Разность давлений в сообщающихся сосудах

Разность давлений в сообщающихся сосудах thumbnail

Закон «Сообщающихся Сосудов»

Вы, наверное, знаете еще из школьных уроков физики, что такое взаимно сообщающиеся сосуды, это когда мы наливаем в один из них, то жидкость равномерно распределяется по всем остальным сосудам.

Зако́н сообща́ющихся сосу́дов — один из законов механики, гласящий, что в сообщающихся сосудах уровни однородной жидкости равны.

По аналогии, богатства приходящие в нашу жизнь — это однородная жидкость. А здоровье, деньги, знания и отношений, сродни этим сообщающимся сосудам. Богатство приходит к нам и равномерно наполняет эти сосуды, но объем этой «жидкости» по закону причинно следственной связи у всех разный, и так как вы хозяин этих сосудов, в какой-то момент вы решаете, что вам чего-то не хватает, например вам нужны деньги, и наклоняете сосуд в эту сторону, соответственно богатство утекает из других сфер жизни. В современной психологии успеха это называют управление вниманием, бизнес тренеры говорят, что внимание это единственный ресурс которым вы можете управлять. И то чему вы уделяете особое внимание, именно то в вашей жизни начинает увеличиваться, будь то здоровье, знание или деньги.

Внимание… это все, чем на самом деле может управлять человек.
Туда, куда направлено наше внимание, того в нашей жизни и становится больше…
То, откуда мы убираем наше внимание — становится меньше.
Я всегда привожу своим ученикам наглядный пример.
Уберите свое внимание от домашних растений или от близких людей… чем все закончится?
Правильно, Вы их потеряете. (Всеволод Татаринов бизнес-тренер, практик)

Я знаю бизнесменов, которые прилично зарабатывают, но при этом у них нет времени на семью и детей, работают они по 20 часов, не высыпаются, едят на ходу, что попало и когда попало. «Вы что не видите? Мне некогда! Я деньги зарабатываю!». Именно такой образ успешного бизнесмена складывается у многих людей. Но успех ли это? Когда в 40 лет, уже язва желудка, больное сердце и полностью разрушена личная жизнь. Или предположим девушка посещает множество тренингов по личностному росту, ее спрашиваешь: «Вы замужем?» в ответ: — «Вы что? Мне некогда! Я знания получаю!». Сосуд наклонен в сторону знаний, но сколько остается на любовь? И у каждого свой дизайн этих сосудов, у каждого свои приоритеты.

Какой главный вывод? Чтобы избежать в будущем потрясений, необходимо соблюдать баланс ваших взаимосообщающихся сосудов. Поставьте их прямо! И гармония придет в вашу жизнь. В ваших силах распределить ваше богатство по всем сферам жизни так, чтобы быть здоровым, богатым и успешным.

Источник

Закон сообщающихся сосудов

Определение и закон сообщающихся сосудов

Сообщающимися сосудами называют сосуды, которые соединенные между собой.

В этих сосудах жидкость может свободно перетекать из одной емкости в другую (рис.1). Форма сообщающихся сосудов очень разнообразна. В сообщающихся сосудах однородная по плотности жидкость устанавливается на одном уровне, если давления над свободными уровнями жидкости одинаковые и это не зависит от формы сосуда.

В жидкости в состоянии равновесия давление на одном уровне равно:

[p=rho gh left(1right),]

где $rho $ — плотность жидкости; $g$ — ускорение свободного падения; $h$ — высота столба жидкости. В пояснении того, что в сообщающихся сосудах уровень жидкости находится на одном уровне, можно отталкиваясь от (1) сказать следующее: так как давления на одном уровне жидкости одинаково, то равными будут и высоты столбов жидкости.

И так, закон сообщающихся сосудов можно сформулировать следующим образом: В равновесном состоянии свободная поверхность жидкости в сообщающихся сосудах устанавливается на одном уровне, так как давление жидкости на любом горизонтальном уровне одинаково.

Сообщающиеся сосуды с жидкостями разной плотности

Если в сообщающихся сосудах находятся жидкости с разными плотностями, то их уровни не будут находиться на одном уровне. Высоты столбов таких жидкостей разные. Следствием закона сообщающихся сосудов является положение: в сообщающихся сосудах высоты столбиков жидкости над уровнем их раздела обратно пропорциональны плотностям этих жидкостей:

где $_1$ и $_2$ — плотности жидкостей; $h_1$, $h_2$ — соответствующие высоты столбов этих жидкостей. При одинаковом давлении над поверхностями жидкостей, высота столба жидкости с меньшей плотностью будет больше, чем высота столба более плотной жидкости.

Применение сообщающихся сосудов

На практике сообщающиеся сосуды применяются часто. Довольно давно известно такое устройство как гидравлический пресс. В его конструкцию входят два цилиндра разного радиуса с поршнями (рис.2). Пространство в цилиндрах под поршнями обычно заполняют минеральным маслом.

Читайте также:  Эхографические признаки стенозирующего атеросклероза сосудов

Допустим, что площадь первого поршня, к которому приложена сила $>_1,$ равна $S_1$, площадь второго $S_2$, к нему приложена сила $>_2$. Давление, создаваемое первым поршнем, составляет:

Второй поршень давит на жидкость:

При равновесии системы $p_1$ и $p_2$ равны, запишем:

Выразим величину силы, которую прикладывают к первому поршню:

Из выражения (6), видим, что величина первой силы больше модуля силы $F_2$ в $frac$ раз. Следовательно, с помощью гидравлического пресса, прикладывая небольшую силу к поршню малого сечения, можно получить большую по величине силу, которая будет действовать на большой поршень.

По принципу сообщающихся сосудов, в особенности раньше, действовал водопровод. Такой водопровод сейчас еще можно наблюдать на дачных участках. На относительно большой высоте устанавливается бак с водой, от бака идут водопроводные трубы, закрываемые кранами. Давление у кранов соответствует давлению столба воды, который равен разности высот уровень крана — уровень воды в баке.

Принципом сообщающихся сосудов пользовались, когда проектировали фонтаны, работающие без насосов, шлюзы на реках и каналах.

Примеры задач на закон сообщающихся сосудов

Задание. Какая сила действует на тело, зажатое в гидравлическом прессе, если на маленький поршень действовать с силой $f$? Следует учесть, что за один ход маленький поршень пресса опускается на расстояние $h$, при этом большой перемещается на расстояние $H$.

Решение. Сделаем рисунок.

Работу, которую выполняет сила $f$, при перемещении малого поршня найдем как:

поскольку силу $f$ считаем постоянной и перемещение сонаправлено с направлением действия силы.

Работа силы, которая двигает большой поршень вверх (сжимает гипотетическое тело), равна:

Так как мы будем считать, что КПД пресса равен единице (ста процентам), то работы затраченная ($А_1$) и полезная ($А_2$) равны:

[А_1=А_2to fh=FH left(1.3right).]

Из формулы (1.3) выразим искомую силу:

Ответ. $F=frac$

Задание. В сообщающихся сосудах налито две жидкости разной плотности. В одной части сосуда жидкость с высотой столба $h_1$ и плотностью $_1$ уравновешивает столбик другой жидкости высотой $h_2$. Какова плотность второй жидкости?

Решение. По условию задачи жидкости в сообщающихся сосудах находятся в состоянии равновесия, следовательно, давления столбов обеих жидкостей равны. Давление столба первой жидкости найдем как:

Давление, которое создает столбик второй жидкости, составляет:

Если левые части выражений (2.1) и (2.2) равны, то приравняем их правые части, выразим искомую плотность:

Ответ. $_2=frac_1h_1>$

Источник

Все, что необходимо знать о силе давления воды

Пловец, нырнувший глубоко, ощущает боль в ушах. На барабанные перепонки воздействует сила давления воды.

Корабль в воде не тонет благодаря выталкивающей силе. Вода способна легко изменять свою форму, она воздействует на поверхности тел при соприкосновении с ними.

Чему равна сила давления воды и что это такое, расскажем в статье.

Что это такое?

В сосуде, заполненном водой, на дно давит сила, равная весу столба жидкости. Это вызванное силой тяжести давление называется гидростатическим.

Законы гидростатики описал Блез Паскаль. В 1648 г. он удивил горожан опытом, демонстрирующим свойства воды.

Вставив в бочку, заполненную водой, длинную узкую трубку, он налил в нее несколько кружек воды, и бочку разорвало.

Согласно закону Паскаля, приложенное к H2O усилие распространяется равномерно во всем объеме. Это объясняется тем, что вода почти не сжимается. В гидравлических прессах используют это свойство.

Плотность воды все же растет при высоком давлении. Это учитывается при расчетах конструкций глубоководных аппаратов.

Факторы, влияющие на показатель

При отсутствии внешнего воздействия, играют роль два фактора:

Выше уровень воды, налитой в сосуд, — выше напор на дно. Если в одной емкости ртуть, а в другой вода и при этом уровни жидкостей одинаковы, то в первом случае давление на дно больше, так как ртуть имеет большую плотность.

Если же к поверхности приложить поршень и давить на него, то напор будет складываться из:

При этом форма сосуда не определяет размер усилия, создаваемого столбом. Оно будет одним и тем же при равной высоте столба, хотя стенки емкости могут расширяться кверху или сужаться.

На дно и стенку сосуда – в чем разница?

Вода, заполняющая емкость, оказывает давление по направлению всегда перпендикулярно поверхности твердого тела, по всей площади соприкосновения с дном и стенками.

Усилие на дно распределено равномерно, то есть оно одинаково в любой точке. Заполнив водой сито, можно увидеть, что струи, текущие через отверстия, равны по напору.

Читайте также:  Возрастные особенности сосудов кратко

Единицы измерения

Давление воды измеряют в:

  • паскалях – Па;
  • метрах водяного столба – м. в. ст.
  • атмосферах – атм.

Практически достаточно знать, что 1 атмосфера равна 10 метрам водяного столба или 100000 Па (100кПа).

Формулы расчета

Давление на дно сосуда рассчитывается делением силы на площадь, то есть оно равно произведению плотности воды, высоты столба и ускорения свободного падения g (величина постоянная, равна 9,8 м/с2).

Пример расчета: бак наполнен водой (плотность 1000 кг/м3) до высоты 1,2 м. Нужно найти, какое давление испытывает дно бака. Решение: P = 1000*1, 2*9, 8 = 11760 Па, или 11, 76 кПа.

Для расчета давления на стенки сосуда применяют все ту же формулу напора, приведенную выше. При расчете берется глубина от точки, в которой нужно рассчитать напор, до поверхности воды.

Пример расчета: на глубине 5 м на стенку резервуара с водой будет оказываться давление P=1000 *5 * 9, 8=49000 кПа, что составляет 0,5 атмосферы.

Расчет давления воды на дно и стенки сосуда в видео:

Применение на практике

Примеры использования знаний свойств воды:

  1. Подбирая насос для водоснабжения дома высотой 10 м, понимают, что напор должен быть минимум 1 атм.
  2. Водонапорная башня снабжает водой дома ниже ее по высоте, напор в кране у потребителей обеспечен весом столба воды в баке.
  3. Если в стенках бочки появились отверстия, то, чем ниже они расположены, тем более прочным должен быть материал для их заделки.
  4. Замеряют дома напор холодной воды в кране манометром. Если он менее чем 0,3 атм (установлено санитарными нормами), есть основания для претензий к коммунальщикам.

Используя гидравлический пресс, можно получить большое усилие, при этом приложив малую силу. Примеры применения:

  • выжимка масла из семян растений;
  • спуск на воду со стапелей построенного судна;
  • ковка и штамповка деталей;
  • домкраты для подъема грузов.

Заключение

Такие свойства воды, как текучесть и несжимаемость, дают возможность использовать силу ее давления для самых различных целей.

Опасность этого явления учитывают при расчетах на прочность корпусов подводных лодок, стенок и днищ резервуаров, в которых хранят воду. Сила давления воды совершает полезную работу, она же способна и разрушать.

Источник

Источник

Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости в каждом из сосудов. Таким образом жидкость может перемещаться из одного сосуда в другой.

Перед тем как понять принцип действия сообщающихся сосудов и варианты их использования необходимо определиться в понятиях, а точнее разобраться с основным уравнением гидростатики.

Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.

Основное уравнение гидростатики

P = P1 + ρgh

где P1 – это среднее давление на верхний торец призмы,

P – давление на нижний торец,
g – ускорение свободного падения,
h – глубина погружения призмы под свободной поверхностью жидкости.

ρgh – сила тяжести (вес призмы).

Звучит уравнение так:

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости

Доказательство закона сообщающихся сосудов

Возвращаемся к разговору про сообщающиеся сосуды.

Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.

Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.

Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики

P = P1 + ρgh1

если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.

Это давление можно определить следующим образом

P = P2 + ρgh2

где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2

P1 + ρ1gh1 = P2 + ρ2gh2

В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем

Читайте также:  Как восстановить кровеносные сосуды носа

ρ1h1 = ρ2h2

или

ρ1 / ρ2 = h2 / h1

т.е. закон сообщающихся сосудов состоит в следующем.

В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.

Свойства сообщающихся сосудов

Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.

Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.

Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.

В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.

Приборы основанные на законе сообщающихся сосудов

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.

Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.

В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.

Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.

Применение сообщающихся сосудов

Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.

Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.

Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.

Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.

В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.

Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.

В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.

Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.

Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.

Видео по теме

Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.

Вместе со статьей “Закон сообщающихся сосудов и его применение.” читают:

Источник