Распространение пульсовой волны по сосудам

Распространение пульсовой волны по сосудам thumbnail

Пульсовая волна — распространяющаяся по артериям волна повышенного давления, вызванная выбросом крови из левого желудочка сердца в период систолы. Распространяясь от аорты до капилляров, пульсовая волна затухает.

Поскольку аорта является главным кровеносным сосудом, то аортальная скорость пульсовой волны представляет наибольший интерес с медицинской точки зрения при обследовании пациентов.

Возникновение и распространение пульсовой волны по стенкам сосудов обусловлено упругостью аортальной стенки. Дело в том, что во время систолы левого желудочка сила, возникающая при растяжении аорты кровью, направлена не строго перпендикулярно к оси сосуда и может быть разложена на нормальную и тангенциальную составляющие. Непрерывность кровотока обеспечивается первой из них, тогда как вторая является источником артериального импульса, под которым понимают упругие колебания артериальной стенки.

Для людей молодого и среднего возраста скорость распространения пульсовой волны в аорте равна 5,5-8,0 м/с. С возрастом уменьшается эластичность стенок артерий и скорость пульсовой волны увеличивается.

Скорость распространения пульсовой волны[1] в аорте является достоверным методом определения жесткости сосудов. В стандартном её определении используется методика, основанная на измерении пульсовых волн датчиками, установленными в области сонной и бедренной артерий. Определение скорости распространения пульсовой волны и других параметров жесткости сосудов позволяет выявить начало развития тяжелых нарушений сердечно-сосудистой системы и правильно подобрать индивидуальную терапию.

СРПВ увеличивается при атеросклерозе аорты, гипертонической болезни, симптоматических гипертониях и при всех патологических состояниях, когда происходит уплотнение сосудистой стенки. Уменьшение СРПВ наблюдается при аортальной недостаточности, при открытом артериальном (боталловом) протоке.

Для регистрации пульсовых колебаний применяют оптические сфигмографы, механически воспринимающие и оптически записывающие колебания сосудистой стенки. К таким приборам относится мсханокардиограф с записью кривой на специальной фотобумаге Фоторегистрация дает неискаженные колебания, однако она трудоемка и требует применения дорогостоящих фотоматериалов. Большое распространение получили электросфигмографы, при которых применяются пьезокристаллы, конденсаторы, фотоэлементы, угольные датчики, тензометры и другие устройства. Для записи колебаний пользуются электрокардиографом с чернильно-перьевой, струйной или тепловой регистрацией колебаний. Сфигмограмма имеет разный рисунок в зависимости от применяемых датчиков, что затрудняет их сравнение и расшифровку. Более информативным является полиграфическая одновременная запись пульсации сонных, лучевых и других артерий, а также ЭКГ, баллистограммы и других функциональных изменений сердечно-сосудистой деятельности.

Для определения тонуса сосудов, эластичности стенок сосудов определяют скорость распространения пульсовой волны. Увеличение жесткости сосудов ведет к увеличению СРПВ. Для этой цели определяют разницу во времени появления пульсовых волн, так называемое запаздывание. Проводят одновременную запись сфигмограмм, располагая два датчика над поверхностными сосудами, расположенными проксимально (над аортой) и дистально по отношению к сердцу (на сонной, бедренной, лучевой, поверхностной височной, лобной, глазничной и других артериях). Определив время запаздывания и длину между двумя исследуемыми точками, определяют СРПВ (V) по формуле:

v=S[2]/T[3],

Основные современные способы методы определения СРПВ, важность оценки жесткости артериальной стенки в клинической практике были отражены в 2016 году в Согласованном мнение российских экспертов по оценке артериальной жесткости в клинической практике. [4]

Примечания[править | править код]

Литература[править | править код]

  • Педли Т. Гидродинамика крупных кровеносных сосудов: Пер. с англ. — М.: Мир, 1983. — 400 с.,
  • Савицкий Н. Н. Некоторые методы исследования и функциональной оценки системы кровообращения. — Л.: Медицина, 1956. — 329 с.,
  • Эман А. А. Биофизические основы измерения артериального давления.- Л.: Медицина, 1983. — 128 с
  • Физиология человека / под редакцией профессора В. М. Смирнова — 1-е издание. — М.: Медицина, 2002. — 608 с. — ISBN 5-225-04175-2
  • Согласованное мнение российских экспертов по оценке артериальной жесткости в клинической практике- 2016 https://cardiovascular.elpub.ru/jour/article/view/342

См. также[править | править код]

Амбулаторное мониторирование пульсовых волн

Источник

В момент систолы некоторый объем крови поступает в аорту, давление в начальной части ее повышается, стенки растягиваются. Затем волна давления и сопутствующее ее растяжение сосудистой стенки распространяются дальше к периферии и определяются как пульсовая волна. Таким образом, при ритмическом выбрасывании крови сердцем в артериальных сосудах возникают последовательно распространяющиеся пульсовые волны. Пульсовые волны распространяются в сосудах с определенной скоростью, которая, однако, отнюдь не отражает линейной скорости движения крови. Эти процессы в принципе различны. Сали (Н. Sahli) характеризует пульс периферических артерий как «волнообразное движение, которое происходит вследствие распространения образующейся в аорте первичной волны по направлению к периферии».

Определение скорости распространения пульсовой волны, по мнению многих авторов, является наиболее достоверным методом изучения упруговязкого состояния сосудов.

Для определения скорости распространения пульсовой волны производится одновременная запись сфигмограмм с сонной, бедренной и лучевой артерий (рис. 10). Приемники (датчики) пульса устанавливаются: на сонной артерии— на уровне верхнего края щитовидного хряща, на бедренной артерии— в месте выхода ее из-под пупартовой связки, на лучевой артерии— в месте пальпации пульса. Правильность наложения датчиков пульса контролируется положением и отклонениями «зайчиков» на визуальном экране прибора.

Если одновременная запись всех трех пульсовых кривых по техническим причинам невозможна, то одномоментно записывают сначала пульс сонной и бедренной артерий, а затем сонной и лучевой артерий. Для расчета скорости распространения пульсовой волны нужно знать длину отрезка артерии между приемниками пульса. Измерения длины участка, по которому распространяется пульсовая волна в эластических сосудах (Lэ) (аорта— подвздошная артерия), производятся в следующем порядке (рис. 11):

Читайте также:  Что делают с сосудами после инсульта

Рис.11. Определение расстояний между приемниками пульса — «датчиками» (по В. П. Никитину).

Обозначения в тексте:

а— расстояние от верхнего края щитовидного хряща (местоположение приемника пульса на сонной артерии) до яремной вырезки, где проецируется верхний край дуги аорты;

b— расстояние от яремной вырезки до середины линии, соединяющей обе spina iliaca anterior (проекция деления аорты на подвздошные артерии, которая при нормальных размерах и правильной форме живота точно совпадает с пупком);

с— расстояние от пупка до местоположения приемника пульса на бедренной артерии.
Полученные размеры b и с складываются и из их суммы вычитается расстояние а:

b+с—а = LЭ.
Вычитание расстояния а необходимо в связи с тем, что пульсовая волна в сонной артерии распространяется в противоположном к аорте направлении. Ошибка в определении длины отрезка эластических сосудов не превышает 2,5—5,5 см и считается несущественной. Для определения длины пути при распространении пульсовой волны по сосудам мышечного типа (LМ) необходимо измерить следующие расстояния (см. рис. 11):

— от середины яремной вырезки до передней поверхности головки плечевой кости (61);

— от головки плечевой кости до места наложения приемника пульса на лучевой артерии (а. radialis)— с1.

Более точно измерение этого расстояния производится при отведенной под прямым углом руке — от середины яремной вырезки до местоналожения датчика пульса на лучевой артерии– d(b1+c1) (см. рис. 11).

Как и в первом случае, из этого расстояния необходимо вычесть отрезок а. Отсюда:

b1 + с1 — а — Lи, но b + с1 = d
или

d — а = LM

Рис.12. Определение времени запаздывания пульсовой волны по началу подъема восходящего колена кривых (по В. П. Никитину)

Обозначения:

а— кривая бедренной артерии;
б— кривая сонной артерии;
в— кривая лучевой артерии;
tэ— время запаздывания по эластическим артериям;
tм— время запаздывания по мышечным артериям;
i— инцизура

Второй величиной, которую необходимо знать для определения скорости распространения пульсовой волны, является время запаздывания пульса на дистальном отрезке артерии по отношению к центральному пульсу (рис. 12). Время запаздывания (г) определяется обычно по расстоянию между началами подъема кривых центрального и периферического пульса или по расстоянию между местами изгиба на восходящей части сфигмограмм.

Время запаздывания от начала подъема кривой центрального пульса (сонной артерии— а. саrоtis) до начала подъема сфигмографической кривой бедренной артерии (а. femoralis)— время запаздывания распространения пульсовой волны по эластическим артериям (tэ)- Время запаздывания от начала подъема кривой а. саrоtis до начала подъема сфигмограммы с лучевой артерии (а.radialis)— время запаздывания по сосудам мышечного типа (tМ). Регистрация сфигмограммы для определения времени запаздывания должна производиться при скорости движения фотобумаги— 100 мм/с.

Для большей точности в подсчете времени запаздывания пульсовой волны регистрируется 3—5 пульсовых колебаний и берется среднее значение из полученных при измерении величин (t) Для вычисления скорости распространения пульсовой волны (С) теперь необходимо путь (L), пройденный пульсовой волной (расстояние между приемниками пульса), разделить на время запаздывания пульса (t)

С=L(cм)/t(c).
Так, для артерий эластического типа:

CЭ=LЭ/TЭ,
для артерий мышечного типа:

СМ=LM/tM.
Например, расстояние между датчиками пульса равно 40 см, а время запаздывания— 0,05 с, тогда скорость распространения пульсовой волны:

C=40/0,05=800 cм/с

В норме у здоровых лиц скорость распространения пульсовой волны по эластическим сосудам колеблется в пределах 500—700 см/с, по сосудам мышечного типа— 500—800 см/с.

Упругое сопротивление и, следовательно, скорость распространения пульсовой волны зависят прежде всего от индивидуальных особенностей, морфологической структуры артерий и от возраста обследуемых.

Многие авторы отмечают, что скорость распространения пульсовой волны с возрастом увеличивается, при этом несколько в большей степени по сосудам эластического типа, чем мышечного. Такое направление возрастных изменений, возможно, зависит от понижения растяжимости стенок сосудов мышечного типа, что в какой-то мере может компенсироваться изменением функционального состояния ее мышечных элементов. Так, Н.Н. Савицкий приводит по данным Людвига (Ludwig, 1936) следующие нормы скорости распространения пульсовой волны в зависимости от возраста (см. таблицу).

Возрастные нормы скорости распространения пульсовой волны по сосудам эластического (Сэ) и мышечного (См) типов:


Возраст, годы
Сэ, м/с Возраст, годы Сэ, м/с
14-305,714-206,1
31-506,621-306,8
51-708,531-407,1
71 и старше9,841-507,4
51 и старше9,3

При сопоставлении средних значений Сэ и См, полученных В.П. Никитиным (1959) и К.А. Морозовым (1960), с данными Людвига (Ludwig, 1936) следует отметить, что они довольно близко совпадают.

Особенно повышается скорость распространения пульсовой волны по эластическим сосудам с развитием атеросклероза, о чем с очевидностью свидетельствует ряд анатомически прослеженных случаев (Ludwig, 1936).

Е.Б. Бабским и В.Л. Карпманом предложены формулы для определения индивидуально должных величин скорости распространения пульсовой волны в зависимости или с учетом возраста:

Сэ =0,1*B2 + 4B + 380;

См = 8*B + 425.

Читайте также:  К чему приводит сужение кровеносных сосудов

В этих уравнениях имеется одно переменное В— возраст, коэффициенты представляют собой эмпирические постоянные. В приложении (табл. 1) приведены индивидуально должные величины, высчитанные по этим формулам, для возраста от 16 до 75 лет. Скорость распространения пульсовой волны по эластическим сосудам зависит также от уровня среднего динамического давления. При повышении среднего давления скорость распространения пульсовой волны увеличивается, характеризуя усиление «напряженности» сосуда за счет пассивного растяжения его изнутри высоким артериальным давлением. При изучении упругого состояния крупных сосудов постоянно возникает необходимость определять не только скорости распространения пульсовой волны, но и уровень среднего давления.

Несоответствие между изменениями среднего давления и скоростью распространения пульсовой волны в известной степени связано с изменениями тонического сокращения гладкой мускулатуры артерий. Это несоответствие наблюдается при изучении функционального состояния артерий преимущественно мышечного типа. Тоническое напряжение мышечных элементов в этих сосудах меняется довольно быстро.

Для выявления «активного фактора» тонуса мускулатуры сосудистой стенки В.П. Никитин предложил определение соотношения между скоростью распространения пульсовой волны по сосудам мышечного (См) и скорости по сосудам эластического (Сэ) типов. В норме это соотношение (СМ/С9) составляет от 1,11 до 1,32. При усилении тонуса гладкой мускулатуры оно возрастает до 1,40—2,4; при понижении— уменьшается до 0,9—0,5. Уменьшение СМ/СЭ наблюдается при атеросклерозе, за счет увеличения скорости распространения пульсовой волны по эластическим артериям. При гипертонической болезни эти величины, в зависимости от стадии, различны.

Таким образом, при увеличении упругого сопротивления скорость передачи пульсовых колебаний нарастает и иногда достигает больших величин. Большая скорость распространения пульсовой волны является безусловным признаком увеличения упругого сопротивления артериальных стенок и уменьшения их растяжимости.

Скорость распространения пульсовой волны нарастает при органическом поражении артерий (увеличение Сэ при атеросклерозе, сифилитическом мезоаортите) или при усилении упругого сопротивления артерий за счет повышения тонуса их гладкой мускулатуры, растяжении стенок сосуда высоким артериальным давлением (увеличение См при гипертонической болезни, нейроциркуляторной дистонии гипертензивного типа). При нейроциркуляторной дистонии гипотонического типа уменьшение скорости распространения пульсовой волны по эластическим артериям связано в основном с низким уровнем среднего динамического давления.

На полученной полисфигмограмме по кривой центрального пульса (а. саrotis) определяется также время изгнания (5) — расстояние от начала подъема пульсовой кривой сонной артерии до начала падения ее главной систолической части.

Н.Н. Савицкий для более правильного определения времени изгнания рекомендует пользоваться следующим приемом (рис. 13). Проводим касательную прямую через пятку инцизуры а. саrotis вверх по катакроте, из точки отрыва ее от катакроты кривой опускаем перпендикуляр. Расстояние от начала подъема пульсовой кривой до этого перпендикуляра и будет временем изгнания.

Рис.13. Прием для определения времени изгнания (по Н.Н. Савицкому).

Проводим линию АВ, совпадающую с нисходящим коленом катакроты У места отхождененя ее от катакроты проводим линию СД, параллельную нулевой. Из точки пересечения опускаем перпендикуляр на нулевую линию. Время изгнания определяется расстоянием от начала подъема пульсовой кривой до места пересечения перпендикуляра с нулевой линией. Пунктиром показано определение времени изгнания по месту расположения инцизуры.

Рис.14. Определение времени изгнания (5) и времени полной инволюции сердца (Т) по кривой центрального пульса (по В.П. Никитину).

Время полной инволюции сердца (длительность сердечного цикла) Т определяется по расстоянию от начала подъема кривой центрального пульса (а. carotis) одного сердечного цикла до начала подъема кривой следующего цикла, т.е. расстояние между восходящими коленами двух пульсовых волн (рис. 14).

Источник

Пульсовая волна. Аускультативный метод измерения давления

Когда сердце во время систолы перекачивает кровь в аорту, в первый момент растягивается только начальная часть аорты, т.к. инерция крови, находящейся в аорте, предупреждает немедленный отток крови на периферию. Однако возросшее давление в начальной части аорты преодолевает инерцию, и фронт волны, растягивающей стенку сосуда, распространяется дальше вдоль аорты. Это явление называют распространением пульсовой волны в артериях.

Пульсовая волна
Последовательные стадии распространения пульсовой волны вдоль аорты

Скорость распространения пульсовой волны в аорте в норме составляет от 3 до 5 м/сек, в крупных артериальных ветвях — от 7 до 10 м/сек, а в мелких артериях — от 15 до 35 м/сек. В целом, чем больше емкость того или иного участка сосудистой системы, тем меньше скорость распространения пульсовой волны, поэтому скорость распространения пульсовой волны в аорте гораздо ниже, чем в дистальных отделах артериальной системы, где мелкие артерии отличаются меньшей податливостью сосудистой стенки и меньшей резервной емкостью. В аорте скорость распространения пульсовой волны в 15 раз меньше, чем скорость кровотока, т.к. распространение пульсовой волны представляет собой особый процесс, лишь незначительно влияющий на продвижение всей массы крови вдоль сосуда.

Сглаживание пульсовых колебаний давления в мелких артериях, артериолах и капиллярах. На рисунке показаны типичные изменения рисунка пульсового колебания по мере того, как пульсовая волна проходит по периферическим сосудам. Особое внимание следует обратить на три нижние кривые, где интенсивность пульсаций становится все меньше в мелких артериях, артериолах и, наконец, в капиллярах. В действительности, пульсовые колебания стенки капилляров наблюдаются, если резко увеличены пульсации в аорте или предельно расслаблены артериолы.

Пульсовая волна
Изменение рисунка пульсового колебания давления в сосудах по мере распространения пульсовой волны на периферию

Снижение амплитуды пульсаций в периферических сосудах называют сглаживанием (или демпфированием) пульсовых колебаний. К этому приводят две основные причины: (1) сосудистое сопротивление кровотоку; (2) податливость сосудистой стенки. Сосудистое сопротивление способствует сглаживанию пульсовых колебаний стенки сосудов, потому что все меньший объем крови продвигается вслед за фронтом пульсовой волны. Чем больше сосудистое сопротивление, тем больше препятствий для объемного кровотока (и меньше его величина). Податливость сосудистой стенки также способствует сглаживанию пульсовых колебаний: чем больше резервная емкость сосуда, тем больший объем крови необходим, чтобы вызвать пульсацию во время прохождения фронта пульсовой волны. Таким образом, можно сказать, что степень сглаживания пульсовых колебаний прямо пропорциональна произведению сопротивления сосуда на его резервную емкость (или податливость сосудистой стенки).

Аускультативный метод измерения давления

Совсем не обязательно вводить иглу в артерию пациента для измерения артериального давления при обычном клиническом обследовании, хотя в ряде случаев применяют прямые методы измерения давления. Вместо этого используют непрямые методы, чаще всего аускультативный метод определения величины систолического и диастолического давления.

Аускультативный метод. На рисунке представлен аускультативный метод определения величины систолического и диастолического давления. Стетоскоп располагается в области локтевого сгиба над лучевой артерией. На плечо накладывается резиновая манжетка для нагнетания воздуха. Все время, пока давление в манжетке остается ниже, чем в плечевой артерии, стетоскоп не улавливает никаких звуков. Однако когда давление в манжетке увеличивается до уровня, достаточного для перекрытия кровотока в плечевой артерии, но только во время диастолического снижения давления в ней, можно услышать звуки, сопровождающие каждую пульсацию. Эти звуки известны как тоны Короткова.

Аускультативный метод измерения давления
Аускультативный метод измерения систолического и диастолического артериального давления

Истинную причину тонов Короткова все еще обсуждают, однако главной причиной их появления, бесспорно, является то, что отдельным порциям крови приходится прорываться через частично перекрытый сосуд. При этом в сосуде, расположенном ниже места наложения манжетки, ток крови становится турбулентным и вызывает вибрацию, что является причиной появления звуков, слышимых при помощи стетоскопа.

Для измерения артериального давления аускультативным методом давление в манжетке сначала поднимают выше уровня систолического давления. Плечевая артерия при этом пережата таким образом, что кровоток в ней полностью отсутствует и тоны Короткова не слышны. Затем давление в манжетке постепенно понижают. Как только давление в манжетке становится ниже систолического уровня, кровь начинает прорываться через сдавленный участок артерии во время систолического подъема давления. В это время в стетоскопе слышны звуки, похожие на стук, возникающие синхронно с сердцебиениями. Давление в манжетке во время появления первого звука принято считать равным систолическому давлению в артерии.

По мере того, как давление в манжетке продолжает снижаться, характер тонов Короткова меняется: они становятся более грубыми и громкими. Наконец, когда давление в манжетке падает до уровня диастолического, артерия под манжеткой во время диастолы остается непережатой. Условия, необходимые для формирования звуков (прорыв отдельных порций крови через суженную артерию), исчезают. В связи с этим звуки внезапно становятся приглушенными, и после снижения давления в манжетке еще на 5-10 мм рт. ст. полностью прекращаются. Давление в манжетке во время изменения характера звука принято считать равным диастоличе-скому давлению в артерии. Аускультативный метод измерения систолического и диастолического давления не является абсолютно точным. Ошибка может составить 10% по сравнению с прямым измерением давления в артерии с помощью катетера.

Аускультативный метод измерения давления
Изменение систолического, диастолического и среднего артериального давления с возрастом

Нормальный уровень артериального давления, измеренный аускультативным методом. На рисунке показаны нормальные уровни систолического и диастолического артериального давления в зависимости от возраста. Постепенное увеличение давления с возрастом объясняют возрастными изменениями регуляторных механизмов, контролирующих кровяное давление. В первую очередь почки ответственны за долговременную регуляцию артериального давления. Как известно, функция почек заметно меняется с возрастом, особенно у людей старше 50 лет.

Заметное повышение систолического давления происходит у людей старше 60 лет. Дело в том, что артерии к этому времени становятся жесткими в результате развития атеросклероза. Кроме того, повышение систолического давления при атеросклерозе сочетается с увеличением пульсового давления, как объяснялось ранее.

– Также рекомендуем “Среднее артериальное давление. Вены и венозное давление”

Оглавление темы “Давление крови. Венозный кровоток”:

1. Гематокрит. Зависимость кровотока от давления

2. Растяжимость сосудов. Емкость сосудов

3. Кривые объем-давление артериальных и венозных сосудов. Релаксация сосудистой стенки

4. Пульсовые колебания артериального давления. Изменения пульсового давления

5. Пульсовая волна. Аускультативный метод измерения давления

6. Среднее артериальное давление. Вены и венозное давление

7. Сопротивление венозных сосудов. Влияние гравитации на венозное давление

8. Клапаны вен и венозный насос. Несостоятельность венозных клапанов

9. Методы измерения венозного давления. Емкостная функция вен

10. Депо эритроцитов – селезенка. Обновление крови

Источник

Читайте также:  Поражение сосудов при сахарном диабете 2 типа