Равномерное вращение сосуда вокруг вертикальной оси

Равномерное вращение сосуда вокруг вертикальной оси thumbnail

В случае равномерного вращения цилиндрического сосуда вокруг вертикальной оси с угловой скоростью ш (рис. 2.25) уравнение любой изобарической поверхности = const) имеет вид

Равномерное вращение сосуда вокруг вертикальной оси

где z — координата точки пересечения свободной поверхности с осью вращения;

Равномерное вращение сосуда вокруг вертикальной оси

Изобарические поверхности — параболоиды вращения, ось которых совпадает с осью Oz, а вершины смещены вдоль этой

Вращение цилиндрического сосуда вокруг вертикальной оси оси. Форма изобарических поверхностей не зависит от плотности жидкости

Рис. 2.25. Вращение цилиндрического сосуда вокруг вертикальной оси оси. Форма изобарических поверхностей не зависит от плотности жидкости.

Изменение давления по вертикали

Равномерное вращение сосуда вокруг вертикальной оси

т.е. такое же, как в неподвижном сосуде.

Пример 2.6. Вертикальный цилиндрический сосуд диаметром D = 40 см и высотой Н = 100 см наполнен до половины водой (рис. 2.26). Определить, с каким предельным числом оборотов можно вращать этот сосуд вокруг сто геометрической вертикальной оси, чтобы из него нс выливалась вода, а также силу давления жидкости на дно сосуда.

Поверхности равного давления во вращающемся сосуде

Рис. 2.26. Поверхности равного давления во вращающемся сосуде

Решение. Из рис. 2.26 видно, что Н = Zq + h. В соответствии с формулами (2.16) и (2.17)

Равномерное вращение сосуда вокруг вертикальной оси

Тогда
Равномерное вращение сосуда вокруг вертикальной оси

Начальный уровень Л0 в резервуаре по условию равен Н/2. Следовательно,
Равномерное вращение сосуда вокруг вертикальной оси

Соответственно

Равномерное вращение сосуда вокруг вертикальной оси

Предельное число оборотов
Равномерное вращение сосуда вокруг вертикальной оси(об/мин).

Для определения силы давления жидкости на дно сосуда найдем распределение избыточного давления, полагая р0 = р ‘.

Равномерное вращение сосуда вокруг вертикальной оси

Координату z0 вершины параболоида определим по формуле
Равномерное вращение сосуда вокруг вертикальной оси т.с. параболоид свободной поверхности касается дна сосуда. Тогда

Равномерное вращение сосуда вокруг вертикальной оси

Для точек на дне сосуда (z = 0) избыточное давление определим следующим образом:

Равномерное вращение сосуда вокруг вертикальной оси

Силу давления на дно сосуда найдем как сумму элементарных сил давления, действующих на элементарные кольцевые площадки, равные 2nrdr.

Равномерное вращение сосуда вокруг вертикальной оси

Задачи для самостоятельного решения

  • 2.18. Призматический сосуд дайной 3 м и шириной 1 м, перемещающийся горизонтально с постоянным ускорением 0,4g, разделен на два отсека, заполненных водой до высот 1 м и 1,75 м соответственно. Определить результирующую силу давления воды на перегородку, разделяющую отсеки.
  • 2.19. Измеритель ускорения тела, движущегося горизонтально, представляет собой закрепленную на нем U-образную трубку малого диаметра, наполненную жидкостью. Определить, с каким ускорением движется тело, если при движении в коленах измерителя установилась разность уровней жидкости 75 мм при расстоянии между уровнями 250 мм.

К определению поверхности равного давления при равномерном вращении сосуда с жидкостью

Рис. 2.27. К определению поверхности равного давления при равномерном вращении сосуда с жидкостью

К определению относительного равновесия жидкости в закрытом равномерно вращающемся сосуде

Рис. 2.28. К определению относительного равновесия жидкости в закрытом равномерно вращающемся сосуде

2.20. Сосуд, имеющий форму усеченного конуса, заполнен водой до половины высоты и приводится во вращение вокруг своей вертикальной оси (рис. 2.27). Определить наибольшее число оборотов, при котором вода не будет выливаться из сосуда, если И =

= а = 0,8 м и угол а = 45°.

  • 2.21. Закрытый цилиндрический сосуд, радиус которого г, = 50 см, равномерно вращается относительно вертикальной оси. При этом уровень жидкости в открытой трубке малого диаметра, установленной на расстоянии г2 = 35 см от центра, расположен на высоте И =
  • 40 см (рис. 2.28). Плотность жидкости равна 800 кг/м3; атмосферное давление 760 мм рт. ст. Определить наибольшую

угловую скорость, при которой сохранится относительное равновесие жидкости. Давление насыщенных паров жидкости равно 49 кПа[1].

2.22. Закрытый сверху крышкой цилиндр диаметром 0,9 м и высотой 0,8 м содержит 0,35 м3 воды и вращается вокруг вертикальной оси с угловой скоростью 100 с1. Определить усилия, действующие при этом на крышку цилиндра, если давление на поверхности воды атмосферное.

Источник

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему постоянную угловую скорость w вращения вокруг вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная поверхность ее видоизменится: в центральной части уровень жидкости понизится, у стенок – повысится, и вся свободная поверхность жидкости станет некоторой поверхностью вращения (рис. 2.11).

На жидкость в этом случае будут действовать две массовые силы, сила тяжести и центробежная сила, которые, будучи отнесенными к единице массы, соответственно равны g и w2r. Равнодействующая массовая сила j увеличивается с увеличением радиуса за счет второй составляющей, а угол наклона ее к горизонту уменьшается. Эта сила нормальна к свободной поверхности жидкости, поэтому угол наклона поверхности к горизонту возрастает с увеличением радиуса. Найдем уравнение положения свободной поверхности.

Рис. 2.11

Учитывая, что сила j нормальна к свободной поверхности, получим

отсюда                                  
или после интегрирования     
В точке пересечения свободной поверхности с осью вращения C = h, поэтому окончательно будем иметь
                                       (2.10)
т. е. свободная поверхность жидкости является параболоидом вращения.

Максимальную высоту подъема жидкости можно определить исходя из равенства объемов неподвижной жидкости и жидкости во время вращения.
На практике очень часто приходится иметь дело с вращением сосуда, заполненного жидкостью, вокруг горизонтальной оси. При этом угловая скорость w столь велика, что сила тяжести на порядок меньше центробежных сил, и ее действие можно не учитывать. Закон изменения давления в жидкости для этого случая получим из рассмотрения уравнения равновесия элементарного объема с площадью основания dS и высотой dr, взятой вдоль радиуса (рис. 2.12). На выделенный элемент жидкости действуют силы давления и центробежная сила.

Обозначив давление в центре площадки dS, расположенной на радиусе r, через p, а в центре другого основания объема (на радиусе r + dr) через p + dp, получим следующее уравнение равновесия выделенного объема в направлении радиуса

или

Рис. 2.12

После интегрирования

Постоянную C найдем из условия, что при r = r0 p = p0.
Следовательно

Подставив ее значение в предыдущее уравнение, получим связь между p и r в следующем виде:
                              (2.11)
Очевидно, что поверхностями уровня в данном случае будут цилиндрические поверхности с общей осью – осью вращения жидкости.

Часто бывает необходимо определить силу давления вращающейся вместе с сосудом жидкости на его стенку, нормальную к его оси вращения. Для этого определим силу давления, приходящуюся на элементарную кольцевую площадку радиусом r и шириной dr. Используя формулу (2.11), получим

а затем следует выполнить интегрирование в требуемых пределах.

При большой скорости вращения жидкости получается значительная суммарная сила давления на стенку. Это используется в некоторых фрикционных муфтах, где для сцепления двух валов требуется создание больших сил давления.

Читайте также:  Эластичность сосудов что надо есть

Источник

Вращение сосуда с жидкостью вокруг вертикальной оси

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему постоянную угловую скорость w вращения вокруг вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная по­верхность ее видоизменится: в центральной части уровень жидкости понизится, у стенок – повысится, и вся свободная поверхность жидкости станет некоторой поверхностью вращения (рис. 2.15).

 
 

Рис. 2.15

На жидкость в этом случае будут действовать две массовые силы, сила тяжести и центробежная сила, которые, будучи отнесенными к единице массы, соответственно равны g и . Равнодействующая массовая сила j увеличивается с увеличением радиуса за счет второй составляющей, а угол наклона ее к горизонту уменьшается. Эта сила нормальна к свободной поверхности жидкости, поэтому угол наклона поверхности к горизонту возрастает с увеличением радиуса. Найдем уравнение положения свободной поверхности.

Учитывая, что сила нормальна к свободной поверхности, получим , отсюда или после интегрирования .

В точке пересечения свободной поверхности с осью вращения C=h и r=0, поэтому окончательно будем иметь

, (2.10)

где .

Таким образом, свободная поверхность жидкости является параболоидом вращения. Максимальную высоту подъема жидкости можно определить, используя выражение (2.10) и исходя из равенства объемов неподвижной жидкости и жидкости во время вращения.

Запишем закон изменения давления во вращающейся жидкости в функции радиуса и глубины относительно верхней точки жидкости (без вывода):

.

Вращение сосуда с жидкостью вокруг горизонтальной оси

При таком вращении угловая скорость w столь велика, что (действие силы тяжести можно не учитывать). Закон изменения давления в жидкости для этого случая получим из рассмотрения уравнения равновесия элементар­ного объема с площадью основания dS и высотой dr, взятой вдоль радиуса (рис. 2.16). На выделенный элемент жидкости действуют силы давле­ния и центробежная сила.

 
 

Рис. 2.16

Обозначив давление в центре площадки dS, расположенной на радиусе r, через p, а в центре другого основания объема (на радиусе r + dr) через p + dp (разложили p в ряд Тейлора, но так как в данном случае p зависит только от r, то dr/dr сократился), получим следующее уравнение равновесия выделенного объема в направлении радиуса

или .

После интегрирования получим . Постоянную C найдем из условия, что при r = rp = p0, следовательно, .

Подставив ее значение в предыдущее уравнение, получим связь между p и r в следующем виде:

. (2.11)

Очевидно, что поверхностями уровня в данном случае будут цилиндрические поверхности с общей осью – осью вращения жидкости.

Часто бывает необходимо определить силу давления вращающейся вместе с сосудом жидкости на его стенку, нормальную к его оси вращения. Для этого определим силу давления, приходящуюся на элементарную кольцевую площадку радиусом r и шириной dr. Используя формулу (2.11), получим

,

а затем следует выполнить интегрирование в требуемых пределах:

.

Если равно внешнему давлению, то .

При большой скорости вращения жидкости получается значительная суммарная сила давления Fб на боковую стенку. Это используется в некоторых фрикционных муфтах, где для сцепления двух валов требуется создание больших сил давления.

Приведем выражение для определения силы Fб без вывода:

, где – длина цилиндра.

Источник

В случае равномерного вращения цилиндрического сосуда вокруг вертикальной оси с угловой скоростью со (рис. 1.5) вектор напряже­ния массовых сил

(1.51)

а уравнение Эйлера (1.10) имеет вид

dp = r [w2 ( xdx +ydy ) – gdz] = r (w 2 rdr – gdz). (1.52)

Уравнение свободной поверхности (р = р0 )

(1.53)

Уравнение любой изобарической поверхности = const)

(1.54)

где z0 – координата точки пересечения свободной поверхности с осью вращения.

Изобарические поверхности – параболоиды вращения, ось которых совпадает с осью оz , а вершины смещены вдоль этой оси. Форма изоба­рических поверхностей не зависит от плотности жидкости.

Высота параболоида свободной поверхности (R – радиус сосуда)

H = w 2R2/2g. (1.55)

Координата z0его вершины определяется объемом жидкости в сосу­де. Если начальный уровень в сосуде h0 , то

z0 = h – (1.56)

откуда h1 = h0 –z0 = H/2.

Закон распределения давления в жидкости

(1.57)

Рис. 1.5. Цилиндрический сосуд с жидкостью, вращающийся с постоян­ной угловой скоростью w

Изменение давления по вертикали (h — глубина точки под свобод­ной поверхностью) :

Р = Р0 + r gh,

т.е. такое же, как в неподвижном сосуде.

Вопросы по теме 1.6.

1 . Какие силы действуют на жидкость при ее относительном покое?

2. Каковы форма изобарических поверхностей в жидкости и описы­вающее их уравнение при прямолинейном движении сосуда с постоян­ным ускорением?

3. Каковы форма изобарических поверхностей в жидкости и описы­вающее их уравнение при вращении сосуда с постоянной угловой ско­ростью и вертикальной осью вращения?

3. Каков закон распределения давления в жидкости по вертикали при ее относительном покое?

Основные понятия кинематики и динамики жидкости

Скорость частицы жидкости зависит от координат х, у, z этой частицы и времени t, т.е.

Плотность r и давление р также являются функциями координат и времени

r = r (x, y, z, t); p = p (x, у, z, t).

Если характеристики течения не зависят от времени, т.е. могут изме­няться лишь от точки к точке, то течение называется установившимся. Если в данной точке пространства характеристики течения изменяются со временем, то течение называется неустановившимся.

Линией тока называется линия, в каждой точке которой вектор скорости направлен по касательной к этой линии. Уравнения для линий тока имеют вид

(2.1)

где их, иy , uz— составляющие вектора скорости .

Совокупность линий тока, проходящих через замкнутый контур L, образует трубчатую поверхность — трубку тока. Жидкость, находя­щаяся внутри трубки тока, образует струйку. Если контур L мал, то трубка тока и струйка называются элементарными.

Сечение струйки s, нормальное в каждой своей точке к линиям то­ка, называется живым сечением.

Область пространства конечных размеров, занятая движущейся жидкостью, называется потоком. Поток обычно рассматривается как совокупность элементарных струек. Живое сечение потока определяется так же, как в случае элементарной струйки.

Читайте также:  Как лопнуть сосуды на руках

Гидравлический радиус Rг живого сечения определяется как отношение площади живого сечения s к смоченному периметру c, т.е.

Rг = s/c. (2.2)

Под смоченным периметром c понимается та часть геометри­ческого живого сечения, по которой жидкость соприкасается с твердыми стенками.

Если форма и площадь живого сечения по длине потока не изменяют­ся, то поток называется равномерным. В противном случае поток на­зывается неравномерным. В том случае, когда живое сечение плавно изменяется по длине, течение называется плавно изменяющимся.

В живом сечении 1 — 1 (рис. 2.1) равномерного потока выполняется гидростатический закон распределения давления, т.е.

(2.3)

где рА, рB — соответственно давления в произвольных точках А и В (с вертикальными координатами za, zb) этого сечения; g — ускоре­ние свободного падения. В случае плавно изменяющегося течения ра­венство (2.3) выполняется приближенно.

Расходом жидкости через поверхность s называется количество жидкости, протекающей через эту поверхность _в единицу времени. Объемный расход Q, массовый расход > весовой расход qGопределяются по формулам

, (2.4)

где иn— проекция скорости на нормаль к поверхности s.

Если s — живое сечение, то ип = u. Для однородной жидкости

Qm = rQ (2.5)

Рис. 2.1. Живое сечение равномерного потока

Средняя скорость u определяется из равенства

u=Q/s. (2.6)

Уравнение неразрывности для потока несжимаемой жидкости имеет вид

Q = u 1 s1 = u2s2, (2.7)

где u 1 , u2 — средние скорости в сечениях 1 – 1 и 2 – 2.

Уравнение Бернулли для элементарной струйки вязкой несжимае­мой жидкости при установившемся движении в поле силы тяжести имеет вид

(2.8)

где z1, z2 – расстояния от центров выбранных живых сечений 1 1 и 2 2 до некоторой произвольной горизонтальной плоскости z = 0 (рис. 2.2); u1, u2 – скорости; P1,P2-давления в этих сечениях; h1-2 — потери напора на участке между выбранными сечениями.

Уравнение Бернулли выражает собой закон сохранения механичес­кой энергии. Величина

(2.9)

называется полным напором и представляет собой удельную (прихо­дящуюся на единицу силы тяжести) механическую энергию жидкости в рассматриваемом сечении; z — геометрический напор или удельная потенциальная энергия положения; p/(rg) — пьезометрический напор или удельная потенциальная энергия давления; u2/(2g) – скоростной напор или удельная кинетическая энергия; h1-2 — потери напора, т.е. часть удельной механической энергии, израсходованной на работу сил трения на участке между сечениями 1 — 1 и 2 — 2 (см. рис. 2.2).

В случае идеальной жидкости h1-2 =0.

Для плавно изменяющегося потока при установившемся движении вязкой несжимаемой жидкости в поле силы тяжести уравнение Бернул­ли имеет вид

(2.10)

где p1, p2 — давления в произвольно взятых точках сечений 1 — 1 и 2 — 2 скоординатами z1 и z2 соответственно (обычно берутся точки на оси потока); u 1 , u2— средние скорости в этих сечениях; а1 , а2 — коэффи­циенты Кориолиса, учитывающие неравномерность распределения ско­ростей частиц жидкости в сечениях; при течении по круглой цилиндри­ческой трубке a = 2 для ламинарного режима течения и a » 1,1 — для турбулентного; при решении практических задач обычно принимается a = 1.

При использовании уравнения Бернулли (2.8) или (2.10) необходи­мо иметь в виду, что номера сечений возрастают в направлении течения жидкости. В качестве расчетных выбираются такие сечения (струйки) , в которых известны какие-либо из величин u 1 , u2 (u1, u2) и р1, р2 .

Плоскость z = 0 бывает удобно располагать таким образом, чтобы центр одного из выбранных сечений потока лежал в этой плоскости.

Потери напора h1-2 , отнесенные к единице длины трубопровода, называются гидравлическим уклоном:

(2.11)

В случае равномерного движения несжимаемой жидкости

i = hl-2 / l, (2.12)

где l — расстояние между выбранными сечениями.

При движении жидкости по трубопроводу различают два вида потерь напора: потери по длине трубопровода hд и потери в местных сопротив­лениях hм . К потерям по длине относят потери на прямолинейных участ­ках трубопровода, а к потерям на местных сопротивлениях — потери на таких участках трубопровода, где нарушается нормальная конфигурация потока (внезапное расширение, поворот, запорная арматура и т.д.) .

Вопросы по теме 2.

1. Что называется линией тока?

2. Может ли жидкость протекать сквозь боковую поверхность труб­ки тока?

3. Что называется живым сечением потока?

4. Чем отличается уравнение Бернулли для струйки тока от уравне­ния Бернулли для потока?

5. Что такое гидравлический уклон?

6. Как определяется средняя скорость потока?

7. Какая связь между объемным, массовым и весовым расходами?

8. Как изменяются по длине неравномерного потока несжимаемой жидкости расход и средняя скорость?



Источник

В случае равномерного вращения цилиндрического сосуда вокруг вертикальной оси с угловой скоростью со (рис. 1.5) вектор напряже­ния массовых сил

(1.51)

а уравнение Эйлера (1.10) имеет вид

dp = r [w2 ( xdx +ydy ) – gdz] = r (w 2 rdr – gdz). (1.52)

Уравнение свободной поверхности (р = р0 )

(1.53)

Уравнение любой изобарической поверхности = const)

(1.54)

где z0 – координата точки пересечения свободной поверхности с осью вращения.

Изобарические поверхности – параболоиды вращения, ось которых совпадает с осью оz , а вершины смещены вдоль этой оси. Форма изоба­рических поверхностей не зависит от плотности жидкости.

Высота параболоида свободной поверхности (R – радиус сосуда)

H = w 2R2/2g. (1.55)

Координата z0его вершины определяется объемом жидкости в сосу­де. Если начальный уровень в сосуде h0 , то

z0 = h – (1.56)

откуда h1 = h0 –z0 = H/2.

Закон распределения давления в жидкости

(1.57)

Рис. 1.5. Цилиндрический сосуд с жидкостью, вращающийся с постоян­ной угловой скоростью w

Изменение давления по вертикали (h — глубина точки под свобод­ной поверхностью) :

Р = Р0 + r gh,

т.е. такое же, как в неподвижном сосуде.

Вопросы по теме 1.6.

1 . Какие силы действуют на жидкость при ее относительном покое?

2. Каковы форма изобарических поверхностей в жидкости и описы­вающее их уравнение при прямолинейном движении сосуда с постоян­ным ускорением?

3. Каковы форма изобарических поверхностей в жидкости и описы­вающее их уравнение при вращении сосуда с постоянной угловой ско­ростью и вертикальной осью вращения?

Читайте также:  Абсолютная влажность воздуха в закрытом сосуде

3. Каков закон распределения давления в жидкости по вертикали при ее относительном покое?

Основные понятия кинематики и динамики жидкости

Скорость частицы жидкости зависит от координат х, у, z этой частицы и времени t, т.е.

Плотность r и давление р также являются функциями координат и времени

r = r (x, y, z, t); p = p (x, у, z, t).

Если характеристики течения не зависят от времени, т.е. могут изме­няться лишь от точки к точке, то течение называется установившимся. Если в данной точке пространства характеристики течения изменяются со временем, то течение называется неустановившимся.

Линией тока называется линия, в каждой точке которой вектор скорости направлен по касательной к этой линии. Уравнения для линий тока имеют вид

(2.1)

где их, иy , uz— составляющие вектора скорости .

Совокупность линий тока, проходящих через замкнутый контур L, образует трубчатую поверхность — трубку тока. Жидкость, находя­щаяся внутри трубки тока, образует струйку. Если контур L мал, то трубка тока и струйка называются элементарными.

Сечение струйки s, нормальное в каждой своей точке к линиям то­ка, называется живым сечением.

Область пространства конечных размеров, занятая движущейся жидкостью, называется потоком. Поток обычно рассматривается как совокупность элементарных струек. Живое сечение потока определяется так же, как в случае элементарной струйки.

Гидравлический радиус Rг живого сечения определяется как отношение площади живого сечения s к смоченному периметру c, т.е.

Rг = s/c. (2.2)

Под смоченным периметром c понимается та часть геометри­ческого живого сечения, по которой жидкость соприкасается с твердыми стенками.

Если форма и площадь живого сечения по длине потока не изменяют­ся, то поток называется равномерным. В противном случае поток на­зывается неравномерным. В том случае, когда живое сечение плавно изменяется по длине, течение называется плавно изменяющимся.

В живом сечении 1 — 1 (рис. 2.1) равномерного потока выполняется гидростатический закон распределения давления, т.е.

(2.3)

где рА, рB — соответственно давления в произвольных точках А и В (с вертикальными координатами za, zb) этого сечения; g — ускоре­ние свободного падения. В случае плавно изменяющегося течения ра­венство (2.3) выполняется приближенно.

Расходом жидкости через поверхность s называется количество жидкости, протекающей через эту поверхность _в единицу времени. Объемный расход Q, массовый расход > весовой расход qGопределяются по формулам

, (2.4)

где иn— проекция скорости на нормаль к поверхности s.

Если s — живое сечение, то ип = u. Для однородной жидкости

Qm = rQ (2.5)

Рис. 2.1. Живое сечение равномерного потока

Средняя скорость u определяется из равенства

u=Q/s. (2.6)

Уравнение неразрывности для потока несжимаемой жидкости имеет вид

Q = u 1 s1 = u2s2, (2.7)

где u 1 , u2 — средние скорости в сечениях 1 – 1 и 2 – 2.

Уравнение Бернулли для элементарной струйки вязкой несжимае­мой жидкости при установившемся движении в поле силы тяжести имеет вид

(2.8)

где z1, z2 – расстояния от центров выбранных живых сечений 1 1 и 2 2 до некоторой произвольной горизонтальной плоскости z = 0 (рис. 2.2); u1, u2 – скорости; P1,P2-давления в этих сечениях; h1-2 — потери напора на участке между выбранными сечениями.

Уравнение Бернулли выражает собой закон сохранения механичес­кой энергии. Величина

(2.9)

называется полным напором и представляет собой удельную (прихо­дящуюся на единицу силы тяжести) механическую энергию жидкости в рассматриваемом сечении; z — геометрический напор или удельная потенциальная энергия положения; p/(rg) — пьезометрический напор или удельная потенциальная энергия давления; u2/(2g) – скоростной напор или удельная кинетическая энергия; h1-2 — потери напора, т.е. часть удельной механической энергии, израсходованной на работу сил трения на участке между сечениями 1 — 1 и 2 — 2 (см. рис. 2.2).

В случае идеальной жидкости h1-2 =0.

Для плавно изменяющегося потока при установившемся движении вязкой несжимаемой жидкости в поле силы тяжести уравнение Бернул­ли имеет вид

(2.10)

где p1, p2 — давления в произвольно взятых точках сечений 1 — 1 и 2 — 2 скоординатами z1 и z2 соответственно (обычно берутся точки на оси потока); u 1 , u2— средние скорости в этих сечениях; а1 , а2 — коэффи­циенты Кориолиса, учитывающие неравномерность распределения ско­ростей частиц жидкости в сечениях; при течении по круглой цилиндри­ческой трубке a = 2 для ламинарного режима течения и a » 1,1 — для турбулентного; при решении практических задач обычно принимается a = 1.

При использовании уравнения Бернулли (2.8) или (2.10) необходи­мо иметь в виду, что номера сечений возрастают в направлении течения жидкости. В качестве расчетных выбираются такие сечения (струйки) , в которых известны какие-либо из величин u 1 , u2 (u1, u2) и р1, р2 .

Плоскость z = 0 бывает удобно располагать таким образом, чтобы центр одного из выбранных сечений потока лежал в этой плоскости.

Потери напора h1-2 , отнесенные к единице длины трубопровода, называются гидравлическим уклоном:

(2.11)

В случае равномерного движения несжимаемой жидкости

i = hl-2 / l, (2.12)

где l — расстояние между выбранными сечениями.

При движении жидкости по трубопроводу различают два вида потерь напора: потери по длине трубопровода hд и потери в местных сопротив­лениях hм . К потерям по длине относят потери на прямолинейных участ­ках трубопровода, а к потерям на местных сопротивлениях — потери на таких участках трубопровода, где нарушается нормальная конфигурация потока (внезапное расширение, поворот, запорная арматура и т.д.) .

Вопросы по теме 2.

1. Что называется линией тока?

2. Может ли жидкость протекать сквозь боковую поверхность труб­ки тока?

3. Что называется живым сечением потока?

4. Чем отличается уравнение Бернулли для струйки тока от уравне­ния Бернулли для потока?

5. Что такое гидравлический уклон?

6. Как определяется средняя скорость потока?

7. Какая связь между объемным, массовым и весовым расходами?

8. Как изменяются по длине неравномерного потока несжимаемой жидкости расход и средняя скорость?

Читайте также:

Рекомендуемые страницы:

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16
Нарушение авторских прав и Нарушение персональных данных

Источник