Равновесие жидкости в сосуде

В зависимости от характера действующих массовых сил поверхность равного давления в жидкости, как и свободная поверхность, может принимать
различную форму. Ниже рассматриваются некоторые случаи равновесия жидкости в движущихся сосудах.

1. Жидкость находится в сосуде, который движется в горизонтальном направлении с постоянным ускорением ±а (знак плюс соответствует ускорению сосуда, знак минус – замедлению ) (см. рисунок).

Равновесие жидкости в сосуде

В данном случае жидкость подвержена воздействию не только поверхностных сил, но также массовых сил тяжести и инерции.
Поверхность равного давления является наклонной плоскостью. Давление в любой точке жидкости определяется по формуле

p = p0 + ρ·(g·z ± a·x),

Для свободной поверхности жидкости, когда р=p0, уравнение принимает вид:

g·z = ± a·x
или
z/x = tg α = ± a/g,

где α – угол наклона свободной поверхности жидкости к горизонту.

Последнее приведенное выше выражение позволяет определять (при условии, чтобы жидкость не переливалась через задний борт сосуда длиной l)
высоту борта h при заданном значении а или предельное ускорение а при заданном значении h.

Если сосуд движется равномерно (а = 0), уравнение приводим к виду:

p = p0 + ρ·g·z = p0·γ

В этом случае поверхность равного давления представляет горизонтальную плоскость.

2. Жидкость находится в открытом цилиндрическом сосуде, который вращается вокруг вертикальной оси с постоянной угловой скоростью ω.

Равновесие жидкости в сосуде

В данном случае жидкость подвержена воздействию не только поверхностных сил, но также массовых сил тяжести и центробежной.

Поверхность равного давления представляет параболоид вращения. Распределение давления в жидкости по глубине определяется выражением:

p = p0 + γ·((ω2·r2)/(2·g) – z)

Для любой точки свободной поверхности жидкости, когда p = p0, уравнение принимает вид:

z = (ω2·r2)/(2·g) = u2/(2·g),

где окружная скорость u = ω·r (r — радиус вращения точки).

Высота параболоида вращения:

h = ω2·r20/(2·g),

где r0 – радиус цилиндрического сосуда.

Сила давления жидкости на дно сосуда:

P = γ·π·r20·h0 = γ·π·r20·(h1 + h/2),

где h0 – начальная глубина жидкости в сосуде до момента его вращения.

Давление на боковую стенку сосуда изменяется по линейному закону. Эпюра давления представляет прямоугольный треугольник ACD с высотой h1 + h и основанием γ·(h1 + h).

3. Жидкость находится в цилиндрическом сосуде, который вращается вокруг горизонтальной оси с постоянной угловой скоростью ω.

В данном случае жидкость также подвержена воздействию массовых сил тяжести и центробежной.

Поверхности равного давления представляют концентрически расположенные боковые поверхности цилиндров, оси которых горизонтальны и смещены относительно оси оу на величину эксцентриситета e = g/ω2 (см. рисунок а).

Равновесие жидкости в сосуде

При большом числе оборотов сосуда влияние силы тяжести по сравнению с влиянием центробежной силы становится незначительным, и, следовательно, величиной эксцентриситета е можно пренебречь. Тогда поверхности равного давления становятся концентрическими цилиндрами, оси которых совпадают с осью сосуда (см. рисунок б).

Распределение давления по глубине жидкости определяется выражением:

p = p0 + γ·ω2·(r2 – r20)/(2·g)

где p и p0 – соответственно давления в точках цилиндрических поверхностей с радиусами r и r0.

Данное уравнение справедливо и тогда, когда сосуд радиусом r лишь частично заполнен жидкостью. Свободная поверхность жидкости в этом случае также будет цилиндрической с радиусом r0 и давлением во всех ее точках р0.

Как видно из последнего уравнения, закон распределения давления по радиусу является параболическим. Эпюра давления представленная на рисунке в.
Такие приближенные решения могут применяться при любом положении оси вращения сосуда, однако при условии большого числа его оборотов.

Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.

Источник

Содержание:

  • Равновесие жидкости в сосуде, равномерно вращающемся относительно вертикальной оси.

Равновесие жидкости в сосуде, равномерно вращающемся относительно вертикальной оси

Равновесие жидкости в сосуде, равномерно вращающемся относительно вертикальной оси. В состоянии равновесия в движущемся сосуде жидкость движется вместе со всем контейнером. То есть, жидкость находится в относительном состоянии покоя. Рассмотрим цилиндрический контейнер радиусом H (рис. 2.9), заполненный до определенного уровня жидкостью плотностью p и вращающийся с постоянной угловой скоростью относительно вертикальной оси.

Через некоторое время после начала вращения сосуда жидкость под действием трения вращается с той же скоростью, что и сосуд. Равновесие жидкости устанавливается для сосуда, другими словами, для неинерциальных систем координат x, y, r, которые вращаются вместе с сосудом. При написании уравнений равновесия в неинерциальных системах необходимо ввести силу подвижной инерции в число рабочих forces.

В абсолютно покоящейся жидкости (сосуд неподвижен) действующей массовой силой (в поле сил тяжести) является только сила тяжести.
Людмила Фирмаль

  • В рассматриваемом случае такая сила направлена вдоль радиуса и равна & M (центробежная сила равна n2g элементарной массы AM, которая вращается на расстоянии r от вертикали axis. In помимо центробежной силы, гравитация DM ^действует на любую частицу AM-это: за счет силы тяжести ^ = ° ;=°; ПГХ = —§; От портативной инерции п *. =<sup class=»reg»>®</sup>ГХ Риш-0)2 в> пр%= 0、 Где*и y-горизонтальные координаты произвольно выбранной точки А в жидкости. Рассмотрим 2 вопроса здесь. 39.
Читайте также:  Чем лечить носовые сосуды

Форма поверхности одинакового давления. Используйте уравнение поверхности равного давления (2.10)’ Rhyh + ру ю + Rghyg-0 Когда вы назначаете ему выражения Px, Py и Pr, вы находите co2 x yx + co2 yy-diig-0. После интеграции、 гг-(* 2 + У2) §Р= С Или Х2 + У2-Г2.、 СО2-Р2 / 2 §р= с(2.23) Как видно из (2.23), поверхность равного давления в этом случае представляет собой семейство совпадающих 1-вращающихся параболоидов с вертикальной осью. Различные значения константы C соответствуют различным параболам одинакового давления.

  • Свободная поверхность это также поверхность, на которой давление во всех точках равно давлению, равному внешнему давлению p0. Найти значение любой константы c параболоида свободной поверхности. Х-0; У = 0; РСВ = Р0.Если подставить эти координаты в Формулу (2.23), то: Ц0 = § 0. Уравнения свободной поверхности * С ш-Р0 = ^ (*2 +! 2. ) 2-й. Или Огнестрел-20 = СО2 Г2 / 2Д, (2.24) Частицы жидкости, находящиеся в относительном стационарном состоянии во вращающемся сосуде на расстоянии радиуса r от оси вращения, имеют линейную скорость u-(π.

Высота, на которой точка свободной поверхности выше вершины параболоида(например、 Б = РК-Р0 = СО2 Р2 /2§= С2 / 2С (2.25) 1 матч-фигура, которая будет объединена при наложении. 40. 20 ордината вершины параболоида свободной поверхности при заданной угловой скорости зависит от количества жидкости в сосуде. Если перед вращением сосуда уровень жидкости был установлен на горизонтальную и высоту H, то объем жидкости был равен 2N2H.

Законы относительного равновесия жидкости находят широкое применение в промышленности, а именно, в измерительной технике (жидкостные тахометры), в металлургии (центробежное литье) и других областях техники.
Людмила Фирмаль

  • При вращении сосуда свободная поверхность становится параболой, форма объема жидкости изменяется, а величина при p = const{остается неизменной: | (Р0 +(r212d О2 ) О После интеграции、 Ч ■= рН + П2 К2 / 4Д Или Р0 = я-п * д * / 4#. Предполагая, что 20 = 0, мы знаем угловую скорость a, когда свободная поверхность жидкости касается дна контейнера. w = 2 Уды / я. Закон распределения давления. Используя дифференциальное уравнение жидкостных равновесий (2.5) и подставляя в него проекцию распределения плотности массовых сил, он выглядит следующим образом: гг = pY2(xc1x + ыыы) Сделай сам.

После интегрирования уравнения(2.26)、 / ? п(w2g72-ДГ)+ КБ(2.27) Если подставить координаты r = 0, r-r0 и давление p = p0 в уравнение (2.27), то получим Cp. С1! = Р0-Р (н0)= Р0 + rd0 Подставляя найденные значения C1 в(2.27), получаем 2r2 / 2d = H ’позволяет переписать любую точку в виде (2.28). Здесь k-глубина погружения точки под свободную поверхность, то есть вертикальное расстояние от свободной параболы до точки задачи. Поэтому в жидкости, которая неподвижна в равномерно вращающемся сосуде, вертикальное давление распределяется по закону гидростатического давления.

Смотрите также:

Задачи по гидравлике

Возможно эти страницы вам будут полезны:

  1. Равновесие однородной несжимаемой жидкости относительно земли.
  2. Геометрическая интерпретация основного уравнения гидростатики.
  3. Силы давления покоящейся жидкости на горизонтальные и наклонные плоские площадки (стенки).
  4. Силы давления покоящейся жидкости на цилиндрические стенки.

Источник

Гидростатика – раздел гидравлики о законах равновесия жидкости и её взаимодействии с твердыми телами и газами.

Равновесие капельных жидкостей.Под равновесием жидкости понимается отсутствие перемещения одних её частей относительно других и жидкости в целом относительно ограничивающих её стенок. При этом сам сосуд вместе с заключенной в нем жидкостью может перемещаться в любом направлении и с любым ускорением. Различают «абсолютное» и относительноеравновесие (покой) жидкости.

«Абсолютное» равновесие» – это равновесие жидкости в неподвижном относительно земли сосуде в поле только гравитационных сил. При «абсолютном» равновесии результирующая массовых сил направлена вертикально вниз.

Относительное равновесие жидкости – это равновесие её в поле силы тяжести и сил инерции. При относительном равновесии результирующая массовых сил может быть направлена в любом направлении.

Очевидно, что «абсолютное» равновесие представляет собой частный случай относительного, характеризующийся тем, что из всех массовых сип действует только сила тяжести.

В жидкости, находящейся в покое, силы трения, обусловленные вязкостью, не проявляются (не действуют касательные силы). Поэтому, реальные жидкости по своим свойствам будут очень близки к идеальным, и, следовательно, все задачи гидростатики будут решаться с большой точностью.

Гидростатическое давление.Как отмечалось ранее,на жидкость могут действовать поверхностные и массовые силы. Массовые силы в соответствии со вторым законом Ньютона про­порциональны массе жидкости или, для однородной жидкости, – ее объёму. К ним относятся сила тяжести и сила инерции переносного движения системы, действующая на жидкость при относительном ее покое (а также при ускоренном движении).

Поверхностные силы непрерывно распределены по поверхности жидкости и при равномерном их распределении пропорциональны площади этой поверхности. Эти силы обусловлены непосредственным воздействием соседних объемов жидкости на данный объем или же воздействием других тел (твердых или газообразных), соприкасающихся с данной жидкостью. Как следует из третьего закона Ньютона, с такими же силами, но в противоположном направлении, жидкость действует на соседние с нею тела.

Читайте также:  Слабые сосуды врач по сосудам

Согласно положению теоретической механики любая система, в том числе и жидкостная, может находиться в равновесии только при условии равенства нулю равнодействующей всех приложенных к ней внешних сил, а также их результирующего момента. Состояние жидкости при этом характеризуется только внутренними (молекулярными) силами.

Рассечём жидкость воображаемой поверхностью и выделим около точки с координатами некоторую площадку величиной (рис. 2.1).

Рис. 2.1. Разложение поверхностной силы на две составляющие

В общем случае поверхностная сила , действующая в точке на площадке , направлена под некоторым углом к ней, и ее можно разложить на две силы: – нормальную сжимающую силу; и – тангенциальную силу или силу трения. Нормальная сжимающая сила может быть условно представлена в виде вектора, который направлен по внутренней нормали к выделенной площадке (т.е. внутрь объёма жидкости) и приложена к площадке в точке .

Среднее напряжение этой силы можно найти, отнеся её к площади по формуле

. (2.1)

Для определения истинного значения напряжения в точке необходимо перейти к пределу этого отношения при условии, что площадка уменьшении до нуля

. (2.2)

Нормальное напряжение силы давления, называется гидромеханическим давлением, или просто давлением, и обозначается буквой .

На внешней поверхности силы давления всегда направлены по нормали внутрь объема жидкости и, следовательно, являются сжимающими.Таким образом, в неподвижной жидкости возможен лишь один вид напряжения – напряжение сжатия, т.е. гидростатическое давление.

Касательное напряжение в жидкости, т. е. напряжение трения, обозначается буквой и выражается подобно давлению пределом отношения, а размерность его та же, что и давления,

. (2.3)

Источник

Существуют два вида равновесия — абсолютное и относительное. Абсолютное равновесие — равновесие жидкости относительно Земли, т.е. когда на жидкость действует только сила тяжести. Относительное равновесие жидкости — это ее равновесие по отношению к сосуду, перемещающемуся прямолинейно и равноускоренно относительно Земли или вращающемуся относительно собственной оси с постоянной угловой скоростью.

Рассмотрим два характерных случая относительного равновесия: прямолинейное равноускоренное движение сосуда с жидкостью и равномерное вращательное движение сосуда относительно собственной оси.

Относительное равновесие жидкости в сосуде, движущемся прямолинейно с постоянным ускорением. Цистерна с жидкостью (рис. 1.18) движется равномерно, ускоренно в направлении оси Хс ускорением +а.

Рис. 1.18. Схема относительного покоя жидкости в движущемся резервуаре

Пунктиром показано положение жидкости при абсолютном равновесии. Но в данном случае на жидкость помимо ускорения силы тяжести действует ускорение силы инерции, т.е. У= О, Х= —a, Z = —g. Проинтегрируем уравнения поверхности равного давления и уравнение изменения давления. Из первого уравнения имеем

Для* = 0,z = ZmnC = zm имеем

Отсюда уравнение (1.21) есть уравнение прямыхлиний, наклоненных к оси X под углом а = arctg . Учитывая, что эта линия есть

8 )

проекция поверхностей равного давления, представляющих собой семейство плоскостей, наклоненных под углом а к оси X, нормально расположенных перпендикулярно вектору результирующего ускорения у, модуль которого j = yjg2 +а2.

В случае движения сосуда в том же направлении, но с торможением, т.е. ускорение сосуда — а, тогда величина Xравна ускорению движения, взятому с обратным знаком, т.е. в этом случае X = +а

~ о^ а

и Z =—х + С и а = arctg—.

88

зо

Проинтегрируем теперь для данного случая относительного равновесия уравнение изменения давления:

Это уравнение определяет давление, например, в точке А. Определим давление в соответствии с этой формулой в точке А лежащей на одной вертикали с точкой А, принадлежащей свободной поверхности Z = Z0,P =р0:

Составим разность этих уравнений

т.е. давление в этом случае выражается той же формулой, что и в случае абсолютного равновесия, но значение (z0 — z) измеряется до свободной поверхности непосредственно над точкой, в которой определяется давление.

Относительное равновесие жидкости в сосуде, равномерно вращающемся вокруг вертикальной оси z с угловой скоростью со. Совместим ось Z с осью вращения сосуда (рис. 1.19) и систему координат свяжем с вращающимся сосудом.

В рассматриваемом случае на частицы жидкости действуют следующие массовые силы: сила тяжести с ускорениемg; центробежная сила инерции с ускорением jr = со2 г, где г — расстояние от данной точки до оси вращения. Ускорение действует в горизонтальной плоскости. Его проекции

гдехиу—координаты рассматриваемой точки А. По-прежнему Z= —g. Найдем уравнение свободной поверхности вращающейся жидкости, используя уравнение поверхности равных давлений (1.6):

Читайте также:  Алексей борис и валерий нашли в земле сосуд

Рис. 1.19. Схема относительного покоя жидкости во вращающемся относительно своей вертикальной оси резервуаре

Это уравнение параболоида вращения, который и представляет поверхность равных давлений. Постоянную интегрирования определим из условия г = 0, когда z = zm и —С = zm, тогда

Придавая ^различные значения, получим семейство эквидистантных поверхностей в виде параболоидов вращения. При Zm = Z™получим уравнение свободной поверхности:

Рассмотрим выражение для изменения давления:

Постоянную интегрирования определим, написав условие для точки свободной поверхности, лежащей на оси вращения: ра6с = р0;

Г = 0; z=$, тогда ^- = -г0″+С, С=^-+го”.

У У

Подставляя это значение С в выражение (1.22), получим

т OoV

но значение z0 4—-— = z0, тогда ра6с = р0 + уп, т.е. давление опять выражается той же формулой, что и в случае абсолютного равновесия. При этом глубина h замеряется отданной точки до точки на свободной поверхности, лежащей на одной вертикали.

Источник

Рассмотрим два сообщающихся сосуда, наполненных различными, не смачивающимися между собой жидкостями (рис. 2.6).

Сосуды закрыты, давления и – на поверхности жидкостей в сосудах I и II различны. Линия О-О – линия раздела разнородных жидкостей. Горизонтальная плоскость, проходящая через линию О-О, является плоскостью равного давления. Определим величину гидростатического давления в точках и , лежащих на плоскости равного давления. Согласно основному уравнению гидростатики:

(2.30)

(2.31)

где и – возвышение поверхности жидкостей в сосудах I и II над плоскостью О-О; и – плотности жидкостей.

Очевидно, что:

(2.32)

(2.33)

Зависимость (2.33) характеризует условия равновесия жидкостей в сообщающихся сосудах. Она позволяет решать частные задачи.

Случай I. В сосудах налита одинаковая жидкость, но давления и различны.

тогда при условии, что получим:

(2.34)

Случай II. Жидкость одинакова, т.е. и . Тогда:

(2.35)

жидкость в сосудах будет на одном уровне.

Случай III. Жидкость одинакова , но один сосуд открыт , а другой закрыт .Тогда:

(2.36)

(2.37)

так как , значит

(2.38)

(2.39)

Выражение есть пьезометрическая высота для точек, лежащих на поверхности жидкости в закрытом сосуде.

Случай IV. Жидкости разнородные, несмешивающиеся, а Тогда:

(2.40)

или

(2.41)

Рассмотрим закрытый сосуд с жидкостью, к которому в точках А и В на произвольной глубине присоединены пьезометры I и II (рис. 2.7).

Давление на свободной поверхности в сосуде больше атмосферного . Трубка I сверху открыта и давление на свободной поверхности в ней равно атмосферному . Трубка II сверху запаяна, из нее удален воздух, т.е. давление в ней равно нулю .

Для определения вертикальных координат точек А и В проведем на произвольной высоте горизонтальную плоскость 0-0. Эта плоскость называется плоскостью сравнения. Вертикальное расстояние от плоскости сравнения до рассматриваемой точки называется геометрической высотой точки по отношению к плоскости сравнения и обозначается буквой . За плоскость сравнения может быть принят уровень земли, пола.

Так как давление в сосуде на свободной поверхности жидкости больше атмосферного, то в пьезометрических трубках I и II жидкость поднимется на большую высоту, чем уровень жидкости в сосуде. Обозначим высоту поднятия жидкости в открытом пьезометре через
– пьезометрическая высота, а высоту поднятия жидкости в закрытом пьезометре через – приведенная высота.

Пьезометрическая высота – мера манометрического давления в точке А. Приведенная высота – мера абсолютного давления в точке В. Разность высот , равна высоте столба жидкости, соответствующей атмосферному давлению т.е. 10 м.в.ст.

Сумма геометрической высоты и пьезометрической для любой точки жидкости будет величиной постоянной и называется пьезометрическим напором:

. (2.42)

Но

. (2.43)

Подставив это выражение в формулу (2.42) получим

(2..44)

или

(2.45)

это сумма приведенной высоты и геометрической высоты положения, называемая гидростатическим напором .

Тогда:

(2.46)

В уравнении (2.46) для любой точки жидкости, а не зависит от положения точки.

Значит:

(2.47)

Поэтому, сколько бы мы пьезометров не подключили, во всех пьезометрах жидкость установится на одном уровне: плоскость, соответствующая уровню П–П, называется пьезометрической плоскостью, а уровню Н–Н – напорной плоскостью.

Пьезометрический напор является мерой удельной потенциальной энергии жидкости. Предположим, что вес частицы жидкости в точке А. равен (рис. 2.7). По отношении к плоскости сравнения О – О запас потенциальной энергии положения равен , где -.высота от плоскости О – О до точки А. Под действием избыточного гидростатического давления частица, находящаяся на глубине , может подняться на высоту ,то есть она обладает потенциальной энергией давления равной . Полная потенциальная энергия частицы жидкости весом равна .Удельная потенциальная энергия, т.е. энергия приходящаяся на единицу веса частицы будет соответственно равна:

(2.48)

Аналогично, гидростатический напор является также мерой удельной потенциальной энергии жидкости, но большей по сравнению на величину удельной потенциальной энергии атмосферного давления.

(2.49)

Источник