Резистентность сосудов головного мозга у ребенка

Резистентность сосудов головного мозга у ребенка thumbnail

Диагноз после узи головного мозга

Мы в месяц угодили в больницу с

Простудой и там нам сделали узи головного мозга, д-з: повышение индекса

Резистентности в передней мозговой артерии. Сказали ничего страшного,

Наблюдайтесь в динамик у невропотолога. В поликлинике нас к

Невропотологу не направляют, говорят, что этот диагноз не страшен и

Вообще не надо на него обращать внимание.

Подскажите, пожалуйста, кто-нибудь сталкивался с таким диагнозом? В интернете не нашла информации. Заранее благодарю))))

На страницах проекта Дети Mail. Ru не допускаются комментарии, нарушающие законодательство РФ, а также пропагандистские и антинаучные высказывания, реклама, оскорбления авторов публикаций, других участников дискуссии и модераторов. Также удаляются все сообщения с гиперссылками.

Аккаунты пользователей, систематически нарушающих правила, будут заблокированы, а все оставленные сообщения — удалены.

Связаться с редакцией проекта можно через форму обратной связи.

Допплеровское исследование интракраниального кровотока у новорождённых

Схема расположения интракраниальных артерий

В С.1. 1 — передняя мозговая артерия; 2 — внутренняя сонная артерия; 3 — задняя мозговая артерия; 4 — основная артерия. Передняя мозговая артерия Самая удобная и простая позиция для её обнаружения — срединное сагиттальное сечение. Обычно правая и левая передние мозговые артерии расположены очень близко друг к другу, что не позволяет различать их как отдельные сосуды. Раздельно эти артерии можно увидеть, применяя энергетическое картирование. Для получения показателей кровотока контрольный объём устанавливают в области колена мозолистого тела. Внутренняя сонная артерия Для получения показателей используют вертикальную часть сосуда после его выхода из каротидного канала над уровнем турецкого седла во фронтальной плоскости. Далее, над уровнем переднего клиновидного отростка, внутренняя сонная артерия делится на переднюю и среднюю мозговые артерии. Основная артерия Сосуд исследуется в срединном сагиттальном срезе на передней поверхности моста или во фронтальной плоскости в нескольких миллиметрах за местом обнаружения внутренней сонной артерии. Средняя мозговая артерия Основным ориентиром в поиске артерии служит латеральная борозда на границе лобной и височной долей. Наиболее удачный угол её инсонации достигается при транскраниальном сканировании через височную кость (аксиальная плоскость). Изменения мозгового кровотока, связанные с ростом и развитием ребёнка Показатели церебральной гемодинамики здорового новорождённого определяются, прежде всего, гестационным возрастом и наличием (или отсутствием) гемодинамически значимого функционирующего артериального протока. С увеличением постнатального возраста и веса на протяжении первых месяцев жизни отмечается постепенное повышение максимальной, минимальной и средней скоростей кровотока, снижение индекса резистенстности в артериях и повышение средней скорости в крупных венозных коллекторах.

Индекс резистентности у новорождённых

При различных вариантах цереброваскулярных нарушений в раннем неонатальном периоде ПВК — перивентрикулярное кровоизлияние I-IV степени; ПВО — периветрикулярный ореол.

РЭГ сосудов головы: когда делать обследование и как его расшифровать?

О том, что центральная нервная система регулирует все процессы в организме, знают все, как и о том, что все её клетки также нуждаются в дыхании и питательных веществах, которые придут по магистралям кровеносных сосудов. От качества кровоснабжения напрямую зависит и качество жизни, учитывая функции и задачи, возложенные на нашу голову. Путь крови, несущей «пищу», должен быть гладким и встречать только «зелёный свет». А если на каком-то участке преграда в виде сужения сосуда, закупорки или резкого обрыва «дороги», то выяснение причины должно быть немедленным и достоверным. В таком случае РЭГ сосудов головного мозга будет первоочередным шагом в изучении проблемы.

Сосуды, ведущие в «центр»

Когда сосуды нашего организма гладкие и эластичные, когда сердце равномерно и качественно обеспечивает кровообращение, которое даёт питание тканям и забирает ненужные вещества – мы спокойны и даже не замечаем этих процессов. Однако под воздействием различных факторов сосуды могут не выдерживать и «портится». Они не могут приспосабливаться к температурным колебаниям и изменениям атмосферного давления, теряют способность запросто перемещаться из одного климатического пояса в другой. Сосуды теряют «навыки» оперативного реагирования на воздействие внешних раздражителей, поэтому любое волнение или стресс может привести к сосудистой катастрофе, предотвратить которую поможет реоэнцефалография сосудов головного мозга, снятая своевременно. Причины, приводящие к нарушению кровотока следующие:

    Cужение просвета сосудов в результате отложения холестериновых бляшек нарушает его эластичность, развивая атеросклеротический процесс. Это зачастую ведёт к инфаркту миокарда или инсульту; Повышенное образование тромбов может привести к отрыву последнего, миграции по кровеносному руслу и закрытию просвета сосуда (ишемический инсульт). Черепно-мозговые травмы, перенесённые ранее, и, как будто благополучно закончившиеся, могут привести к повышению внутричерепного давления, что также будет выражаться проявлениями нарушения кровообращения.

РЭГ головного мозга может определить наличие или отсутствие субдуральной гематомы, возникшей в результате травматического повреждения головного мозга. Образовавшееся в тканях мозга кровоизлияние, естественно, создаст препятствие нормальному току крови.

Если не забегать далеко вперёд, а провести исследование, когда симптоматика неярко выражена и создаёт дискомфорт от случая к случаю, то РЭГ головного мозга не только определит состояние сосудов, но и поможет выбрать тактику предупреждения серьёзных последствий, ставящих под угрозу жизнь человека.

Кроме того, РЭГ показывает не только качество кровотока по магистральным сосудам, но при этом обязательно оценит коллатеральное кровообращение (когда ток крови по магистральным сосудам затруднён, и она направляется «в обход»).

РЭГ и «несерьёзные» болезни

Есть состояния, которые хоть и не смертельны, но жить нормально не дают. Вот, нейроциркуляторная дистония у многих присутствует, поэтому и болезнью не особо значится, ведь «от неё не умирают». Или, например, мигрень (гемикрания), считающаяся прихотью светских дам, благополучно дошла до наших дней и многих женщин в покое не оставляет. Препараты от головной боли, как правило, не помогают, если в состав лекарственного средства не входит кофеин.

Считая женщину абсолютно здоровой (ведь признаков никакой болезни нет), окружающие часто отмахиваются. Да и сама она потихоньку начинает считать себя симулянткой, понимая, однако, в глубине души, что обследование головы не помешало бы. А, между тем, невыносимые головные боли приходят ежемесячно и связаны с менструальным циклом.

Назначенная и проведённая РЭГ головы, проблему решает в считанные минуты, а применение адекватных лекарственных препаратов избавляет пациентку от боязни ежемесячных физиологических состояний. Но это благоприятное течение болезни, а есть и другое…

Немногие знают, что несерьёзной мигрень считать не приходится, ибо болеют ею не только женщины, и не только в молодом возрасте. Мужчинам тоже иногда в этом плане «везёт». И проявлять себя болезнь может настолько, что человек полностью теряет работоспособность и нуждается в назначении группы инвалидности.

Как проводят анализ работы сосудов головы?

Когда возникает необходимость сделать РЭГ, больные, как правило, начинают волноваться. Успокоить здесь можно сразу – Метод неинвазивный, а стало быть, безболезненный. Вреда организму процедура РЭГ не несёт и может выполняться даже в раннем младенчестве.

Читайте также:  Сузились сосуды головного мозга

Обследование головы РЭГ осуществляется с помощью 2-6 канального аппарата — реографа. Разумеется, чем больше каналов имеет прибор, тем большая область исследования будет охвачена. Для решения больших задач и записи работы нескольких бассейнов используются полиреогреографы.

Итак, пошагово процедура РЭГ выглядит следующим образом:

Пациента удобно располагают на мягкой кушетке; На голову накладывают металлические пластинки (электроды), которые перед этим обрабатывают специальным гелем, чтобы предотвратить раздражение кожи; Электроды прикрепляются резиновой лентой в местах, где намечено провести оценку состояния сосудов. Электроды накладываются в зависимости, какой отдел головного мозга подлежит исследованию РЭГ: Если врача интересует бассейн внутренней сонной артерии, то электроды лягут на переносицу и сосцевидный отросток; Если же дело касается наружной сонной артерии, то пластинки будут укрепляться спереди от слухового прохода и над бровью снаружи (ход височной артерии); Оценка работы сосудов бассейна позвоночных артерий предусматривает наложение электродов на мастоидальный (сосцевидный) отросток и затылочные бугры с одновременным снятием электрокардиограммы.

При обследовании головы РЭГ больному рекомендуется закрыть глаза, чтобы внешние раздражители не оказали влияния на конечный результат. Данные, полученные прибором, регистрируются на бумажной ленте.

Полученные результаты РЭГ, расшифровка которых требует дополнительных навыков, направляются врачу, прошедшему специальную подготовку в этой области. Однако пациенту очень не терпится узнать, что же творится в его сосудах и что означает график на ленте, ведь, как делают РЭГ, он уже хорошо представляет и даже может успокоить ждущих в коридоре.

В некоторых случаях для получения более полной информации о функции сосудов применяют пробы с препаратами, воздействующими на сосудистую стенку (нитроглицерин, кофеин, папаверин, эуфиллин и др.)

Что означают непонятные слова: расшифровка РЭГ

Когда врач приступает к расшифровке РЭГ, в первую очередь он интересуется возрастом пациента, который в обязательном порядке учитывается для получения адекватной информации. Разумеется, нормы состояния тонуса и эластичности для молодого и пожилого человека будут разные. Суть РЭГ состоит в регистрации волн, характеризующих наполнение кровью отдельных участков мозга и реакцию сосудов на кровенаполнение.

Краткое описание графического изображения колебаний можно представить следующим образом:

    Восходящая линия волны (анакрота) резко стремиться вверх, вершина её слегка закругляется; Нисходящая (катакрота) плавно идет вниз; Инцизура, расположенная в средней трети, за которой следует небольшой дикротический зубец, откуда нисходящая спускается и начинается новая волна.

Чтобы расшифровать РЭГ врач обращает внимание:

Регулярны ли волны; Какая вершина и как она закругляется; Как выглядят составляющие (восходящая и нисходящая); Определяет местоположение инцизуры, дикротического зубца и наличие дополнительных волн.

Нормы графиков РЭГ, в зависимости от возраста

Результаты обследования, свидетельствующие об атеросклерозе

Распространенные типы по РЭГ

После проведённого анализа записи реоэнцефалографии, доктор фиксирует отклонение от нормы и делает заключение, которое пациент стремится быстрее прочитать и истолковать. Результатом исследования является определение типа поведения сосудов:

    Дистонический тип характеризуется постоянным изменением сосудистого тонуса, где часто преобладает гипотонус со сниженным пульсовым наполнением, который может сопровождаться затруднением венозного оттока; Ангиодистонический тип мало отличается от дистонического. Для него также характерны нарушения сосудистого тонуса ввиду дефекта строения сосудистой стенки, ведущей к снижению эластичности сосудов и затрудняющей кровообращение в определённом бассейне; Гипертонический тип по РЭГ несколько отличен в этом плане, здесь наблюдается стойкое повышение тонуса приводящих сосудов при затруднённом венозном оттоке.

Типы РЭГ нельзя квалифицировать как отдельные заболевания, ибо они лишь сопутствуют другой патологии и служат диагностическим ориентиром для определения её.

Отличие РЭГ от других исследований головного мозга

Часто, записываясь в медицинские центры на обследование головы РЭГ, пациенты путают его с другими исследованиями, содержащими в своих названиях слова «электро», «графия», «энцефало». Это и понятно, все обозначения похожи и людям, далёким от этой терминологии, порой бывает трудно разобраться. Особенно в этом плане достаётся электроэнцефалографии (ЭЭГ).Правильно, и то, и другое изучает голову, путём накладывания электродов и регистрации на бумажной ленте данных работы какой-то области головы. Отличия РЭГ и ЭЭГ заключаются в том, что первая изучает состояние кровотока, а вторая выявляет активность нейронов какого-то участка головного мозга.

Сосуды при ЭЭГ оказывают косвенное влияние, однако длительное нарушение кровообращения будет отражаться на энцефалограмме. Повышенная судорожная готовность или другой патологический очаг на ЭЭГ выявляются хорошо, что служит для диагностики эпилепсии и судорожных синдромов, связанных с перенесённой травмой и нейроинфекцией.

Где, как и сколько стоит?

Несомненно, где лучше пройти РЭГ головного мозга, цена которой колеблется От 1000 до 3500 рублей, решает пациент. Однако очень желательно отдать предпочтение хорошо оснащенным специализированным центрам. К тому же, наличие нескольких специалистов данного профиля поможет разобраться коллегиально в затруднительных ситуациях.

Цена РЭГ, помимо уровня клиники и квалификации специалистов, может зависеть от необходимости проведения функциональных проб и невозможности осуществить процедуру в учреждении. Многие клиники предоставляют такую услугу и для проведения исследования выезжают на дом. Тогда стоимость увеличивается до 10000-12000 рублей.

Источники:

https://deti. mail. ru/forum/zdorove/detskoe_zdorove/diagnoz_posle_uzi_golovnogo_mozga/

https://xn--80ahc0abogjs. com/57_patologicheskaya-fiziologiya_797/dopplerovskoe-issledovanie-intrakranialnogo-50814.html

https://sosudinfo. ru/golova-i-mozg/reg-sosudov-golovy/

Источник

Резистентность сосудов головного мозга у ребенка

УЗИ сканер HS60

Профессиональные диагностические инструменты. Оценка эластичности тканей, расширенные возможности 3D/4D/5D сканирования, классификатор BI-RADS, опции для экспертных кардиологических исследований.

Уже более 20 лет допплерография используется для оценки мозгового кровотока у новорожденных детей. Хорошо изучены подходы для визуализации внутричерепных артерий и вен, разработаны стандартные показатели, снимаемые с допплеровской кривой. Но интерпретация полученных результатов по-прежнему затруднена. Допплерография является, с одной стороны, очень тонким методом, позволяющим регистрировать малейшие изменения регионального кровоснабжения, а с другой стороны, относительно грубым в силу зависимости от большого количества “внемозговых” факторов. К такому самому весомому фактору относится состояние сердечной гемодинамики. В литературе часто встречаются сообщения о так называемых кардиоцеребральном синдроме, транзиторной дисфункции миокарда у новорожденных, перенесших гипоксию [1, 2], однако изменения в сердце и головном мозге в этих исследованиях рассматриваются изолированно. Поэтому в нашей работе мы попытались одновременно оценить состояние центральной и церебральной гемодинамики у новорожденных детей с целью выявления возможной связи между ними.

Материалы и методы

Было обследовано 103 ребенка (I группа – 58 детей, родившихся недоношенными со сроком гестации 27-36 недель и массой при рождении от 910 до 1910 г, II группа – 45 детей, родившихся доношенными с массой от 2070 до 4400 г) в возрасте от 4 дней до 6 месяцев. Исследования проводились в динамике через 7-10 дней во время пребывания ребенка в стационаре на втором этапе выхаживания, а затем при явке его для наблюдения в поликлинику Научного центра здоровья детей РАМН (НЦЗД). Состояние всех детей в момент обследования было стабильным, а в клинической картине ведущей была неврологическая симптоматика различной степени тяжести. Всем пациентам проводили ультразвуковое исследование мозга и цветную допплерографию внутричерепных сосудов – передней мозговой, внутренней сонной и базиллярной артерий (рис. 1). Учитывали максимальную систолическую скорость (Vmax), среднюю скорость кровотока за время сердечного цикла (Vmean), минимальную диастолическую скорость (Vmin) и индекс резистентности RI=(Vmax-Vmin)/Vmin. Параллельно проводили ЭХО-кардиографическое исследование, определяя общий ударный объем (УО), вычисляемый как разница между диастолическим и систолическим объемами левого желудочка; эффективный ударный объем (УО эфф); минутный объем кровообращения (МО); фракцию изгнания (ФИ). Все ультразвуковые обследования проводили в одно и то же время – через 1 час после кормления детей в состоянии покоя. Регулярно оценивали пациентам соматический и неврологический статус и проводили общеклинические лабораторные исследования.

Читайте также:  Зауженные сосуды головного мозга симптомы

УЗ-эхограмма головного мозга новорожденного (сагиттальный срез через большой родничок) и допплерограмма кровотока по базиллярной артерии

Рис. 1. Эхограмма головного мозга новорожденного (сагиттальный срез через большой родничок) и допплерограмма кровотока по базиллярной артерии.

1 – передняя мозговая артерия; 2 – внутренняя сонная артерия; 3 – базиллярная артерия.

Результаты

Для вычисления описательных характеристик показателей центральной и церебральной гемодинамики обследованные были разделены на подгруппы по возрасту и периоду перинатальной энцефалопатии: первые 28 дней – острый период, старше 28 дней – восстановительный период.

Значения скоростей мозгового кровотока во всех трех обследованных сосудах были выше у доношенных детей по сравнению с недоношенными и в восстановительном периоде по сравнению с острым периодом (табл. 1). Другими словами, абсолютные скорости кровотока в крупных мозговых артериях повышались с увеличением массы тела, гестационного и постнатального возраста ребенка, что подтвердил корреляционный анализ. Наиболее выраженной была зависимость скоростей кровотока от массы тела (табл. 2). Индексы резистентности мозговых артерий были выше в группе детей, родившихся недоношенными (в остром периоде разница была высокодостоверной с р<0,001, в восстановительном периоде тенденция к повышению сохранялась, но разница была значительно менее выражена) – см. табл. 1.

Таблица 1. Допплерографические показатели церебральной гемодинамики.

ПоказательДоношенныеНедоношенные
Острый периодВосстановительный
период
Острый периодВосстановительный
период
V max ПМА, м/сек0,33±0,120,49±0,140,32±0,120,48±0,18
V min ПМА, м/сек0,09±0,040,13±0,050,07±0,040,12±0,08
V mean ПМА, м/сек0,20±0,080,30±0,090,19±0,070,29±0,12
RI ПМА0,72±0,080,74±0,080,77±0,090,76±0,11
V max ВСА, м/сек0,48±0,130,71±0,110,46±0,130,58±0,15
V min ВСА, м/сек0,12±0,050,16±0,070,09±0,060,14±0,08
V mean ВСА, м/сек0,29±0,090,41±0,070,26±0,090,35±0,12
RI ВСА0,75±0,070,78±0,100,81±0,090,77±0,09
V max БА, м/сек0,46±0,140,59±0,130,40±0,120,53±0,16
V min БА, м/сек0,11±0,050,13±0,050,07±0,040,12±0,08
V mean БА, м/сек0,27±0,090,34±0,080,22±0,070,32±0,11
RI БА0,75±0,080,77±0,080,81±0,090,78±0,10

ПМА – передняя мозговая артерия.
ВСА – внутренняя сонная артерия.
БА – базиллярная артерия.
Vmax – максимальная систолическая скорость.
Vmin – минимальная диастолическая скорость.
Vmean – средняя скорость кровотока за время сердечного цикла.
RI – индекс резистентности.

Абсолютные показатели сердечного выброса – общий ударный объем, эффективный сердечный выброс и минутный объем кровообращения были выше в группе доношенных детей как в остром, так и в восстановительном периодах (табл. 3). Так же, как и скорости мозгового кровотока, значения сердечного выброса увеличивались с увеличением массы тела у всех обследованных детей (табл. 2). Относительные показатели (сердечные индексы) – УО/кг, УО эфф/кг и МО/кг – были выше у недоношенных, что можно объяснить более высокими темпами роста, большей потребностью в кислороде и напряженностью метаболических процессов у таких детей по сравнению с доношенными.

Таблица 2. Коэффициенты корреляции между массой тела при обследовании и показателями центральной и церебральной гемодинамики (р<0,01).

ДетиУО эффУО
эфф/кос
МОМО/кгУОУО/кг
Доношенные0,42-0,470,37-0,440,43-0,48
Недоношенные0,69-0,310,60-0,360,57-0,42
ДетиVmax
ПМА
Vmin
ПМА
Vmean
ПМА
RI
ПМА
Vmax
ВСА
Vmin
ВСА
Доношенные0,270,280,300,350,30
Недоношенные0,510,570,55-0,270,360,37
ДетиVmean
ВСА
RI
ВСА
Vmax
ВСА
Vmin
ВСА
Vmean
ВСА
RI
ВСА
Доношенные0,340,430,400,46
Недоношенные0,37-0,230,420,540,50-0,34

ПМА – передняя мозговая артерия.
ВСА – внутренняя сонная артерия.
УО – общий ударный обьем.
УО эфф – эффективный ударный обьем.
МО – минутный объем кровообращения.
Vmax – максимальная систолическая скорость.
Vmin – минимальная диастолическая скорость.
Vmean – средняя скорость кровотока за время сердечного цикла.
RI – индекс резистентности.

Один из основных параметров сократимости миокарда – фракция изгнания – в обеих группах был одинаковым и соответствовал норме.

Таблица 3. Показатели центральной гемодинамики у обследованных детей.

ПоказательДоношенныеНедоношенные
Острый периодВосстановительный
период
Острый периодP1Восстановительный
период
P2
УО, мл6,35±1,616,70±2,044,84±0,99<0,0015,78±1,81<0,01
УО/кг, мл/кг2,08±0,601,78±0,482,27±0,58<0,052,14±0,56<0,01
УО эфф, мл6,14±1,556,85±2,164,58±1,20<0,0015,90±2,22<0,05
УО эфф/кг, мл/кг2,01±0,541,71±0,552,16±0,67>0,052,09±0,58<0,01
МО, л/мин0,91±0,261,04±0,310,70±0,19<0,0010,92±0,33<0,05
МО/кг, л/мин/кг0,30±0,090,26±0,090,33±0,11<0,050,33±0,10<0,001
ФИ0,69±0,040,69±0,040,69±0,030,69±0,05

УО – общий ударный обьем.
УО эфф – эффективный ударный обьем.
МО – минутный объем кровообращения.
ФИ – фракция изгнания.
P1 – коэффициент достоверности по отношению к подгруппе доношенных детей в остром периоде.
Р2 – по отношению к подгруппе доношенных детей в восстановительном периоде.

Корреляционный анализ, проведенный между показателями сердечного выброса и мозгового кровотока, выявил различия между группами доношенных и недоношенных детей. У детей, рожденных раньше срока, была обнаружена достоверная (р<0,05) положительная связь между скоростями кровотока в передней мозговой и базиллярной артериях и величиной сердечного выброса. В группе доношенных детей такой зависимости отмечено не было. При подробном анализе результатов обследования мы обнаружили, что связь между мозговым кровотоком и сердечным выбросом на протяжении первых месяцев жизни имелась не у всех недоношенных детей, а у детей с гестационным возрастом менее 34 недель. У более зрелых недоношенных скорости мозгового кровотока не зависели от изменений сердечного выброса, так же, как и у доношенных.

Между сердечными индексами и скоростями мозгового кровотока связь была обратной в обеих группах детей.

Зависимости между показателями мозгового кровотока, в том числе и индексами резистентности, и частотой сердечных сокращений в нашем исследовании не выявлено.

Читайте также:  Склероз сосудов головного мозга врач

У всех обследованных детей обнаружена достоверная (р<0,05) обратная связь между скоростями мозгового кровотока и гематокритом (рис. 2), причем менее всего эта связь была выражена в отношении минимальной скорости. Таким образом, диастолическая скорость и тесно связанный с ней индекс резистентности являются наиболее независимыми показателями состояния сосудистого русла мозга.

Диаграмма: Зависимость скоростей кровотока в передней мозговой артерии от величины гематокрита

Рис. 2. Зависимость скоростей кровотока в передней мозговой артерии от величины гематокрита.

Обсуждение

Результаты наших исследований показали, что у новорожденных детей с перинатальным гипоксическитравматическим поражением головного мозга после выхода их из критического состояния основными факторами, влияющими на показатели мозгового кровотока, были масса тела, гестационный и постнатальный возраст – так же, как и у здоровых новорожденных [3]. Это говорит о том, что нарушения мозгового кровотока без тяжелых органических изменений в головном мозге носят преходящий характер и быстро компенсируются.

Абсолютные скорости кровотока в крупных мозговых артериях растут с увеличением возраста и, в большей степени, массы тела ребенка. Индексы резистентности снижаются с увеличением гестационного возраста, т.е. у недоношенных детей, резистентность сосудов мозга в норме выше, чем у доношенных.

Сердечный выброс в обеих группах обследованных детей увеличивался с возрастанием массы тела, что также согласуется с литературными данными в отношении здоровых новорожденных [4, 5].

Обнаруженную нами положительную связь между сердечным выбросом и скоростями кровотока в передней мозговой и базиллярной артериях у недоношенных детей, на первый взгляд, можно объяснить влиянием на эти показатели массы тела. Известно, что связь между двумя физиологическими параметрами может быть не прямой, а опосредованной через третий показатель. Такое объяснение применимо к обнаруженной нами обратной связи между сердечными индексами и скоростями кровотока в мозговых артериях – с возрастанием массы происходит увеличение скоростей, но в меньшей степени, чем снижение значений сердечного выброса на килограмм веса, причем такое соотношение соблюдается в обеих группах обследованных детей.

У недоношенных детей имеется достоверная прямая зависимость абсолютных значений сердечного выброса и скоростей мозгового кровотока от массы тела. Однако такая же зависимость выявлена и у доношенных детей, но между собой показатели сердечного выброса и мозгового кровотока в этой группе не были связаны. Это означает, что зрелые новорожденные в стабильном состоянии уже со второй недели жизни обладают способностью поддерживать постоянство кровоснабжения мозга независимо от изменений центральной гемодинамики.

Н.С. Lou et al [6], обследуя доношенных и недоношенных новорожденных, находившихся в критическом состоянии (перенесших тяжелую асфиксию или имевших тяжелый синдром дыхательных расстройств), методом оценки клиренса радиоактивного ксенона, обнаружили у них прямую связь между мозговым кровотоком и изменениями артериального давления. Авторы назвали этот феномен нарушением ауторегуляции. Позже, с помощью допплерографического метода наличие такой же связи было установлено у глубоконедоношенных детей (с гестационным возрастом менее 31 недели и весом при рождении менее 1501 г) [7]. Из-за отсутствия регуляции мозговой кровоток пассивно следовал за изменениями артериального давления, увеличивая риск развития ишемических поражений при гипотензии и кровоизлияний при повышении артериального давления.

В нашем исследовании мы измеряли не артериальное давление, а непосредственно сердечный выброс у доношенных и недоношенных детей, находившихся в стабильном состоянии. Все обследованные дети живы и, более того, ни у одного ребенка с момента начала наблюдения не появилось новых патологических очагов ишемического или геморрагического генеза в головном мозге.

Мы полагаем, что выявленная нами зависимость мозгового кровотока от сердечного выброса у детей, родившихся ранее 34-й недели гестации, говорит не о тяжести состояния ребенка, а отражает морфологические особенности сосудистой системы мозга на этом этапе развития. К ним можно отнести значительную незрелость в количественном и качественном отношениях всех трех слоев стенок внутримозговых сосудов, а также наличие широких анастомозов между ветвями отдельных артерий и их связь с венами. После 30-32-й недель внутриутробного развития начинается регрессия артериальных анастомозов, бурный рост капиллярной сети, дифференцировка и созревание нервных окончаний и гладко-мышечных компонентов сосудистой стенки. Причем формирование внутримозговой ангиоархитектоники продолжается и у доношенных детей длительное время после рождения [8].

Результаты наших исследований еще раз подчеркивают необходимость максимально щадящей тактики выхаживания детей, родившихся недоношенными. Такое выхаживание должно включать в себя: придание удобного положения, поддержание стабильного уровня температуры тела (в кювезе или кроватке с подогревом), кормление через зонд (поскольку для незрелого ребенка даже акт сосания является серьезной физической нагрузкой), ограничение различных манипуляций, особенно связанных с болевыми ощущениями.

При обследовании новорожденных с перинатальным поражением головного мозга мы рекомендуем пользоваться не абсолютными значениями скоростей артериального кровотока ввиду их значительной вариабельности и зависимости от большого количества внешних факторов, а индексами резистентности, учитывая поправку на гестационный возраст. У недоношенных детей, особенно родившихся ранее 34-й недели гестации, также необходимо регулярно оценивать морфометрические и функциональные показатели сердца для раннего выявления отклонений, которые могут усугубить церебральную патологию.

Литература

  1. Walther F.J., Siassi В., Ramadan N.A., Wu P.Y.K. Cardiac output in newborn infants with transient myocardial dysfunction. J.Pediatr. – 1985. – 107, 781-785.
  2. Попова Н.В. Клинико-эхокардиографическая характеристика состояния сердца у новорожденных детей при перинатальной энцефалопатии/Автореф.дисс. к.м.н. – М.: – 1991. – 21 с.
  3. Van Bel F. (1997). Cerebral blood flow velocity waveform characteristics (Doppler ultrasound). In: Govaert P. and De Vries L.S. An atlas of neonatal brain sonography. – 1997. – 341-363. (Mac Keith Press)
  4. Walther F.J., Siassi В., Ramadan N.A., Wu P.Y.K. (1985). Pulsed Doppler determinations of cardiac output in neonates: normal standarts for clinical use. J.Pediatr. – 1985. – 76, 829-833.
  5. Гаврюшов В.В., Миленин О.Б., Ефимов М.С., Аксерольд В.Г. Определение сердечного выброса у новорожденных методом допплерографии/Педиатрия. – 1988. – N2, С. 71-76.
  6. Lou H.C., Lassen N.A., Friis-Hansen В. Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J.Pediatr. – 1979. – 94, 118-121.
  7. Jorch G., Jorch N. Failure of autoregulation of cerebral blood flow in neonates studied by pulsed Doppler ultrasound of the internal carotid artery. Eur.J.Pediatr. – 1987. – 146, 486-472.
  8. Жукова Т.П. Морфологические изменения сосудистой системы мозга в перинатальном периоде. – Обзор/Под ред. Жуковой Т.П. Мозговое кровообращение у новорожденных детей в норме и патологии. 5-22. – М.: 1983, ВНИИМИ.

Резистентность сосудов головного мозга у ребенка

УЗИ сканер HS60

Профессиональные диагностические инструменты. Оценка эластичности тканей, расширенные возможности 3D/4D/5D сканирования, классификатор BI-RADS, опции для экспертных кардиологических исследований.

Источник