Считая газ в сосуде идеальным мы пренебрегаем

Считая газ в сосуде идеальным мы пренебрегаем thumbnail

Понятие идеального газа как физической идеализации.

Из трех агрегатных состояний, в которых может находиться вещество, наиболее простым для изучения является газообразное. Поэтому изучение свойств веществ мы начинаем именно с свойств газов. В разреженного газа расстояние между молекулами во много раз превышает их размеры. В этом случае взаимодействие между молекулами очень мала и кинетическая энергия движения молекул значительно превышает потенциальную энергию их взаимодействия. Молекулы газа можно рассматривать как маленькие твердые шарики. Вместо реального газа мы будем рассматривать его физическую модель, пренебрегая сложными силами взаимодействия между молекулами и облегчая тем самым изучения свойств газов. Эта модель называется идеальным газом.

Идеальный газ – это газ, взаимодействием между молекулами в котором можно пренебречь.

Газ можно считать идеальным, если:

  1. отсутствуют силы межмолекулярного взаимодействия, то есть молекулы НЕ привлекаются и не отталкиваются;
  2. взаимодействие между молекулами происходит только во время их ударяння и является упругой;
  3. молекулы газа не имеют объема и считаются материальными точками.

Следует помнить, что в физической модели учитывают те свойства реальной системы, учет которых необходимо для объяснения закономерностей поведения системы, исследуются.

Условия, при которых реальные газы можно считать идеальными

Газами, свойства которых близки к свойствам идеального газа, реальные газы, находящиеся под низким давлением имеют высокую температуру. Например, воздух при нормальных условиях (105 Па и 0 ° С) можно приближенно считать идеальным газом.

Вопросы на которые стоит ответить самому себе:

  1. Почему газы при высокой температуре можно считать идеальными? (Чем выше температура газа, тем больше вследствие теплового движения молекул расстояние между ними по сравнению с размерами, а следовательно, газ ближе к идеальному.
  2. Почему при высоком давлении свойства реальных газов отличаются от свойств идеального? (При высоком давлении молекулы газов размещаются на расстояниях, которые примерно равны диаметрам самих молекул: для этого их уже нельзя считать материальными точками, следовательно, такой газ нельзя считать идеален.)

Тепловое равновесие и температура как термодинамический параметр идеального газа.

Состояние газа описывают с помощью определенных величин, называют параметрами состояния. различают:

  1. микропараметры, то есть характеристики собственно молекул – размеры, массу, скорость, импульс, энергию;
  2. макропараметры, то есть параметры газа как физического тела в целом, – температура, давление, объем.

Со словом «температура» вы знакомы с раннего детства. Теперь ознакомимся с температурой как параметром.

Следовательно, температура характеризует состояние теплового равновесия: все тела находятся в тепловом равновесии, имеют одинаковую температуру.

Тепловое равновесие – это состояние, при котором все макроскопические параметры остаются сколь угодно долго неизменными. Состояние теплового равновесия определяется для изолированной системы, то есть только для тел, которые взаимодействуют только между собой и не взаимодействуют с другими телами.

Следовательно, температура характеризует внутреннее состояние изолированной системы тел, находящихся в состоянии теплового равновесия. Чем быстрее движутся молекулы в теле, тем сильнее есть ощущение тепла во время соприкосновения с ним. Большая скорость движения молекул соответствует большей кинетической энергии. Согласно по величине температуры можно составить представление о кинетической энергии молекул.

Во всех частях системы, находящейся в тепловом равновесии, температура одинакова.

В молекулярно-кинетической теории температура –

это величина, обусловленная средней кинетической энергией частиц, из которых состоит система:

де – кількість ступеней вільності молекул газу, Дж/K- постоянная Больцмана, которая связывает температуру в энергетических единицах с температурой в кельвинах ()

Температура – это мера кинетической энергии теплового движения молекул.

Температура является скалярной величиной, в СИ измеряется в градусах Кельвина.

Основное уравнение молекулярно-кинетической теории (МКТ) выражет зависимость давление газа () от концентрации () и темперутары ():

Закон Авогадро: в равных объемах газа при одинаковой температуре и давлении содержится одинаковое количество молекул:

Концентрация () равна числу частиц в еденице объема:

Источник

Идеальный газ – это модель разреженного газа, в которой пренебрегается взаимодействием между молекулами. Силы взаимодействия между молекулами довольно сложны. На очень малых расстояниях, когда молекулы вплотную подлетают друг к другу, между ними действуют большие по величине силы отталкивания. На больших или промежуточных расстояниях между молекулами действуют сравнительно слабые силы притяжения. Если расстояния между молекулами в среднем велики, что наблюдается в достаточно разреженном газе, то взаимодействие проявляется в виде относительно редких соударений молекул друг с другом, когда они подлетают вплотную. В идеальном газе взаимодействием молекул вообще пренебрегают.

Теория создана немецким физиком Р. Клаузисом в 1957 году для модели реального газа, которая называется идеальный газ. Основные признаки модели:

  • · расстояния между молекулами велики по сравнению с их размерами;
  • · взаимодействие между молекулами на расстоянии отсутствует;
  • · при столкновениях молекул действуют большие силы отталкивания;
  • · время столкновения много меньше времени свободного движения между столкновениями;
  • · движения подчиняются законом Ньютона;
  • · молекулы – упругие шары;
  • · силы взаимодействия возникают при столкновении.

Границы применимости модели идеального газа зависят от рассматриваемой задачи. Если необходимо установить связь между давлением, объемом и температурой, то газ с хорошей точностью можно считать идеальным до давлений в несколько десятков атмосфер. Если изучается фазовый переход типа испарения или конденсации или рассматривается процесс установления равновесия в газе, то модель идеального газа нельзя применять даже при давлениях в несколько миллиметров ртутного столба.

Давление газа на стенку сосуда является следствием хаотических ударов молекул о стенку, вследствие их большой частоты действие этих ударов воспринимается нашими органами чувств или приборами как непрерывная сила, действующая на стенку сосуда и создающая давление.

Читайте также:  Пятно на виске сосуды

Пусть одна молекула находится в сосуде, имеющем форму прямоугольного параллелепипеда (рис. 1). Рассмотрим, например, удары этой молекулы о правую стенку сосуда, перпендикулярную оси Х. Считаем удары молекулы о стенки абсолютно упругими, тогда угол отражения молекулы от стенки равен углу падения, а величина скорости в результате удара не изменяется. В нашем случае при ударе проекция скорости молекулы на ось У не изменяется, а проекция скорости на ось Х меняет знак. Таким образом, проекция импульса изменяется при ударе на величину, равную , знак «-» означает, что проекция конечной скорости отрицательна, а проекция начальной – положительна.

Определим число ударов молекулы о данную стенку за 1 секунду. Величина проекции скорости не изменяется при ударе о любую стенку, т.е. можно сказать, что движение молекулы вдоль оси Х равномерное. За 1 секунду она пролетает расстояние, равное проекции скорости . От удара до следующего удара об эту же стенку молекула пролетает вдоль оси Х расстояние, равное удвоенной длине сосуда 2L. Поэтому число ударов молекулы о выбранную стенку равно . Согласно 2-му закону Ньютона средняя сила равна изменению импульса тела за единицу времени. Если при каждом ударе о стенку частица изменяет импульс на величину , а число ударов за единицу времени равно , то средняя сила, действующая со стороны стенки на молекулу (равная по величине силе, действующей на стенку со стороны молекулы), равна , а среднее давление молекулы на стенку равно , где V – объем сосуда.

Если бы все молекулы имели одинаковую скорость, то общее давление получалось бы просто умножением этой величины на число частиц N, т.е. . Но поскольку молекулы газа имеют разные скорости, то в этой формуле будет стоять среднее значение квадрата скорости, тогда формула примет вид: .

Квадрат модуля скорости равен сумме квадратов ее проекций, это имеет место и для их средних значений: . Вследствие хаотичности теплового движения средние значения всех квадратов проекций скорости одинаковы, т.к. нет преимущественного движения молекул в каком-либо направлении. Поэтому , и тогда формула для давления газа примет вид: . Если ввести кинетическую энергию молекулы , то получим , где – средняя кинетическая энергия молекулы.

Согласно Больцману средняя кинетическая энергия молекулы пропорциональна абсолютной температуре , и тогда давление идеального газа равно или

. (1)

Если ввести концентрацию частиц , то формула перепишется так:

. (2)

Число частиц можно представить в виде произведения числа молей на число частиц в моле, равное числу Авогадро , а произведение . Тогда (1) запишется в виде:

. (3)

Уравнения (1), (2) и (3) – это разные формы записи уравнения состояния идеального газа, они связывают давление, объем и температуру газа. Эти уравнения применимы как к чистым газам, так и к смесям газов, в последнем случае под N, n и ν следует понимать полное число молекул всех сортов, суммарную концентрацию или полное число молей в смеси. Для чистого газа число молей , где М – масса газа, а μ – масса одного моля (молярная масса). Тогда уравнение (3) примет вид:

. (4)

Уравнение состояния в этой форме называют уравнением Клапейрона-Менделеева.

Рассмотрим частные газовые законы. При постоянной температуре и массе из (4) следует, что , т.е. при постоянной температуре и массе газа его давление обратно пропорционально объему. Этот закон называется законом Бойля и Мариотта, а процесс, при котором температура постоянна, называется изотермическим.

Для изобарного процесса, происходящего при постоянном давлении, из (4) следует, что , т.е. объем пропорционален абсолютной температуре. Этот закон называют законом Гей-Люссака.

Для изохорного процесса, происходящего при постоянном объеме, из (4) следует, что , т.е. давление пропорционально абсолютной температуре. Этот закон называют законом Шарля.

Эти три газовых закона, таким образом, являются частными случаями уравнения состояния идеального газа. Исторически они сначала были открыты экспериментально, и лишь значительно позднее получены теоретически, исходя из молекулярных представлений.

Источник

Уравнение состояния идеального газа было открыто экспериментально. Оно носит название уравнения Клапейрона – Менделеева. Это уравнение устанавливает математическую зависимость между параметрами идеального газа, находящегося в одном состоянии. Математически его можно записать следующими способами:

Уравнение состояния идеального газаВнимание! При решении задач важно все единицы измерения переводить в СИ.

Пример №1. Кислород находится в сосуде вместимостью 0,4 м3 под давлением 8,3∙105 Па и при температуре 320 К. Чему равна масса кислорода? Молярная масса кислорода равна 0,032 кг/моль.

Из основного уравнения состояния идеального газа выразим массу:

Уравнение состояния идеального газа следует использовать, если газ переходит из одного состояния в другое и при этом изменяется его масса (количество вещества, число молекул) или молярная масса. В этом случае необходимо составить уравнение Клапейрона – Менделеева отдельно для каждого состояния. Решая систему уравнений, легко найти недостающий параметр.

Подсказки к задачам

Давление возросло на 15%p2 = 1,15p1
Объем увеличился на 2%V2 = 1,02V1
Масса увеличилась в 3 разаm2 = 3m1
Газ нагрелся до 25 оСT2 = 25 + 273 = 298 (К)
Температура уменьшилась на 15 К (15 оС)T2 = T1 – 15
Температура уменьшилась в 2 раза
Масса уменьшилась на 20%m2 = 0,8m1
Выпущено 0,7 начальной массы

Важна только та масса, что осталась в сосуде. Поэтому:

m2 = 0,3m1

Какую массу следует удалить из баллона?Нужно найти разность начальной и конечной массы:

m1 – m2

Газ потерял половину молекул
Молекулы двухатомного газа (например, водорода), диссоциируют на атомы
Озон (трехатомный кислород) при нагревании превращается в кислород (двухатомный газ)M (O3) = 3Ar (O)∙10-3 кг/моль M (O2) = 2Ar (O)∙10-3 кг/моль
Открытый сосудОбъем V и атмосферное давление pатм остаются постоянными
Закрытый сосудМасса m, молярная масса M, количество вещества ν, объем V, число N и концентрация n частиц, плотность ρ- постоянные величины
Нормальные условияТемпература T0 = 273 К Давление p0 = 105 Па
Единицы измерения давления1 атм = 105 Па
Читайте также:  Что такое сосуд с крышкой для хранения напитков 4 буквы ответ

Пример №2. В баллоне содержится газ под давлением 2,8 МПа при температуре 280 К. Удалив половину молекул, баллон перенесли в помещение с другой температурой. Определите конечную температуру газа, если давление уменьшилось до 1,5 МПа.

2,8 МПа = 2,8∙106 Па

1,5 МПа = 1,5∙106 Па

Так как половина молекул была выпущена, m2 = 0,5m1. Объем остается постоянным, как и молярная масса. Учитывая это, запишем уравнение состояния идеального газа для начального и конечного случая:

Преобразим уравнения и получим:

Приравняем правые части и выразим искомую величину:

Задание EF19012 На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

1.Указать, в каких координатах построен график.

2.На основании основного уравнения МКТ идеального газа и уравнения Менделеева – Клапейрона выяснить, как меняются указанные физические величины во время процессов 1-2 и 2-3.

Решение

График построен в координатах (V;Ek). Процесс 1-2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

T=2−Ek3

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева – Клапейрона:

pV=νRT

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

νR=p1V1T1=p2V2T2

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1-2 является изобарным, давление во время него не меняется.

Процесс 2-3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2-3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление – обратно пропорциональные величины, то давление на участке 2-3 увеличивается.

Ответ:

• Участок 1-2 – изобарный процесс. Температура увеличивается, давление постоянно.

• Участок 2-3 – изотермический процесс. Температура постоянно, давление увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22473

На высоте 200 км давление воздуха составляет примерно 10-9 от нормального атмосферного давления, а температура воздуха Т – примерно 1200 К. Оцените плотность воздуха на этой высоте.

Ответ:

а) 8,31⋅ 10-11 кг/м3

б) 1,38⋅ 10-9 кг/м3

в) 3⋅ 10-10 кг/м3

г)29⋅ 10-8 кг/м3

Алгоритм решения

1.Записать исходные данные.

2.Записать уравнение Менделеева – Клапейрона.

3.Выразить из уравнения плотность.

4.Подставить известные данные и сделать вычисления.

Решение

Запишем исходные данные:

• Давление воздуха на высоте 200 км: p = 10-9∙105 Па. Или p = 10-4 Па.

• Температура воздуха на этой же высоте: T = 1200 К.

Запишем уравнение Менделеева – Клапейрона:

pV=mMRT

Плотность определяется формулой:

ρ=mV

Следовательно, масса равна произведению плотности на объем. Перепишем уравнение состояния идеального газа, учитывая, что объем сократится слева и справа:

p=ρMRT

Молярная масса воздуха – табличная величина, равная 28,97 г/моль. Переведем в СИ и получим 28,97∙10-3 кг/моль.

Выразим и вычислим плотность:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22749 Одноатомный идеальный газ в количестве ν моль помещают в открытый сверху сосуд под лёгкий подвижный поршень и начинают нагревать. Начальный объём газа V0, давление p0. Масса газа в сосуде остаётся неизменной. Трением между поршнем и стенками сосуда пренебречь. R- универсальная газовая постоянная.

Установите соответствие между физическими величинами, характеризующими газ, и формулами, выражающими их зависимость от абсолютной температуры T газа в условиях данной задачи.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Алгоритм решения

1.Записать уравнение состояния идеального газа и выразить из него объем. Выбрать из таблицы соответствующий номер формулы.

2.Определить, от чего зависит внутренняя энергия идеального газа.

3.Записать основное уравнение МКТ и выразить внутреннюю энергию идеального газа. Выбрать из таблицы соответствующий номер формулы.

Решение

Уравнение состояния идеального газа имеет вид:

pV=mMRT

Учтем, что отношение массы к молярной массе есть количество вещества.Отсюда объем равен:

V=νRTp

Следовательно, первой цифрой ответа будет «1».

Внутренняя энергия идеального газа равна сумме кинетических энергий всех молекул этого газа:

E=N−Ek

Запишем основное уравнение МКТ:

p=nkT

Отсюда температура газа равна:

T=pnk

Но температура прямо пропорциональна средней кинетической энергии молекул газа:

T=2−Ek3k

Следовательно:

pnk=2−Ek3k

−Ek=3p2n

E=N−Ek=N3p2n

Но концентрация определяется отношением количества молекул к объему. Следовательно:

E=N3pV2N=3pV2

А произведение давления на объем можно выразить через уравнение Менделеева – Клапейрона. Следовательно:

E=32νRT

Вторая цифра ответа будет «3».

Ответ: 13

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22795 На рисунке показан график зависимости давления газа в запаянном сосуде от его температуры. Объём сосуда равен 0,25 м3. Какое приблизительно количество газообразного вещества содержится в этом сосуде? Ответ округлите до целых.

Читайте также:  Очищение сосудов спиртовой настойкой чеснока

Алгоритм решения

1.Записать исходные данные.

2.Выбрать любую точку графика и извлечь из нее дополнительные данные.

3.Записать уравнение состояния идеального газа.

4.Выполнить решение задачи в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные. Объем сосуда равен: V = 0,25 м3. На графике выберем точку, соответствующую температуре T = 300 К. Ей соответствует давление p = 2∙104 Па.

Запишем уравнение состояния идеального газа:

pV=νRT

Отсюда количества вещества равно:

ν=pVRT=2·104·0,258,31·300≈2 (моль)

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF17664

Зависимость объёма идеального газа от температуры показана на VТ-диаграмме (см. рисунок). В какой из точек давление газа максимально? Масса газа постоянна.

Ответ:

A

B

C

D

Алгоритм решения

1.Записать уравнение состояния идеального газа.

2.Установить, как зависит давление от объема и температуры газа.

3.На основании графика, отображающего изменение температуры и объема газа, установить, в какой точке давление газа максимально.

Решение

Запишем уравнение состояния идеального газа:

pV=νRT

Отсюда видно, что давление прямо пропорционально температуре. Это значит, что с ростом температуры давление увеличивается.

Также видно, что давление обратно пропорционально объему. Следовательно, давление увеличивается с уменьшением объема.

Отсюда следует, что давление будет максимальным в той точке, в которой температура максимальна, а объем минимален. Такой точкой является точка D.

Ответ: D

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18093

В камере, заполненной азотом, при температуре

К находится открытый цилиндрический сосуд (см. рис. 1). Высота сосуда см. Сосуд плотно закрывают цилиндрической пробкой и охлаждают до температуры К. В результате расстояние от дна сосуда до низа пробки становится равным h (см. рис. 2). Затем сосуд нагревают до первоначальной температуры T0. Расстояние от дна сосуда до низа пробки при этой температуре становится равным см (см. рис. 3). Чему равно h? Величину силы трения между пробкой и стенками сосуда считать одинаковой при движении пробки вниз и вверх. Массой пробки пренебречь.

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения физических величин в СИ.

2.Записать уравнение Менделеева – Клапейрона и применить его ко всем состояниям газа.

3.Определить условие равновесия пробки.

4.Выполнить решение задачи в общем виде.

5.Вычислить искомую величину.

Решение

Запишем исходные данные:

• Начальная температура азота: T0 = 300 К.

• Высота сосуда: L = 50 см.

• Температура азота после охлаждения: T1 = 240 К.

• Высота столба азота после нагревания: H = 46 см.

50 см = 0,5 м

46 см = 0,46 м

Запишем уравнение Менделеева – Клапейрона:

pV=νRT

Так как количество азота не меняется, можем принять, что:

pVT=const

Применим уравнение Менделеева – Клапейрона для всех трех состояний азота. Учтем, что

p0V0T0=p1V1T1=p2V2T2

Пусть S – площадь поперечного сечения сосуда. Тогда объемы столба азота для каждого из состояний будут равны:

V0=SL

V1=Sh

V2=SH

Известно, что в состоянии 3 температура азота поднимается до первоначальной. Поэтому уравнение Менделеева – Клапейрона примет вид:

p0SLT0=p1ShT1=p2SHT0

p0LT0=p1hT1=p2HT0

Неизвестными остались только давления. Их можно определить, записав условие равновесия пробки.

В состоянии 1 сила давления азота на пробку определяется формулой:

p0S=pатмS

В состоянии 2 на пробку действует сила давления со стороны азота и атмосферного давления, я а также сила трения, направленная вверх. Следовательно:

p1S=pатмS−Fтр=p0S−Fтр

В состоянии 3 на пробку действуют те же силы, но сила трения теперь действует не вверх, а вниз. Поэтому:

p2S=pатмS+Fтр=p0S+Fтр

Выразим из этих уравнений силу трения:

Fтр=p0S−p1S

Fтр=p2S−p0S

Приравняем правые части и получим:

p0S−p1S=p2S−p0S

Отсюда:

p0−p1=p2−p0

2p0=p2+p1

p0=p2+p12

Подставим это значение в уравнение Менделеева – Клапейрона и получим:

p2+p12LT0=p1hT1=p2HT0

Отсюда:

p2+p12L=p2H

p2L+p1L=2p2H

p1L=2p2H−p2L=p2(2H−L)

p1=p2(2H−L)L

Отсюда:

p2(2H−L)LhT1=p2HT0

Давление слева и справа взаимоуничтожается. Остается:

T0(2H−L)Lh=HT1

Отсюда выразим h:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18873 В сосуде неизменного объёма при комнатной температуре находилась смесь неона и аргона, по 1 моль каждого. Половину содержимого сосуда выпустили, а затем добавили в сосуд 1 моль аргона. Как изменились в результате парциальное давление неона и давление смеси газов, если температура газов в сосуде поддерживалась неизменной?

Для каждой величины определите соответствующий характер изменения:

  1. увеличилась
  2. уменьшилась
  3. не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Алгоритм решения

1.Записать исходные данные.

2.Установить характер изменения парциального давления неона.

3.Применить закон Менделеева – Клапейрона, чтобы установить характер изменения общего давления смеси газов.

Решение

Исходные данные:

• Количество неона: ν1 = 1 моль.

• Количество аргона: ν2 = 1 моль.

• Количество впущенного аргона: ν4 = 1 моль.

Сначала парциальное давление неона и аргона равно. Это объясняется тем, что давление газов при неизменном количестве вещества зависит только от объема и температуры. Эти величины постоянны.

Когда из сосуда выпустили половину газовой смеси, в нем оказалось по половине моля каждого из газов. Затем в сосуд впустили 1 моль аргона. Следовательно, в сосуде стало содержаться 0,5 моль неона и 1,5 моль аргона. Запишем уравнение Менделеева – Клапейрона:

pV=νRT

Из уравнения видно, что давление и количество вещества – прямо пропорциональные величины. Следовательно, если количество неона уменьшилось, то его парциальное давление тоже уменьшилось.

Общая сумма количества вещества равна сумме количеств вещества 1 (неона) и 2 (аргона): 0,5 + 1,5 = 2 (моль). Изначально в сосуде тоже содержалось 2 моль газа. Так как количество вещества, температура и объем сохранились, давление тоже осталось неизменным.

Ответ: 23

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алиса Никитина | ???? Скачать PDF | Просмотров: 1k | Оценить:

Источник