Номера точек в таблице с замерами, соответствуют номерам точек на рисунке А.2.
Определение периодичности технического освидетельствования работающих под давлением ниже 0,07 МПа и вакуумом, исходя из максимальной скорости коррозии основных элементов сосуда (аппарата).
Для емкости рассмотренной выше необходимо определить скорость коррозии для каждого конструктивного элемента и по максимальному значению определить периодичность освидетельствования.
Данные, которые необходимы для выполнения задания:
Приводятся результаты толщинометрии основных конструктивных элементов емкости, а также на рисунке А.2 схема обследования с указанием мест точек замеров. Номера точек в таблице с замерами, соответствуют номерам точек на рисунке А.2.
Источник
Системы создания вакуума и избыточного давления имеются на большинстве вакуум- и пневмоформовочных машин, а также на машинах, предназначенных для комбинированного формования. Вакуум-системы используют, как правило, лишь для создания перепадов давления, обеспечивающих формование изделий. Пневмосистемы часто используют и для создания давления формования, и для вспомогательных целей. К последним относятся питание пневмоцилиндров, обеспечивающих привод различных узлов формовочных машин, питание пистолетов воздушного охлаждения и т. и.
Вакуум-система включает вакуум-насос, ресивер, клапаны, трубопроводы и вакуумметр. Для вакуум-формования используют так называемые насосы низкого вакуума, т. е. насосы, которые создают при нулевой производительности минимальное давление во всасывающем патрубке 4-10 3—1,3-10 5 МПа (30-0,1 мм рт. ст.). К насосам этого типа относят поршневые одно- и двухступенчатые, ротационные пластинчатые, двухроториые и винтовые насосы.
При периодическом процессе вакуумного формования целесообразно устанавливать вакуум-насос такой производительности, чтобы, работая непрерывно, он в период вспомогательных операций создавал разрежение в ресивере, а в завершающий период формования, отключаясь от ресивера, отсасывал бы воздух из форм. В таком случае часовая производительность насоса должна быть лишь несколько больше воздушного объема формы, помноженного на число циклов в час.
Для расчета объема ресивера и удельного давления формования с достаточной точностью можно воспользоваться законом Бойля-Мариотта. Обозначим (рис. 7.7): ро — остаточное давление в ресивере; pt — давление в форме до начала вакуумного формования, равное атмосферному; р2 — давление в форме и ресивере в начальный момент формования, когда заготовка еще не деформирована; р3 — давление в ресивере в конце вакуумного формования; рп и рк — начальное и конечное давление формования; К = Vp/V — отношение объема ресивера к объему формы.
Рис. 7.7. Расчетная схема вакуумной системы
Для упрощения расчетов допускаем, что при открытии клапана весь воздух из формы отсасывается в ресивер так, как будто насос в это время не работает.
Исходя из равенства количества воздуха, заключенного под листом в форме и в ресивере в начальный и конечный момент формования, составляем равенство:
Для некоторого момента времени, когда лист займет промежуточное положение (на рис. 7.7 показан пунктиром) и из формы будет вытеснен объем воздуха V., можно составить равенство:
Решая совместно уравнение (7.22) и (7.23) получим формулу (7.24), которая позволяет проследить изменение давления в форме в течение всего цикла формования
Деформация заготовки происходит под действием давления формования р’., которое определится как разность между атмосферным давлением и давлением внутри формы:
или
В начальный момент формования, когда V. = 0, давление формования ри будет иметь значение
Соответственно в конечный момент формования, когда V. = V, получим
Если принять остаточное давление в ресивере ро = 0, атмосферное давление рх = 0,1 МПа, то по формулам (7.27) и (7.28) можно определить значение начального давления формования
и конечного давления формования
Таким образом, формование изделий происходит под переменным давлением, причем перепад между максимальным и минимальным давлением формования может быть определен по формуле
при р{> = 0 и р{ =0,1 МПа
На рис. 7.8 показано изменение начальногорп, конечного рк давления формования и перепада давления Ар в зависимости от соотношения объемов ресивера и формы, вычисленных по уравнениям (7.29), (7.30) и (7.32) при= 0,1 МПа и ро = 0. Анализ полученных результатов показывает, что величина давления формования с увеличением К сначала быстро растет, а разность между начальным и конечным давлением формования уменьшается. При дальнейшем увеличении К приращение давления формования невелико, и увеличение объема ресивера будет приводить к неоправданному росту габаритов и веса вакуум-формовочной машины. Принято считать, что рациональное соотношение объема ресивера и формы лежит где-то между значениями К = 6-8.
Рис. 7.8. Зависимость начального рн и конечного рк давлений формования от соотношения объема ресивера и формы
Пользуясь формулами (7.27) и (7.28), можно вычислить значение начального и конечного давления формования с учетом остаточного давления в ресивере ро. Анализ соответствующего графика (рис. 7.9) подтверждает сделанный ранее вывод о целесообразных соотношениях объема ресивера и формы. Из этого же графика можно видеть, что в определенных пределах недостаточную глубину вакуума можно компенсировать увеличением значения К. Так, например, одинаковое конечное давление формования 0,065 МПа может быть достигнуто при остаточном давлении в ресивере ри = 0,001 МПа и К = 3 или при остаточном давлении ри = 0,01 МПа и К = 4.
Рис. 7.9. Зависимость конечного давления формования рк от остаточного давления в ресивере
Ресиверы вакуум-систем представляют собой сварные оболочки из тонколистовой стали, состоящие из цилиндрической обечайки и эллиптических днищ. Ресиверы рассчитывают на устойчивость как сосуды, работающие под внешним давлением.
Наружный диаметр ресивера Д чаще всего изготовляемого из стальной трубы, выбирают из следующего ряда: 133; 159; 168; 219; 273; 325; 377; 426; 480; 530; 630; 720; 820; 920; 1020; 1120; 1220; 1320; 1420 мм.
Толщину стенки гладкой цилиндрической обечайки, нагруженной наружным давлением, выбирают большей из двух, рассчитанных по формулам
с последующей проверкой по формуле (7.35). В уравнениях (7.33) и (7.34) [о] — допускаемое напряжение (для материалов ресиверов принимается равным 140-150 МПа); с — прибавка к расчетной толщине стенки:
где v — скорость коррозии (г-1 = 1 мм/год); тк — срок службы ресивера (равен сроку службы формовочной машины). Формовочные машины обычно проектируются на 7 лет.
Коэффициент К.2 определяют по номограмме, приведенной на рис. 7.10. Пример использования этой номограммы для расчета приведен на рис. 7.11. На этих рисунках р — величина внешнего давления (при расчете вакуумных ресиверов р принимается равным 0,1 МПа); Е — модуль упругости первого рода стали, из которой изготовлена цилиндрическая обечайка ресивера, при комнатной температуре (Е = 2105МПа).
Рис. 7.10. Номограмма для расчета на устойчивость в пределах упругости цилиндрических обечаек, работающих под наружным давлением
Рис. 7.11. Примеры использования номограммы на рис. 6.8:1 — определение расчетной толщины стенки; II — определение допускаемого наружного давления; III — определение допускаемой расчетной длины (/); о — начало отсчета; • — промежуточные точки; х — конечный результат
Допускаемое наружное давление определяют по формуле
Допускаемое давление из условия прочности определяют по формуле
Допускаемое давление из условия устойчивости в пределах упругости определяют по формуле
где В, — меньшее значение из двух, вычисленных по формулам
пу — коэффициент запаса устойчивости, равный 2,4.
Расчетная длина 1 = L + I, где L — длина собственно цилиндрической обечайки; Iл – длина, учитывающая влияние на устойчивость цилиндрической обечайки примыкающих к ней элементов (в данном случае эллиптических днищ); / = Я/3, где Я — высота днища без отбортовки (Я = 0.25D).
Если полученное по номограмме (см. рис. 7.8) значение К.2 лежит ниже соответствующей штрихпунктириой линии, то значение р может быть определено по формуле
Толщину стенки эллиптических днищ, нагруженных наружным давлением, принимают равной большему из двух значений, рассчитанных по формулам
где коэффициент Kt при приближенных расчетах можно принять равным 0,9; R — радиус кривизны в вершине днища (R = D).
Формулы (7.40) и (7.41) применимы для расчета эллиптических днищ при соблюдении следующих условий:
I
Все машины в зависимости от вида пневмосистем можно разделить на два вида: машины, имеющие собственный компрессор и ресивер, и машины, рассчитанные на питание сжатым воздухом от цеховой магистрали. Как правило, все формовочные машины потребляют сжатый воздух с давлением 0,4-2,5 МПа. Наибольшее распространение в формовочных машинах имеют винтовые компрессоры. В одном агрегате может использоваться различное давление сжатого воздуха (например, на формование и на привод), поэтому в таких случаях на каждой из магистралей пневмосистемы устанавливается редуктор давления. Установка компрессоров различного давления не практикуется.
Ресиверы сжатого воздуха по конструкции мало отличаются от вакуумных, но рассчитываются на работу под внутренним давлением. Исполнительную толщину тонкостенной гладкой цилиндрической обечайки такого ресивера рассчитывают по формуле
где р — внутреннее давление, на которое рассчитывается ресивер; D — диаметр его обечайки; ф — коэффициент прочности сварного шва (см. табл. 7.1).
Таблица 7.1. Коэффициент прочности сварных швов (ф)
Вид сварного шва | ||
При контроле 100% длины шва | При контроле от 10 до 50% длины шва | |
Стыковой или тавровый с двухсторонним сплошным проваром, выполненный автоматической или полуавтоматической сваркой | 1,0 | 0,9 |
Стыковой с подваркой корня шва или тавровый с двухсторонним сплошным проваром, выполненный вручную | 1,0 | 0,9 |
Стыковой, доступный сварке только с одной стороны и имеющий в процессе сварки металлическую подкладку со стороны корня шва | 0,9 | 0,8 |
Тавровый с конструктивным зазором свариваемых деталей | 0,8 | 0,65 |
Стыковой, выполненный автоматической или полуавтоматической сваркой с одной стороны, с флюсовой или керамической подкладкой | 0,9 | 0,8 |
Стыковой, выполненный вручную с одной стороны | 0,9 | 0,65 |
Формула (7.43) применима при следующих условиях: для обечаек с D > 200 мм должно соблюдаться условие (s – c)/D 0,1, а для обечаек с D 200 мм — (s – c)/D
Толщину стенки эллиптического днища определяют по формуле
Если длина цилиндрической отбортовки /?, у эллиптического днища больше 0,8[D(s – с)]|/2, то толщина днища должна быть не меньше толщины обечайки, рассчитанной при
Для днищ, изготовленных из целой заготовки (без сварочной операции) коэффициент (р = 1. Для сварных днищ этот коэффициент определяют по табл. 7.1.
В качестве запорной арматуры в вакуумных системах на машинах с полуавтоматическим и автоматическим управлением используются вакуумные клапаны с электромагнитным управлением, а на машинах с ручным управлением — одноходовые и многоходовые краны. Вакуумные коммуникации внутри машины выполняют из бесшовных стальных труб, вакуумных резиновых шлангов и медных трубок.
Для внутренних пневмопроводов используют сварные стальные трубы, резиновые шланги, рассчитанные на работу под внутренним давлением, и медные трубки. В машинах-автоматах и полуавтоматах используются электромагнитные запорные клапаны, в машинах с ручным управлением — краны.
При расчете производительности компрессоров пневмосистем полный расход сжатого воздуха на один цикл формования определяется по формуле
где V” — объем сжатого воздуха, идущего на пневмопривод подвижных частей (перемещение нагревателя, подъем и запирание зажимной рамы, перемещение пуансона и т. д.). V — объем сжатого воздуха, идущего на формование изделия V или на предварительную пневматическую вытяжку заготовки V” . При чисто пневматическом формовании
при вакуумном формования с предварительной пневматической вытяжкой
V0 — объем воздуха, идущего на отрыв изделия от формы (при съеме изделия).
Количество воздуха, идущего на пневматическое формование, равно объему формы и верхней пневмокамеры, создающей над формой замкнутое пространство. Объем воздуха, идущего на предварительную пневматическую вытяжку заготовки можно предварительно рассчитать как
Количество воздуха, идущего на пневматический привод подвижных частей, рассчитывается как сумма объемов воздуха, расходуемая в каждом из приводных цилиндров.
Источник