Расчет трубопровода и сосудов на прочность

При транспортировке и хранении жидких сред, организации технологического процесса, использовании систем гидропривода, теплообмена и во многих других случаях неизбежно возникает необходимость работы технических объектов под действием гидростатического давления.

Комплексный расчет трубопроводов и их элементов на прочность выполняется в соответствии с ГОСТ 32388-2013, расчет сосудов и аппаратов по ГОСТ 34233.1-2017. Данные нормативные документы регламентируют, кроме всего прочего, номинальные допускаемые напряжения стенок трубопроводов и сосудов под давлением. Здесь же мы ограничимся онлайн расчетом напряженно-деформированного состояния самых общих задач – трубопровода, толстостенной и составной трубы, а так же тонкостенной осесимметричной оболочки.

Расчет прочности трубопровода

Прочностной расчет трубопровода – наиболее распространенная задача, и здесь, кроме определения напряжений и деформаций по заданной толщине стенки и давлению, рассчитывается толщина стенки трубы с учетом заданной скорости коррозии и допускаемого номинального напряжения. Скорость коррозии в целом зависит от проводимой среды и скорости потока, и рассчитывается по отраслевым стандартам.

В местах приварки плоских фланцев, приварной арматуры и других жестких элементов наблюдается краевой эффект – возникновение изгибных напряжений вследствие ограничения свободного расширения трубопровода под действием давления. В алгоритме реализована возможность учета краевого эффекта при расчете напряжений.

Исходные данные:

D – диаметр трубопровода, в миллиметрах;

t – толщина стенки трубы, в миллиметрах;

P – давление в трубопроводе, в паскалях;

E – модуль упругости материала, в паскалях;

ν – коэффициент Пуассона;

s – скорость коррозии, в миллиметрах / год;

[σ] – допускаемые номинальные напряжения, в мегапаскалях.

РАСЧЕТ ТРУБОПРОВОДА ПОД ДАВЛЕНИЕМ

Внутренний диаметр трубопровода D, мм

Толщина стенки трубы t, мм

Давление в трубопроводе P, Па

Модуль упругости Е, Па

Коэффициент Пуассона ν

Учитывать краевой эффект

Эквивалентные напряжения стенки σ, МПа

Радиальные перемещения точек трубы Х, мм

Скорость коррозии стенки трубы S, мм/год

Срок службы трубопровода Т, лет

Номинальные напряжения [σ], МПа

Расчетная толщина стенки tрасч, мм

Эквивалентные напряжения:

σ = π×D/2t;

Радиальные перемещения точек трубы:

X = (D / 2E)×(P×D / 2t – (ν×P×D / 4t));

Расчетная толщина стенки:

tрасч = P×D / 2[σ] + T×S.

Расчет напряженно-деформированного состояния сферы

Выполнен расчет частного случая осесимметричной оболочки – сферы под внутренним давлением.

Исходные данные:

P – давление внутри сферы, в паскалях;

D – диаметр сферы, в миллиметрах;

t – толщина стенки, в миллиметрах;

E – модуль упругости материала, в паскалях;

ν – коэффициент Пуассона.

РАСЧЕТ СФЕРЫ ПОД ВНУТРЕННИМ ДАВЛЕНИЕМ

Давление Р, Па

Внутренний диаметр сферы D, мм

Толщина стенки t, мм

Модуль упругости Е, Па

Коэффициент Пуассона ν

Эквивалентные напряжения σ, МПа

Радиальные перемещения стенки Х, мм

Эквивалентные напряжения:

σ = P×D/4t;

Радиальные перемещения стенки:

X = (D×σ / 2E)×(1 – ν).

Расчеты тонкостенных осесимметричных оболочек

В технике широко применяются такие конструкции, которые с точки зрения расчета на прочность и жесткость могут быть отнесены к тонкостенным осесимметричным оболочкам вращения. В основном это различного рода сосуды под давлением. Оболочки такого типа рассчитываются по безмоментной теории и в них рассматриваются только нормальные напряжения в меридианальном направлении (вдоль образующей) и в окружном направлении (перпендикулярном меридианальному). Ниже даны вычисления эквивалентных напряжений в заданной точке осесимметричных оболочек произвольной геометрии.

Исходные данные:

P – давление внутри оболочки, в паскалях;

r – внутренний радиус оболочки в исследуемой точке поверхности, в миллиметрах;

R – меридианальный радиус оболочки в исследуемой точке поверхности, в миллиметрах;

Н – расстояние по вертикали (вдоль оси оболочки) от центра радиуса R до исследуемой точки оболочки, в миллиметрах;

t – толщина стенки, в миллиметрах;

α – угол наклона образующей оболочки к оси (применяется только при прямолинейной образующей, в остальных случаях следует оставить поле пустым), в градусах;

РАСЧЕТ ОСЕСИММЕТРИЧНОЙ ОБОЛОЧКИ ПОД ВНУТРЕННИМ ДАВЛЕНИЕМ

Давление Р, Па

Внутренний осевой радиус оболочки r, мм

Меридианальный радиус оболочки R, мм

Вертикальное расстояние от центра окружности
радиуса R до точки оболочки, Н, мм

Толщина стенки t, мм

Угол наклона α, град

Эквивалентные напряжения σ, МПа

Напряжения в меридианальном направлении:

σm = P×r / 2t×cosβ,
где β – угол между касательной к образующей оболочки и ее осью.

Напряжения в окружном направлении:

σt×sinβ / r + σm / R = 1 – уравнение Лапласа.

Расчет толстостенной трубы под внутренним и внешним давлением

В случае, если толщина стенки трубы превышает одну десятую среднего радиуса поперечного сечения, то труба считается толстостенной и расчет прочности не допускается проводить по методике расчета тонкостенных труб. Причиной этому является изменение окружных напряжений по толщине стенки трубы (в тонкостенных трубах оно принято постоянным), а так же то, что в наружных слоях стенки трубы радиальные напряжения сравнимы по значению с окружными напряжениями и их действием пренебрегать уже нельзя.

Читайте также:  Как понять размер сосуда

Ниже рассчитываются напряжения толстостенной трубы в радиальном, окружном и осевом направлении, а так же эквивалентные напряжения по III теории прочности в произвольно взятой точке.

Исходные данные:

R1 – внутренний радиус трубы, в миллиметрах;

R2 – внешний радиус трубы, в миллиметрах;

r – радиус исследуемой точки стенки трубы, в миллиметрах;

P1 – внутреннее давление, в паскалях;

P2 – внешнее давление, в паскалях;

F – нагрузка в осевом направлении, в ньютонах;

E – модуль упругости, в паскалях;

ν – коэффициент Пуассона.

РАСЧЕТ ТОЛСТОСТЕННОЙ ТРУБЫ ПОД ДАВЛЕНИЕМ

Внутренний радиус R1, мм

Внешний радиус R2, мм

Радиус точки r, мм

Внутреннее давление Р1, Па

Внешнее давление Р2, Па

Сила в осевом направлении F, H

Модуль упругости Е, Па

Коэффициент Пуассона ν

Напряжения в радиальном направлении σr, МПа

Напряжения в окружном направлении σt, МПа

Напряжения в осевом направлении σz, МПа

Эквивалентные напряжения в точке σэкв, МПа

Радиальные перемещения стенки Х, мм

Напряжения в радиальном направлении:

σr = ((P1×R12 – P2×R22) / (R22 – R12)) – ((P1 – P2)×R12×R22 / (R22 – R12))×(1/r 2);

Напряжения в окружном направлении:

σt = ((P1×R12 – P2×R22) / (R22 – R12)) + ((P1 – P2)×R12×R22 / (R22 – R12))×(1/r 2);

Напряжения в осевом направлении:

σz = F/(π×(R22 – R12)).

Расчет составной трубы

Минимально возможные максимальные напряжения в трубе, нагруженной внутренним давлением не могут быть меньше удвоенного значения давления нагрузки вне зависимости от толщины стенки трубы. В случае, если номинальные допустимые напряжения лежат ниже этого значения, могут быть применены составные трубы. В этом случае внешняя труба устанавливается на внутреннюю с натягом, тем самым разгружая ее внутренние слои и сама воспринимает часть приложенной нагрузки.

Ниже выполнен расчет натяга из условий равнопрочности внутренней и внешней трубы, расчет оптимального диаметра сопряжения, обеспечивающего минимальные напряжения, а так же расчет контактного давления между смежными стенками трубы. По результатам данного расчета можно вычислить напряжения в произвольной точке составной трубы, воспользовавшись выше приведенным расчетом толстостенных труб.

Исходные данные:

D1 – внутренний диаметр трубы, в миллиметрах;

D2 – номинальный смежный диаметр трубы, в миллиметрах;

D3 – внешний диаметр трубы, в миллиметрах;

Δ – натяг составной трубы, в миллиметрах;

P – внутреннее давление в трубе, в паскалях;

E – модуль упругости, в паскалях;

РАСЧЕТ СОСТАВНОЙ ТРУБЫ

Диаметр D1, мм

Номинальный диаметр D2, мм

Диаметр D3, мм

Натяг Δ, мм

Давление в трубопроводе Р, Па

Модуль упругости Е, Па

Контактное давление, МПа

Натяг из условия равнопрочности Δ0, мм

Диаметр сопряжения
из условия минимальных напряжений D0, мм

©ООО”Кайтек”, 2020. Любое использование либо копирование материалов или подборки материалов сайта, может осуществляться лишь с разрешения автора (правообладателя) и только при наличии ссылки на сайт www.caetec.ru

Источник

Шаг 1: для начала расчета задайте давление

Расчетное давление р = МПа

Расчетная температура Т = ºС

Шаг 2: выберите тип днища

Тип днища (см. эскиз днища):

Коэффициент конструкции днища К =

Шаг 3: задайте диаметр и толщину днища

мм

Толщина стенки днища s1 = мм

Толщина
цилиндрической части днища s = мм

Шаг 4: выберите материал днища

Марка стали днища

Допускаемое напряжение [σ] = МПа

Шаг 5: уточните прибавки к толщине стенки

Прибавка на коррозию c1 = мм

Компенсация минусового допуска c2 = мм

Технологическая прибавка c3 = мм

Шаг 6: уточните коэффициент сварного соединения

Шаг 7: если выбран тип дниша 1,2 или 6

Катет приварки днища a = мм

Шаг 8: если выбран тип дниша 9

Высота цилиндрической части
днища h1 = мм

Радиус закругления r = мм

Шаг 9: если выбран тип дниша 10

Толщина днища
в зоне кольцевой проточки s2 = мм

Радиус закругления r = мм

Читайте также:  Народное средство для очищения сосудов мед чеснок лимон

Угол γ = º

Шаг 10: если выбран тип дниша 11 или 12

Толщина днища
в зоне уплотнения s2 = мм

Наименьший наружный диаметр
утоненной части крышки D2 = мм

Шаг 11: задайте отверстия в днище

Количество отверстий 

Диаметр отверстия 1 d1 = мм

Диаметр отверстия 2 d2 = мм

Диаметр отверстия 3 d3 = мм

Коэффициенты запаса прочности днища

По толщине S1: 

Эскиз днища

Результаты расчета днища

При расчете обратите внимание на допускаемые напряжения сталей:

1. При расчетных температурах ниже 20°С допускаемые напряжения принимают такими же, как и при 20°С, при условии допустимого применения материала при данной температуре.

2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют линейной интерполяцией с округлением результатов до 0,5 МПа в сторону меньшего значения.

3. Для стали марки 20 при Re20e20 / 220.

4. Для стали марки 10Г2 при Rр0,220р0,220 / 270.

5. Для стали марок 09Г2С, 16ГС классов прочности 265 и 296 по ГОСТ 19281 допускаемые напряжения независимо от толщины листа определяют для толщины свыше 32 мм.

6. При расчетных температурах ниже 200°С сталь марок 12МХ, 12ХМ, 15ХМ применять не рекомендуется.

7. Допускаемые напряжения для поковок из стали марки 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т умножают на 0,83 при темепературах до 550°С.

8. Допускаемые напряжения для сортового проката из стали марки 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т умножают на отношение Rр0,2 / 240 при темепературах до 550°С, где Rр0,2 – предел текучести материала сортового проката определен по ГОСТ 5949.

9. Допускаемые напряжения для поковок и сортового проката из стали марки 08Х18Н10Т умножают на 0,95 при темепературах до 550°С.

10. Допускаемые напряжения для поковок из стали марки 03Х17Н14М3 умножают на 0,9.

11. Допускаемые напряжения для поковок из стали марки 03Х18Н11 умножают на 0,9, для сортового проката допускаемые напряжения умножают на 0,8.

12. Допускаемые напряжения для труб из стали марки 03Х21Н21М4ГБ умножают на 0,88.

13. Допускаемые напряжения для поковок из стали марки 03Х21Н21М4ГБ умножают на на отношение Rр0,2 / 250, где Rр0,2 – предел текучести материала поковок определен по ГОСТ 25054 (по согласованию).

Примечания:

1. Расчет толщины стенки плоской крышки и днища проводится по методике ГОСТ-34233.2-2017.

2. Значения полей, выделенных цветом заполняются автоматически из внутренней базы данных, при желании можно вводить свои значения.

3. Допускаемые напряжения определены согласно ГОСТ-34233.1-2017.

ВАЖНО:

4. Используя данный сервис Вы подтверждаете, что используете программу на свой страх и риск исключительно в ознакомительных целей. Администрация ресурса ответственности за результаты расчета не несет. Назначение программы – предварительные расчеты для последующего самостоятельного расчета но действующим Нормам расчетов прочности.

Методика расчета по ГОСТ 34233.2-2017:

7.2 Расчет плоских круглых днищ и крышек.

7.2.1 Толщину плоских круглых днищ и крышек сосудов и аппаратов, работающих под внутренним избыточным давлением, вычисляют по формулам

, где

.

7.2.2 Коэффициент К в зависимости от конструкции днищ или крышек определят по таблице 4.

Таблица 4.

7.2.3 Ко для днищ и крышек, имеющих одно отверстие, вычисляют по формуле

7.2.4 Ко для днищ и крышек, имеющих несколько отверстий, вычисляют по формуле

Коэффициент Ко определяют для наиболее ослабленного сечения. Максимальную сумму для длин хорд отверстий в наиболее ослабленном диамтральном сечении днища или крышки определяют согласно рисунку 19 по формуле .

Основные расчетные размеры отверстий указаны на рисунках 16,17.

7.2.5 Ко для днищ и крышек без отверстий принимают равным 1.0.

7.2.6 Во всех случаях присоединения днища к обечайке минимальная толщина плоского круглого днища должна быть не менее толщины обечайки, вычисленной в соотвествии с 5.3.

7.2.7 Допускаемое давление на плоское днище или крышку вычисляют по формуле

7.2.8 Толщину s2 для типов соединения 10,11 и 12 (см. таблицу 4) вычисляют по формулам:

Количество посетителей, выполняющих расчеты On-line:

Возникли вопросы, пожелания? Оставьте свой отзыв!

Михаил (22.07.2020)

очень удобно.Спасибо

Александр (24.04.2020)

необходим расчёт согласно ГОСТ 34233.2-2017 рис. 18

Admin (17.04.2020)

Спасибо за отзыв. Стали будут добавлены.

Babay Alex (17.04.2020)

Хотелось бы увидеть в применяемых сталях марки 40Х и 30ХГСА. Очень часто использую этот сервис, но теряю много времени на подгонку расчетов под эти марки сталей. А в целом удобный сервис. Спасибо!

Читайте также:  От сосудов на ногах

Admin (04.03.2020)

Проверил, всё работает. ГОСТ исправим. Спасибо за отзыв.

Павел (04.03.2020)

Разбираться некогда, но для типа 11 именно у меня (мож глюк браузера, не знаю) при изменении исходных данных изменяются подставляемые значения в результатах расчета, но сам результат не меняется. Ввел ошибочно, исправил и вот случайно заметил. Проверьте. Ну и ГОСТ конечно новый 34233.2-2017

юрий (18.10.2019)

что означает в формулах точка с запятой?

Виталий (05.07.2019)

Спасибо, очень полезно. Для типа 11 не понятно как учитываются болтовые отверстия. В поле “Шаг 11” предусмотрены только 3 отверстия в центральной части фланца. Хотелось бы побольше.

Дмитрий (12.04.2019)

Спасибо. Добавьте, пожалуйста, расчет для типа 18. Бывает очень нужно по работе.

Дмитрий (27.03.2019)

Спасибо, ребята. Можно ли добавить возможность распечатки результатов?

Александр (уФА конструктор) (20.03.2018)

Спасибо. Очень удобно. Спасибо.

Алексей (03.12.2017)

В 95% случаев используется плоская крышка с дополнительным краевым моментом по рис 18 ГОСТ Р 52857.2-2007. Очень хотелось бы увидеть тут данный расчёт.

Алексей (21.11.2017)

нет расчёта крышки с дополнительным краевым моментом по рис 18 ГОСТ Р 52857.2-2007

Azamat (19.03.2017)

Thanks a iot

Источник

ПРЕДИСЛОВИЕ

ОСНОВНЫЕ ПОЛОЖЕНИЯ РАСЧЕТА ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ
Основы расчета по предельным состояниям
Основные законы упруго-пластических деформаций
Ползучесть материалов
Колебания и усталость материалов

РАСЧЕТ ОТДЕЛЬНЫХ ЭЛЕМЕНТОВ ТРУБОПРОВОДОВ
Общпе положения
Расчет кривых труб на внутреннее давление
Расчет гибкости кривых труб
Расчет сварных из секторов кривых труб
Влияние внутреннего давления на гибкость кривых труб при изгибе
Напряжения в кривых трубах
Учет совместного воздействия внутреннего давления и изгиба
Расчет кривых труб на усталостную прочность
Расчет неусиленных тройников
Расчет усиленных тройников
Рекомендации по проектированию тройниковых соединений
Расчет конических переходов
Сферические заглушки
Линзовые компенсаторы

РАСЧЕТ ТРУБОПРОВОДОВ НА ТЕМПЕРАТУРНЫЕ ВОЗДЕЙСТВИЯ
Основные понятия
Методы расчета трубопроводов на температурные воздействия
Расчет простых трубопроводов методом сил
Определение единичных перемещений плоских простых трубопроводов
Определение температурных перемещений плоских простых трубопроводов
Решение системы канонических уравнений способом Гаусса
Определение усилий в элементах плоских простых трубопроводов
Типовые схемы расчета плоских простых трубопроводов
Расчет плоских простых трубопроводов способом “упругого центра”
Формулы для расчета плоских простых трубопроводов различной конфигурации на температурные воздействия
Расчет плоских простых трубопроводов с шарнирами
Графики для определения вылета и упругого отпора П-образных компенсаторов
Приближенный способ расчета пространственных простых трубопроводов
на температурные воздействия

РАСЧЕТ ТРУБОПРОВОДОВ, УКЛАДЫВАЕМЫХ НА ОПОРЫ
Определение толщины стенки трубы
Определение допускаемого пролета трубопроводов
Определение нагрузок, действующих на опоры трубопроводов

РАСЧЕТ ПОДЗЕМНЫХ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ
Основные положения
Силовые воздействия, влияющие на работу трубопроводов
Требования к трубам для магистральных трубопроводов
Определение толщины стенок труб магистральных трубопроводов
Минимально допустимая толщина стенок труб
Глубина заложения магистральных трубопроводов
Расчет анкерных креплений трубопроводов
Определение толщины стенок защитных кожухов для пропуска трубопроводов под железнодорожными насыпями
Расчет асбестоцементных труб

РАСЧЕТ НАДЗЕМНЫХ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ
Общие положения
Основы расчета
Расчет балочных и консольных переходов
Расчет надземных трубопроводов при прокладке их “змейкой”
Расчет компенсаторов при надземной прокладке трубопроводов
Определение нагрузок , действующих на опоры надземных магистральных
трубопроводов

РАСЧЕТ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ, УКЛАДЫВАЕМЫХ В РАЙОНАХ ГОРНЫХ РАЗРАБОТОК
Основные положения
Характер деформаций земной поверхности в районах горных разработок
и их влияние на работу трубопроводов
Величина деформаций земной поверхности
Продолжительность процесса сдвижения земной поверхности
Безопасная глубина подработки
Определение деформаций земной поверхности применительно к
расчету трубопроводов
Расчет трубопроводов
Конструктивные мероприятия по защите трубопроводов от вредного
влияния горных разработок

РАСЧЕТ ТРУБОПРОВОДОВ НА КОЛЕБАНИЯ
Собственные частоты колебаний трубопроводов, лежащих на жестких опорах
Собственные частоты колебаний трубопроводов, имеющих упругие опоры
Собственная частота колебаний Л-образного компенсатора
Собственные частоты колебаний арочных трубопроводов
Колебания висячих трубопроводов
Динамическое действие ветровой нагрузки на трубопроводы
Мероприятия по уменьшению колебаний
Расчет трубопроводов на сейсмические воздействия

Приложения
Приложение I. Геометрические характеристики и вес труб
Приложение II. Значения модулей упругости и коэффициентов линейного расширения трубных сталей
Приложение III. Механические характеристики металла труб в состоянии поставки

Литература

Источник