Равномерное движение сосуда с жидкостью

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему постоянную угловую скорость w вращения вокруг вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная поверхность ее видоизменится: в центральной части уровень жидкости понизится, у стенок – повысится, и вся свободная поверхность жидкости станет некоторой поверхностью вращения (рис. 2.11).

На жидкость в этом случае будут действовать две массовые силы, сила тяжести и центробежная сила, которые, будучи отнесенными к единице массы, соответственно равны g и w2r. Равнодействующая массовая сила j увеличивается с увеличением радиуса за счет второй составляющей, а угол наклона ее к горизонту уменьшается. Эта сила нормальна к свободной поверхности жидкости, поэтому угол наклона поверхности к горизонту возрастает с увеличением радиуса. Найдем уравнение положения свободной поверхности.

Рис. 2.11

Учитывая, что сила j нормальна к свободной поверхности, получим

отсюда                                  
или после интегрирования     
В точке пересечения свободной поверхности с осью вращения C = h, поэтому окончательно будем иметь
                                       (2.10)
т. е. свободная поверхность жидкости является параболоидом вращения.

Максимальную высоту подъема жидкости можно определить исходя из равенства объемов неподвижной жидкости и жидкости во время вращения.
На практике очень часто приходится иметь дело с вращением сосуда, заполненного жидкостью, вокруг горизонтальной оси. При этом угловая скорость w столь велика, что сила тяжести на порядок меньше центробежных сил, и ее действие можно не учитывать. Закон изменения давления в жидкости для этого случая получим из рассмотрения уравнения равновесия элементарного объема с площадью основания dS и высотой dr, взятой вдоль радиуса (рис. 2.12). На выделенный элемент жидкости действуют силы давления и центробежная сила.

Обозначив давление в центре площадки dS, расположенной на радиусе r, через p, а в центре другого основания объема (на радиусе r + dr) через p + dp, получим следующее уравнение равновесия выделенного объема в направлении радиуса

или

Рис. 2.12

После интегрирования

Постоянную C найдем из условия, что при r = r0 p = p0.
Следовательно

Подставив ее значение в предыдущее уравнение, получим связь между p и r в следующем виде:
                              (2.11)
Очевидно, что поверхностями уровня в данном случае будут цилиндрические поверхности с общей осью – осью вращения жидкости.

Часто бывает необходимо определить силу давления вращающейся вместе с сосудом жидкости на его стенку, нормальную к его оси вращения. Для этого определим силу давления, приходящуюся на элементарную кольцевую площадку радиусом r и шириной dr. Используя формулу (2.11), получим

а затем следует выполнить интегрирование в требуемых пределах.

При большой скорости вращения жидкости получается значительная суммарная сила давления на стенку. Это используется в некоторых фрикционных муфтах, где для сцепления двух валов требуется создание больших сил давления.

Источник

Содержание:

  • Равномерное вращение сосуда с жидкостью

Равномерное вращение сосуда с жидкостью

Равномерное вращение сосуда с жидкостью. Возьмите открытый цилиндрический контейнер с жидкостью и скажите ему вращаться с постоянной угловой скоростью o) вокруг своей вертикальной оси. Жидкость постепенно приобретает ту же угловую скорость, что и емкость, и ее свободная поверхность changes. In (рис.1.18). В этом случае на жидкость действуют 2 массовые силы. Гравитационные и центробежные силы равны% и<B2, если они отнесены к единице массы. Результирующая массовая сила/увеличивается с увеличением радиуса на 2-ю составляющую, а угол наклона относительно горизонта уменьшается.

В центральной части уровень жидкости уменьшается, в стенке уровень жидкости увеличивается*, и вся свободная поверхность жидкости становится определенной вращающейся поверхностью.
Людмила Фирмаль

  • Эта сила перпендикулярна свободной поверхности жидкости, поэтому больший радиус приводит к большему наклону этой поверхности.Найдите уравнение для кривой BWT в системах координат b и r и поместите начало координат в центр дна контейнера.Учитывая, что сила 7 нормальна Из рисунка, который мы нашли, кривая BWT меньше Осы = yb} yy = ω^ y/, где-o> yy s1y /§、 Или ешьте интегрирование r = s * r2 / {28)+ C На пересечении кривой A OB с осью вращения r-0,% = k =■* C, наконец 5 = * = ^ / a) 2r2 /(2^), (1.34) То есть кривая АОБ-это парабола, а свободная поверхность жидкости-парабола. Другие ровные поверхности имеют такую же форму.

Формула (1.34) позволяет определить положение свободной поверхности b-слоя, например, максимальную высоту подъема жидкости H и высоту положения разрядника парапроидов при определенной угловой скорости w. It это необходимо для этого Используйте больше уравнений объема! Объем неподвижной жидкости равен объему при вращении. Чтобы определить закон изменения давления вращающейся жидкости в функции радиуса и высоты, мы делаем то же самое с§ 1.5. Выберите вертикальный цилиндрический объем жидкости с дном в виде базовой горизонтальной платформы&8 (точка M) при любом радиусе r и высоте’%, запишите равновесное состояние в вертикальном направлении.

  • Учитывая формулу (1.34). П (13 [А-Р + ко? Р2 /(2^)] п#/Ой а) cos а-0. После снижения、 P = P <1 + [k * + <22г* 1 {2§)]§r. (1.35) Это означает, что давление увеличивается пропорционально радиусу x и уменьшается пропорционально высоте i. Если в контейнере есть крыша, которая вращается вокруг вертикальной оси, а верх заполнен жадностью, то его форма не может быть изменена, но давление изменяется в соответствии с формулой(1.35).На рисунке 1.19 показана эпюра давления вдоль крышки контейнера, ССТ и дна. Дело в том, что вращение сосуда в жидкости часто учитывается, если из-за очень большой угловой скорости он способен игнорировать силу тяжести по сравнению с центробежной force.
Читайте также:  Артерии вены сосуды диагностика

In в этом случае индикатор изменения давления жидкости легко получить по следующей формуле: $ 2. (1.35), следует использовать r = k = 0. Более того, если давление p0 действует на r = r0 вместо центра, то вместо уравнения (1.35) Р = Ро рсо2(Р2-Р?) / 2,(1 * 35 ’) Часто необходимо определить давление жидкости, вращающейся вместе с контейнером со стенкой, перпендикулярной оси вращения (или кольцевой части этой стенки).Для этого сначала необходимо выразить давление, обусловленное основной кольцевой областью радиуса r и шириной d де = п-[ро + ро> р(р *-р*) / 2] 2л Р Затем он выполняет интеграцию в требуемых пределах.

Угол, образованный осью вращения вертикального сосуда, незначителен, и горизонтальной плоскостью можно считать цилиндр с общей осью(осью вращения сосуда).
Людмила Фирмаль

  • При большой угловой скорости жидкости получается очень большое суммарное давление, которое прикладывается к walls. It применяется в фрикционных муфтах, требующих большой силы нормального давления для соединения 2-х валов. Используя описанный выше способ, определите осевое усилие жидкости на крыльчатке центрифуги и крышке центробежного насоса. Ту же формулу, что и для рассматриваемого относительного покоя, можно вывести интегрированием дифференциального уравнения равновесия жидкости (1.24).

Поместив начало координат*в центр дна емкости и направив ось 2 вертикально вверх、 Х-потому, что(р, х)= в = проекте » w2r » ео(р, г) о> 2(/; 2 =Подставляя эти величины в уравнение (1.24), c1x {<a2y, yy% yr > p / p、 Или УГ-ryu2 (xЗхф уду уду ))учитывая, что πг+ yyy=((r72)), после интегрирования、 п = ч / 2-р ^ р -] с ’2 за пределами 165 Итак, если r = 0 и r = A, то p = p0. В итоге я наконец-то получил* П-По +(А-2)+ п(03G2 / 2. Уравнение для свободной поверхности жидкости известно как P = Р0.После сокращений и преобразований、 2 ^ soag * /(2#) 4-A、 Он соответствует ранее полученным выражениям (1.34) и (1.35).

Смотрите также:

Методические указания по гидравлике

Возможно эти страницы вам будут полезны:

  1. Сила давления жидкости на криволинейные стенки. Плавание тел.
  2. Прямолинейное равноускоренное движение сосуда с жидкостью.
  3. Кинематика и динамика жидкости.
  4. Расход. Уравнение расхода.

Источник

Вращение сосуда с жидкостью вокруг вертикальной оси

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему постоянную угловую скорость w вращения вокруг вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная по­верхность ее видоизменится: в центральной части уровень жидкости понизится, у стенок – повысится, и вся свободная поверхность жидкости станет некоторой поверхностью вращения (рис. 2.15).

 
 

Рис. 2.15

На жидкость в этом случае будут действовать две массовые силы, сила тяжести и центробежная сила, которые, будучи отнесенными к единице массы, соответственно равны g и . Равнодействующая массовая сила j увеличивается с увеличением радиуса за счет второй составляющей, а угол наклона ее к горизонту уменьшается. Эта сила нормальна к свободной поверхности жидкости, поэтому угол наклона поверхности к горизонту возрастает с увеличением радиуса. Найдем уравнение положения свободной поверхности.

Учитывая, что сила нормальна к свободной поверхности, получим , отсюда или после интегрирования .

Читайте также:  Сводит мышцы от сосудов

В точке пересечения свободной поверхности с осью вращения C=h и r=0, поэтому окончательно будем иметь

, (2.10)

где .

Таким образом, свободная поверхность жидкости является параболоидом вращения. Максимальную высоту подъема жидкости можно определить, используя выражение (2.10) и исходя из равенства объемов неподвижной жидкости и жидкости во время вращения.

Запишем закон изменения давления во вращающейся жидкости в функции радиуса и глубины относительно верхней точки жидкости (без вывода):

.

Вращение сосуда с жидкостью вокруг горизонтальной оси

При таком вращении угловая скорость w столь велика, что (действие силы тяжести можно не учитывать). Закон изменения давления в жидкости для этого случая получим из рассмотрения уравнения равновесия элементар­ного объема с площадью основания dS и высотой dr, взятой вдоль радиуса (рис. 2.16). На выделенный элемент жидкости действуют силы давле­ния и центробежная сила.

 
 

Рис. 2.16

Обозначив давление в центре площадки dS, расположенной на радиусе r, через p, а в центре другого основания объема (на радиусе r + dr) через p + dp (разложили p в ряд Тейлора, но так как в данном случае p зависит только от r, то dr/dr сократился), получим следующее уравнение равновесия выделенного объема в направлении радиуса

или .

После интегрирования получим . Постоянную C найдем из условия, что при r = rp = p0, следовательно, .

Подставив ее значение в предыдущее уравнение, получим связь между p и r в следующем виде:

. (2.11)

Очевидно, что поверхностями уровня в данном случае будут цилиндрические поверхности с общей осью – осью вращения жидкости.

Часто бывает необходимо определить силу давления вращающейся вместе с сосудом жидкости на его стенку, нормальную к его оси вращения. Для этого определим силу давления, приходящуюся на элементарную кольцевую площадку радиусом r и шириной dr. Используя формулу (2.11), получим

,

а затем следует выполнить интегрирование в требуемых пределах:

.

Если равно внешнему давлению, то .

При большой скорости вращения жидкости получается значительная суммарная сила давления Fб на боковую стенку. Это используется в некоторых фрикционных муфтах, где для сцепления двух валов требуется создание больших сил давления.

Приведем выражение для определения силы Fб без вывода:

, где – длина цилиндра.

Источник

В зависимости от характера действующих массовых сил поверхность равного давления в жидкости, как и свободная поверхность, может принимать
различную форму. Ниже рассматриваются некоторые случаи равновесия жидкости в движущихся сосудах.

1. Жидкость находится в сосуде, который движется в горизонтальном направлении с постоянным ускорением ±а (знак плюс соответствует ускорению сосуда, знак минус – замедлению ) (см. рисунок).

Равномерное движение сосуда с жидкостью

В данном случае жидкость подвержена воздействию не только поверхностных сил, но также массовых сил тяжести и инерции.
Поверхность равного давления является наклонной плоскостью. Давление в любой точке жидкости определяется по формуле

p = p0 + ρ·(g·z ± a·x),

Для свободной поверхности жидкости, когда р=p0, уравнение принимает вид:

g·z = ± a·x
или
z/x = tg α = ± a/g,

где α – угол наклона свободной поверхности жидкости к горизонту.

Последнее приведенное выше выражение позволяет определять (при условии, чтобы жидкость не переливалась через задний борт сосуда длиной l)
высоту борта h при заданном значении а или предельное ускорение а при заданном значении h.

Если сосуд движется равномерно (а = 0), уравнение приводим к виду:

p = p0 + ρ·g·z = p0·γ

В этом случае поверхность равного давления представляет горизонтальную плоскость.

2. Жидкость находится в открытом цилиндрическом сосуде, который вращается вокруг вертикальной оси с постоянной угловой скоростью ω.

Равномерное движение сосуда с жидкостью

В данном случае жидкость подвержена воздействию не только поверхностных сил, но также массовых сил тяжести и центробежной.

Поверхность равного давления представляет параболоид вращения. Распределение давления в жидкости по глубине определяется выражением:

p = p0 + γ·((ω2·r2)/(2·g) – z)

Для любой точки свободной поверхности жидкости, когда p = p0, уравнение принимает вид:

z = (ω2·r2)/(2·g) = u2/(2·g),

где окружная скорость u = ω·r (r — радиус вращения точки).

Высота параболоида вращения:

h = ω2·r20/(2·g),

где r0 – радиус цилиндрического сосуда.

Сила давления жидкости на дно сосуда:

P = γ·π·r20·h0 = γ·π·r20·(h1 + h/2),

где h0 – начальная глубина жидкости в сосуде до момента его вращения.

Давление на боковую стенку сосуда изменяется по линейному закону. Эпюра давления представляет прямоугольный треугольник ACD с высотой h1 + h и основанием γ·(h1 + h).

3. Жидкость находится в цилиндрическом сосуде, который вращается вокруг горизонтальной оси с постоянной угловой скоростью ω.

В данном случае жидкость также подвержена воздействию массовых сил тяжести и центробежной.

Читайте также:  При головной боли как расширить сосуды

Поверхности равного давления представляют концентрически расположенные боковые поверхности цилиндров, оси которых горизонтальны и смещены относительно оси оу на величину эксцентриситета e = g/ω2 (см. рисунок а).

Равномерное движение сосуда с жидкостью

При большом числе оборотов сосуда влияние силы тяжести по сравнению с влиянием центробежной силы становится незначительным, и, следовательно, величиной эксцентриситета е можно пренебречь. Тогда поверхности равного давления становятся концентрическими цилиндрами, оси которых совпадают с осью сосуда (см. рисунок б).

Распределение давления по глубине жидкости определяется выражением:

p = p0 + γ·ω2·(r2 – r20)/(2·g)

где p и p0 – соответственно давления в точках цилиндрических поверхностей с радиусами r и r0.

Данное уравнение справедливо и тогда, когда сосуд радиусом r лишь частично заполнен жидкостью. Свободная поверхность жидкости в этом случае также будет цилиндрической с радиусом r0 и давлением во всех ее точках р0.

Как видно из последнего уравнения, закон распределения давления по радиусу является параболическим. Эпюра давления представленная на рисунке в.
Такие приближенные решения могут применяться при любом положении оси вращения сосуда, однако при условии большого числа его оборотов.

Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.

Источник

Возьмем открытый
цилиндрический сосуд с жидкостью (рис
2.9) и сообщим ему вращение с постоянной
угловой скоростью ω
вокруг его вертикальной оси.

Равномерное движение сосуда с жидкостью

Рис.2.8.Схема вращения
жидкости вместе с сосудом

Жидкость постепенно
приобретает ту же угловую скорость, что
и сосуд, а ее свободная поверхность
станет криволинейной в виде неко­торой
поверхности вращения.

На жидкость в этом
случае действуют две массовые силы 
сила тя­жести G
= mg
и центробежная сила Rц
= mω2r.

Проекции вектора
плотности распределения массовых сил
будут:

 от силы тяжести

и

;

 от
центробежной силы

;

и

,

где
х
и у

горизонтальные координаты вокруг
вертикальной оси произвольно выбранной
точки жидкости.

На свободную
поверхность действует гидростатическое
давление ро
от поверхностных сил. Определим вначале
форму поверхностей уровня (поверхностей
равного давления). Используем уравнение
поверхности равного давления (2.20)

,

подставляя
соответствующие проекции массовых сил
получим

,

т.е.

.

После интегрирования
получим

(2.25)

или
имея в виду

. (2.25)

Из этого уравнения
видно, что поверхности уровня в
рассматривае­мом случае представляют
собой семейство конгруэнтных (совмещающихся
при наложении) параболоидов вращения
с вертикальной осью.

Свободная поверхность
также является поверхностью уровня, во
всех точках которой давление равно
внешнему давлению ро.
Найдем значение постоянной С
для параболоида свободной поверхности.
Координаты вершины параболоида xо
= 0; yо
= 0;
zо=
h.
Подставив эти координаты в уравнение
(2.25), получим Со
= – gh
и уравнение свободной поверхности

. (2.26)

Ордината h
вершины параболоида свободной поверхности
при заданной угловой скорости зависит
от объема жидкости в сосуде. Если до
вращения сосуда уровень жидкости
устанавливался на высоте Нн,
то объем жидкости равнялся ωRc2Нн.

При вращении сосуда
форма объема жидкости изменяется, а его
величина при ω
= соnst
остается неизменной

. (2.27)

После интегрирования
имеем

. (2.28)

Закон распределения
давлений найдем, используя дифференциальное
уравнение равновесия жидкости (2.19),
подставив в него проекции плотности
распределения массовых сил

. (2.29)

После интегрирования
имеем

. (2.30)

Постоянную
интегрирования С
находим, введя координаты вершины
параболоида свободной поверхности г
= 0, z
= h
и давление р
= ро
в уравнение (2.30)

. (2.31)

Подставив найденное
значение С
в уравнение (2.30), получим

. (2.32)

Поверхности равных
давлений представляют собой параболоиды
вращения конгруэнтные параболоиду
свободной поверхности.

2.4.2. Прямолинейное движение сосуда с постоянным ускорением

Рассмотрим
относительный покой жидкости, находящейся
в сосуде, перемещающемся горизонтально
с постоянным ускорением а
(рис.2.9).

В этом случае
равнодействующая массовых сил R
равна сумме силы тяжести Rg
и силы инерции Rа.
Плотность распределения этих сил,
соответственно, составляет g
и а.
Проекции равнодействующей на оси
координат будут

;

;

. (2.33)

Тогда дифференциальное
уравнение равновесия жидкости (2.19)
примет вид

. (2.34)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник