Разряжение в закрытом сосуде

Разряжение в закрытом сосуде thumbnail

Примеры решения задач по теме “Процессы изменения состояния идеальных газов”

1. В закрытом сосуде емкостью $V = 300$ л содержится $3$ кг газа при давлении $p_1 = 8$ ат и температуре $t_1 = 20$ °C. Определить давление (ат) и удельный объем после охлаждения воздуха до $0$ °C.

Разряжение в закрытом сосуде

2. В закрытом сосуде заключен газ при разрежении $p_1 = 6.7$ кПа и температуре $t_1 = 70$ °C. Показания барометра – $742$ мм.рт.ст. До какой температуры нужно охладить газ при том же атмосферном давлении, чтобы разрежение стало $p_2 = 13.3$ кПа?

Разряжение в закрытом сосуде

3. В закрытом сосуде емкостью $V = 0.6$ м3 содержится азот при давлении (абсолютном) $p_1 = 0.5$ МПа и температуре $t_1 = 20$ °C. В результате охлаждения сосуда азот, содержащийся в нем, теряет $105$ кДж. Определить, какие давление и температура устанавливаются в сосуде после охлаждения.

Разряжение в закрытом сосуде

4. Сосуд емкостью $90$ л содержит углекислый газ при абсолютном давлении $0.8$ МПа и температуре $30$ °C. Определить количество теплоты, которое необходимо сообщить газу при $v = const$, чтобы давление поднялось до $1.6$ МПа.

Разряжение в закрытом сосуде

5. Какое количество теплоты необходимо затратить, чтобы нагреть $2$ м3 воздуха при постоянном избыточном давлении $p = 2$ ат от $t_1 = 120$ °C до $t_2 = 450$ °C? Какую работу при этом совершит воздух? Атмосферное давление принять равным $750$ мм.рт.ст., учесть зависимость теплоемкости от температуры.

Разряжение в закрытом сосуде

6. В установке воздушного отопления внешний воздух при $t_1 = – 15$ °C нагревается в калорифере при $p = const$ до $60$ °C. Какое количество теплоты надо затратить для нагревания $1000$ м3 наружного воздуха? Давление воздуха считать равным $755$ мм.рт.ст.

Разряжение в закрытом сосуде

7. Уходящие газы котельной установки проходят через воздухоподогреватель. Начальная температура газов $t_{г1} = 300$ °C, конечная $t_{г2} = 160$ °C; расход газов равен $900$ кг/ч. Начальная температура воздуха составляет $t_{в1} = 15$ °C, а расход его равен $800$ кг/ч. Определить температуру нагретого воздуха $t_{в2}$, если потери тепла в воздухоподогревателе составляет $4$ %. Средние теплоемкости для газов и воздуха принять соответственно равными $1.0467$ и $1.0048$ кДж/(кгּ К).

Разряжение в закрытом сосуде

8. При сжигании в топке парового котла каменного угля объем продуктов сгорания составляет $V_н = 11.025$ м3/кг (объем при нормальных условиях, приходящийся на 1 кг топлива). Анализ продуктов сгорания показывает следующий их объемный состав: $CO = 10$ %; $O2 = 8$ %; $H2O = 10$ %; $N2 = 72$ %. Определить количество теплоты, теряемой с уходящими газами (в расчете на $1$ кг топлива), если на выходе из котла температура газов равна $180$ °C, а температура окружающей среды $20$ °C. Давление продуктов сгорания принять равным атмосферному. Учесть зависимость теплоемкости от температуры.

Разряжение в закрытом сосуде

9. Воздух в количестве $1$ кг при температуре $t = 30$ °C и начальном давлении $p_1 = 0.1$ МПа изотермически сжимается до конечного давления $p_2 = 1$ МПа. Определить конечный объем, затрачиваемую работу изменения объема и количество теплоты, отводимой от газа.

Разряжение в закрытом сосуде

10. Воздух в количестве $12$ кг при температуре $t = 27$ °C изотермически сжимается до тех пор, пока давление не становится равным $4$ МПа. На сжатие затрачивается работа $L = –6$ МДж. Найти начальные давление и объем, конечный объем и теплоту, отведенную от воздуха.

Разряжение в закрытом сосуде

11. Воздух в количестве $0.5$ кг изотермически расширяется от давления $p_1 = 100$ ат до $p_2$. Определить давление $p_2$ в ат, работу изменения объема $L_{1-2}$ и отведенную теплоту $Q_{1-2}$, если $frac{v_2}{v_1} = 5$ и $t_1 = 30$ °C.

Разряжение в закрытом сосуде

12. В идеально охлаждаемом компрессоре происходит изотермическое сжатие углекислого газа. В компрессор поступает $700$ м3/ч газа (приведенного к нормальным условиям) при $p_1 = 0.095$ МПа и $t_1 = 47$ °C. Давление за компрессором $p_2 = 0.8$ МПа. Найти теоретическую мощность приводного двигателя $N_0$ (кВт) и теоретический расход $M_в$ охлаждающей компрессор воды (в кг/ч), если она нагревается в системе охлаждения на $Δt = 15$ °C.

Разряжение в закрытом сосуде

13. Воздух при температуре $t_1 = 20$ °C должен быть охлажден посредством адиабатного расширения до температуры $t_2 = –30$ °C. Конечное давление воздуха при этом должно составлять $0.1$ МПа. Определить начальное давление воздуха $p_1$ и работу расширения $1$ кг воздуха.

Разряжение в закрытом сосуде

14. Воздух при температуре $120$ °C изотермически сжимается так, что его объем становится равным $0.25$ начального, а затем расширяется по адиабате до начального давления. Определить температуру воздуха в конце адиабатного расширения. Представить процессы расширения и сжатия в диаграммах pv и Ts.

Разряжение в закрытом сосудеРазряжение в закрытом сосуде

15. При адиабатном расширении $1$ кг воздуха $K = 1.40 = сonst$ температура его падает на $100$ K. Какова полученная в процессе расширения работа и сколько теплоты следовало бы подвести к воздуху, чтобы ту же работу получить в изотермическом процессе?

Разряжение в закрытом сосуде

16. Воздух в количестве $1$ кг политропно расширяется от $12$ до $2$ ат, причем объем его увеличился в $4$ раза; начальная температура воздуха равна $120$ °C. Определить показатель политропы, начальный и конечный объемы, конечную температуру и работу расширения.

Разряжение в закрытом сосуде

17. При политропном сжатии $1$ кг воздуха до объема $v_2 = 0.1ּ v_1$ температура поднялась с $10$ до $90$ °C. Начальное давление равно $0.8$ бар; $R = 287$ Дж/(кгּ K). Определить показатель политропы, конечные параметры газа, работу сжатия и количество отведенной наружу теплоты.

Разряжение в закрытом сосуде

18. Воздух в компрессоре сжимается по политропе $n = 1.25$ от $1$ до $8$ бар; начальная температура воздуха $5$ °C. После сжатия воздух проходит через холодильник, охлаждаемый холодной водой, начальная температура которой $t_1 = 10$ °C, а конечная равна $t_2 = 18$ °C. Определить часовой расход охлаждающей воды, если производительность компрессора $1000$ мн3/ч при нормальных физических условиях, а воздух в холодильнике изобарно охлаждается до $30$ °C.

Разряжение в закрытом сосуде

19. В воздушном двигателе воздух в количестве $1$ кг расширяется от $p_1 = 10$ ат до $p_2 = 1$ ат. Расширение может произойти изотермически, адиабатно и политропно с показателем политропы $n = 1.2$. Сравнить работы расширения и определить конечные параметры воздуха по этим трем процессам; начальная температура воздуха $t_1 = 227$ °C. Представить процессы на диаграмме pv.

Читайте также:  Кусок льда массой м плавает в цилиндрическом сосуде

Разряжение в закрытом сосудеРазряжение в закрытом сосуде

20. В процессе политропного расширения воздуху сообщается $70$ кДж теплоты. Найти изменение внутренней энергии воздуха и произведенную работу, если объем воздуха увеличился в $8$ раз, а давление его уменьшилось в $10$ раз.

Разряжение в закрытом сосуде

Источник

Добрый день наш уважаемый читатель. Получая часто вопросы от наших клиентов в 90% процентов из всех случаев, мы даем быстрые, четкие и грамотные ответы нашему собеседнику. Дело в том, что нашего богатого опыта работа отлично хватает чтобы закрыть потребности среднестатистического клиента или спикера.

Развернуто и не очень мы уже отвечали в нашем блоге людям на следующие вопросы:

Поставленная задача

Сейчас перед нами встала следующая задача вот такого содержания: есть сосуд с неизменяемым объемом жидкости внутри него. Предположим, что сосуд состоит из обыкновенного железа, например, возьмем простой накопительный бойлер (V = 50 литров). Начальное давление в системе 2 атмосферы, начальная температура воды Т1 = 17 градусов цельсия, конечная температура после нагрева Т2 = 57 градусов цельсия. Исходные параметры могут быть разные, но конечная задача, на которую нужно получить ответ будет следующая: какое давление будет в закрытом сосуде при нагреве воды до указанной температуры Т2, если учесть, что краны на сосуде (вход и выход) находятся в положении закрыто, и начальный объем не изменяется??? Давление можно снимать (измерять) при помощи встроенного или выносного трубного манометра. Расширительного бака нет. Все для эксперимента.

Остаемся на связи в любой момент! Компания Монтажник работает для Вас!

Закон и формула Шарля

Начав решать эту задачу, каждый может прибегнуть к такому ответу: «да ладно, это же задачка за 7 класс, тут нужно применять формулу известного физика Шарля, Вы что учебник физики не читали?». Далее следует решение:

Формула: (273+t2)/(273+t1)=коэффициент увеличения давления от исходного.

(273+57)/(273+17)=330/290=1.13.

1.13 умножаем на 2 получаем что давление будет равно 2.26 после нагрева жидкости с 17 до 57 на 40 единиц.

Ну дела, вот же решение, зачем страдать дальше? Но нет друзья, это решение конечно же хорошее – но применимо только для изохорных идеальных газов, но не в коем случае не для жидкости, представленной у нас на примере воды.

Едем дальше изучая попутно других известных святил физики, и воуля мы натыкаемся на еще одно решение.

Для расчетов берем исходные данные из чего изготовлен сосуд, у нас это железо. Коэффициент объёмного расширения железа стабильно одинаковый, берем за основу среднее значение 0,000036, а вот коэффициент объема воды изменяется в зависимости от ее нагрева. Примерно 0,00015 при 20 градусах цельсия и 0,00045 при 60 градусах цельсия. Среднее значение путем сложения из двух данных получаем 0,00030.

Чтобы посчитать объем во сколько увеличиться объем в сосуде воспользуемся формулой: 1 + коэффициент расширения железа * (t2-t1).

В цифрах будет выглядеть так: 1 + 0,000036 * (57 – 17) = 1.002;

В качестве информационной нагрузки узнаем еще на сколько бы увеличился V воды если бы она была вне сосуда: 1 + 0,0003 * (57 – 17) = 1,012. Далее все упирается на сколько же прочный Ваш сосуд и не раздует ли его при повышении давления.

Чтобы узнать процентное увеличение объема воды с воздействием на сосуд воспользуемся следующей формулой подставим все цифры: 1,012 / 1,002 * 100 – 100 = 1 %.

Обратившись к учебнику физики, мы узнаем, что при давлении каждой атмосферы объем воды уменьшается на 0,000006. Например, 50 литров, при одной атмосфере сожмется на 0,001 и будет 49.999. Зато по сравнению с газами сжимаемость жидкостей действительно ничтожна: в десятки тысяч раз меньше.

Если объём воды при 2 атм = 50 литров, то при 500 атм объём станет примерно на 1 литр меньше. (разница в двух числах 2%).

1%/2% * 500 = 250 атмосфер, то значение при котором по идее должно разорвать Ваш бак и то давление которое будет у вас при нагреве. Честно, считаем это какой-то бред и не он никак не сочетается с реальными жизненными показателями, полученными в ходе эксперимента.

Изучав дальше интернет и опираясь на наши знания всех из коллег нашего отдела было перепробовано масса различных вариантов и изучено мнений других людей, которые потом можно было бы использоваться для выявления формулы по нашей задаче:

Вода при нагревании увеличивается в объеме до 4%, т.е. 50 наших литров должны превратиться в 52 литра за счет ее расширения, но применить данную теорию в нашем вопросе нам пока не удалось. Мы даже изучили соотношение плотности льда к плотности воды и поняли объем в этом случае увеличивается на 11 процентов.

Есть мнение (алгоритм) с нашей стороны что ни одну из формул применить тут нельзя, так как в баке или бойлере представленным нами невозможно заполнить его на все 100% жидкостью, какую часть в одной жидкости все равно будет составлять воздух, который в этом случае будет работать как расширительный бак и возможно поэтому те 800 атмосфер которые получаются у разных людей нормализуются тем количеством воздуха который содержаться в сосуде.

Если Вы физик или технически подкованный человек, разбираетесь в данном вопросе и готовы разрешить наш спор и получить ответ на поставленную задачу – ждем Ваших решений под этой записью в комментариях.

Со своей стороны хотим так же сказать, что при проведении реального эксперимента и нагрева воды в бойлере с 18-20 градусов до 50, давление поднялось по манометру с 1.5 очков (бар, атмосфер) примерно и до 5 бар.

Спасибо за проявленный труд, терпение и прочтение данной статьи. Надеемся что этот вопрос решится в ближайшее время и мы найдем грамотный ответ.

Читайте также:  На что распространяются правила сосуды под давлением

Всего Вам доброго и приятного дня.

Другие полезные записи в блоге – только для Вас!

  • Котел КСУВ наружного размещения. Почему он является лучшим из всех? Технические особенности, выбор большинства организаций. Котельная больше не нужна. Устанавливай прямо со зданием.
  • История на “миллион”, как мы помогли ДОЛ “Лесное озеро”. Крупный DIY проект России, сделай сам!
  • Тепловой пункт: какой промышленный котел выбрать?
  • Наглядный ремонт КЧМ руками наших специалистов.
  • ОАО “Кировский завод” банкрот. Какая судьба ожидает котлы КЧМ-5, КЧМ-5К, КЧМ-7 Гном?
  • Почему в котлах КЧМ-5К не используются колосники? Техническая информация и не только.
  • Все основные запасные части к котлу КЧМ, артикулы, описание и много полезной информации.
  • Лемакс – лучшее соотношение цена/качество в бытовых котлах.
  • 1000 колосников на складе компании МОНТАЖНИК – новый завоз.
  • Что такое колосник? Расскажем все очень подробно.
  • Почему котлы ИШМА покупают 90 из 100 клиентов. Лучшее соотношение цены-качества.
  • Лучший конкурент котла Buderus, Valliant, Protherm – это Кентатсу (Kentatsu) – или как мы его называем один в поле ВОИН! А так же там мы ответили на вопрос, что лучше русский КЧМ или Турецкояпонский гигант?
  • Полная подробная инструкция по монтажу промышленных котлов
  • Посмотреть все статьи и новости

Наши отправки (отгрузки), услуги и выполненные работы:

Статьи посвященные нашим отгрузкам не только поднимают наш авторитет как считаем мы, но они направлены на увеличение доверия со стороны потенциальных клиентов. Нам нечего скрывать – мы делимся с Вами своими продажами и успехами. У нас нет скрытых продаж и ухода от налогов. Мы стараемся делать наше с Вами сотрудничество и работу максимально прозрачными. Мы хотим чтобы Вы доверяли нашей команде!

Если у Вас есть идеи о том, о том что Вы бы хотели увидеть на нашем канале. То присылайте их на нашу легкую почту: 426909@bk.ru. Если Вам понравилась статья оцените ее, поставьте палец вверх слева экрана (если Вы читаете ее с компьютера), а также подпишитесь на наш блог, Вас ждет много полезной и интересной информации.

С вами на связи была компания ООО “Монтажник” – официальный дистрибьютор нескольких заводов изготовителей по всей стране. По вопросам приобретения котлов, насосов и другого сопутствующего оборудования (запчасти, дымоходы, автоматика) можете обращаться по телефонам: 8(47354) 2-55-25; 2-69-09 или на электронную почту: 426909@bk.ru или montagnikvrn@yandex.ru.

Наш логотип

Отзывы о нашей компании:

15 лет на рынке – ни одного плохого отзыва за все время работы.

Посмотреть все отзывы.

СПАСИБО ЧТО ОСТАЕТЕСЬ С НАМИ! Рассказывайте друзьям, делитесь материалом со своими знакомыми. Нам важен каждый.

Компания которая относится к своему клиенту с ДУШОЙ!

Заказ через наш интернет магазин

Источник

Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум.

Попытаемся разобраться, что же это такое.

По определению, вакуум – это пространство, свободное от вещества (от латинского слова «vacuus» – пустой).

Существует несколько определений вакуума: технический вакуум, физический вакуум, космический вакуум и т.д.

Мы будем рассматривать технический вакуум, который определяется как сильно разреженный газ.

Рассмотрим на примере, что такое вакуум и как его измеряют.

На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум.

Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом.

Возьмём некий сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнём откачивать из сосуда воздух, то в нём возникнет разряжение, которое и называется вакуумом.

Рассмотрим на примере: в левом сосуде 10 кружочков. Пусть это будет 1 атмосфера.

«откачаем» половину – получим 0,5 атм, оставим один – получим 0,1 атм.

Вакуум в картинках

Так как в сосуде всего одна атмосфера, то и максимально возможный вакуум мы можем получить (теоретически) ноль атмосфер.

“Теоретически” – т.к. выловить все молекулы воздуха из сосуда практически невозможно.

По этому, в любом сосуде, из которого откачали воздух (газ) всегда остается какое-то его минимальное количество. Это и называют “остаточным давлением”, то есть давление, которое осталось в сосуде после откачки из него газов.

Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но всё равно не до нуля.

В обычной жизни редко когда требуется вакуум глубже 0,5 – 10 Па (0,00005-0,0001 атм).

Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчёта:

1. За единицу принимается атмосферное давление. Всё, что ниже единицы – вакуум.

То есть шкала вакуумметра от 1 до 0 атм (1…0,9…0,8…0,7…..0,2…0,1….0).

2. За ноль принимается атмосферное давление. То есть вакуум – все отрицательные числа меньше 0 и до -1.

То есть шкала вакуумметра от 0 до -1 (0, -0,1…-0,2….,-0,9,…-1).

Также шкалы могут быть в кПа, mBar, но это всё аналогично шкалам в атмосферах.

На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум:

Вакууметры с разными шкалами

Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.

К нам почти каждый день обращаются люди, которые хотят получить вакуум -2, -3 атм и т.д.

И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что “вы сами ничего не знаете”, “а у соседа так” и т.д. и.т.п.)

На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).

Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.

Читайте также:  Продукты полезные для очистки сосудов

Вакуумметры с разными шкалами

Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО “Насосы Ампика”, у нас в офисе:

включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.

Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.

После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).

В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.

Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.

По-простому – это сила, распределённая по площади поверхности.

Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).

Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).

Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).

То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).

Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.

Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).

Как посчитать силу прижима какой-либо детали к поверхности?

Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.

Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.

Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.

Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.

1 атмосфера равна 1 кг/см2.

Площадь поверхности детали – 100 см2 (10см х10 см).

То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.

Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.

Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.

Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.

Теперь пару слов о механических вакуумметрах.

Эти устройства показывают остаточное давление в пределах 0,05…1 атм.

То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр, например VG-64.

Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.

Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?

Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.

Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.

Но так ли это на самом деле?

1 атм = 100000 Па = 1 кг/см2.

Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).

То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.

Расчет времени вакуумирования емкости

Как рассчитать за какое время вакуумный насос откачает вакуумную камеру?

В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем.

Ниже приведена формула для вычисления этого параметра.

t = (V/S)*ln(p1/p2)*F, где

t – время (в часах) необходимое для откачки вакуумного объема от давления p1 до давления p2

V – объем откачиваемой емкости, м3

S – быстрота действия вакуумного насоса, м3/час

p1 – начальное давление в откачиваемой емкости, мбар

p2 – конечное давление в откачиваемой емкости, мбар

ln – натуральный логарифм

F – поправочный коэффициент, зависит от конечного давления в емкости p2:

– p2 от 1000 до 250 мбар F=1

– p2 от 250 до 100 мбар F=1,5

– p2 от 100 до 50 мбар F=1,75

– p2 от 50 до 20 мбар F=2

– p2 от 20 до 5 мбар F=2,5

– p2 от 5 до 1 мбар F=3

В двух словах, это всё.

Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива…

Источник