Шарик массой 100 г и объемом 200 см 3 опустили в сосуд с водой

Шарик массой 100 г и объемом 200 см 3 опустили в сосуд с водой thumbnail

Задачи, тесты

Е. М.

Раводин,

, МОУ СОШ № 2, г. Прокопьевск, Кемеровская обл.

Окончание. См. № 5,

8/2010

18. Прямоугольная коробочка из жести массой m = 76 г с дном площадью S = 38 см2 и высотой H = 6 см плавает в воде. Определите высоту h надводной части коробочки.

Решение. Коробочка плавает, если действующая на неё сила тяжести равна по модулю действующей на неё силе Архимеда: mg = FА, причём FА = Vпчgρв, где – объём погружённой части коробочки. Подставляя числовые данные, получаем

Отсюда глубина погружения коробочки равна

Значит h = H – x = 4 см.

19. Льдина плавает на поверхности пресной воды. Какую часть составляет объём подводной части от объёма всей льдины? Если задача не решается в общем виде, то, для упрощения, примите объём льдины равным 100 м3. Плотность льда 900 кг/м3.

Решение. Раз льдина плавает, то её сила тяжести равна по модулю силе Архимеда: mg = FА, т. е.:

20. На поверхности широкого озера лёд имеет толщину 2 м. Какой минимальной длины надо взять верёвку, чтобы зачерпнуть кружкой воды из проруби?

Решение. Так как озеро широкое, то лёд на его поверхности может только плавать, а не держаться за берега за счёт примерзания к ним. Согласно решению задачи № 19, в проруби под поверхностью воды окажется 0,9 толщи льда, т. е. 0,9 · 2 м = 1,8 м, а над поверхностью воды 0,2 м = 20 см. Для зачерпывания воды с такой глубины верёвка не нужна.

21. В стакане с пресной водой плавает кусок льда. Изменится ли уровень воды, когда лёд растает? Рассмотрите дополнительно случаи: когда в лёд вмёрзла дробинка; когда в лёд вмёрз пузырёк воздуха.

Решение. Лёд плавает, если его вес равен весу жидкости в объёме погружённой части. Образовавшаяся изо льда пресная вода имеет тот же вес, что и лёд, и, следовательно, точно заполнит объём, который вытеснял плавающий лёд. Значит, уровень воды не изменится.

Если во льду была дробинка, лёд вытеснял больше воды, чтобы поддерживать на плаву дробинку. Когда лёд растаял, дробинка утонула (её вес больше веса вытесненной ею воды), уровень воды понизился.

В случае вмёрзшего пузырька уровень воды после таяния льдины практически не изменится. Хотя, если подсчитать точно, уровень воды несколько понизится, т. к. масса воздуха в пузырьке хоть и мала, но не равна нулю.

22. В прямоугольный сосуд с водой пустили плавать модель судна массой m = 4 кг. На сколько при этом повысился уровень воды, если площадь дна сосуда S = 2000 см2?

Решение. Вес сосуда при опускании в него модели увеличится на вес модели mg. Это увеличение веса можно интерпретировать как следствие подъёма уровня воды на ∆h и, следовательно, увеличения силы давления воды ∆Fд = ρвg∆hS. Отсюда:

23. Кусок парафина массой m = 200 г плавает на границе раздела воды и бензина. Определите объём V1 надводной части бруска. Плотность парафина 900 кг/м3, бензина 700 кг/м3.

Решение. Если парафин плавает, то сила тяжести равна сумме сил Архимеда в обеих жидкостях: mg = Vвρвg + V1ρб g, где Vв – объём, погружённый в воду, V1 – искомый надводный объём (в бензине). Общий объём парафина

Решая совместно оба уравнения, получаем:

24. Кусок льда, внутрь которого вморожен шарик из свинца, плавает в цилиндрическом сосуде с водой. Площадь дна сосуда S. Какова масса шарика, если после полного таяния льда уровень воды в сосуде понизился на H? Плотность свинца ρ1, плотность воды ρ2.

Решение. На плавающую льдину со свинцовым шариком действует бóльшая сила Архимеда, чем на такую же льдину без шарика, т. к. она тяжелее на силу тяжести шарика mg. Следовательно, объём вытесняемой в первом случае воды больше, чем во втором, на Но когда льдина растает, шарик упадёт на дно и займёт объём V1 = m/ρ1. Общее уменьшение объёма воды в конечном счёте ∆V = ∆Vп – V1. Так как ∆V = SH (по условию), то приходим к уравнению:

25. Корона царя Гиерона в воздухе весит P1 = 20 Н, а в воде P2 = 18,75 Н. Вычислите плотность вещества короны. Была ли она из чистого золота? Дополнение: найдите, сколько золота и сколько серебра было в короне. Плотность золота округлённо принять 20 000 кг/м3, а серебра 10 000 кг/м3.

Решение. Для оценки добросовестности мастера найдём плотность короны по формуле полученной при решении задачи 9 (см. № 5/2010):

– корона не из чистого золота.

Чтобы найти состав короны, используем два факта: 1) общая масса короны m = mз + mс; 2) общий объём короны V = Vз + Vс (индексы «з» и «с» относятся к золоту и серебру соответственно). Заменяя объёмы их выражениями через массы и плотности, получаем систему из двух уравнений:

Решение

Опуская громоздкие промежуточные вычисления, запишем ответ:

26. Какую силу надо приложить к пробковому телу массой 400 кг, чтобы удерживать его, когда оно целиком погружено в воду? ρп = 200 кг/м3; g = 10 м/с2.

Решение. Сила тяжести тела mg = 4000 Н направлена вниз, сила Архимеда направлена вверх и равна

Чтобы удержать тело в воде, надо приложить направленную вниз силу F = FА – mg = 16 кН.

27. Чугунная плита толщиной 0,5 м, длиной 10 м и шириной 4 м лежит на глинистом дне, выдавив из-под себя воду. Глубина водоёма 2,5 м. Какую силу необходимо приложить, чтобы начать подъём плиты?

Решение. Объём плиты V = 0,5 м · 10 м · 4 м = 20 м3.

Её масса m = Vρч = 20 м3 · 7000 кг/м3 = 140 000 кг.

Сила тяжести mg = 1 400 000 Н.

Поскольку под плитой нет воды, сила Архимеда на неё не действует. Вниз на плиту, кроме силы тяжести, действуют сила давления воды на глубине 2,5 – 0,5 = 2 (м) и сила давления атмосферы, которую передаёт вода по закону Паскаля. При нормальном атмосферном давлении общее давление на плиту:

p = pв + pа = 1,2 · 105 Па.

Горизонтальная площадь поверхности плиты

S = 40 м2. Сила давления на плиту F = pS = 4,8 · 106 Н.

Полная сила, прижимающая плиту к грунту:

F = mg + Fа = 1,4 · 106 Н + 4,8 · 106 Н = 6,2 ·106 Н.

Для отрыва от грунта нужна сила F > 6,2 МН.

Источник

Слайд 1

  Молекулярно-кинетическая теория
Особенности заданий ЕГЭ

Описание слайда:

Молекулярно-кинетическая теория Особенности заданий ЕГЭ

Слайд 2

  Нахождение молекулярной массы. Значение  из таблицы Менделеева необходимо перевести в кг/моль, для этого разделить на 1000.
Нахождение молекулярной массы. Значение  из таблицы Менделеева необходимо перевести в кг/моль, для этого разделить на 1000.
Перевод от шкалы Цельсия к шкале Кельвина и наоборот T=t + 273
Нормальные условия: p=760 мм рт ст
T= 273 K и комнатная температура Т=293К

Описание слайда:

Нахождение молекулярной массы. Значение из таблицы Менделеева необходимо перевести в кг/моль, для этого разделить на 1000. Нахождение молекулярной массы. Значение из таблицы Менделеева необходимо перевести в кг/моль, для этого разделить на 1000. Перевод от шкалы Цельсия к шкале Кельвина и наоборот T=t + 273 Нормальные условия: p=760 мм рт ст T= 273 K и комнатная температура Т=293К

Слайд 3

  PV=mM RT
PV=mM RT
P=QM RT, где Q- плотность вещества
PV=YRT, где Y – количество вещества

Описание слайда:

PV=mM RT PV=mM RT P=QM RT, где Q- плотность вещества PV=YRT, где Y – количество вещества

Слайд 4

  Если масса и химический состав сохраняются и при этом сохраняется один из макроскопических параметров ,то
Если масса и химический состав сохраняются и при этом сохраняется один из макроскопических параметров ,то
Изотермический процесс T=const  PV=const
Изохорный процесс V=const pV =const
Изобарный процесс Р=const  VT=const

Описание слайда:

Если масса и химический состав сохраняются и при этом сохраняется один из макроскопических параметров ,то Если масса и химический состав сохраняются и при этом сохраняется один из макроскопических параметров ,то Изотермический процесс T=const PV=const Изохорный процесс V=const pV =const Изобарный процесс Р=const VT=const

Слайд 5

  Если состояние газа не меняется ,то применяем уравнение состояния идеального газа PV=mM RT
Если состояние газа не меняется ,то применяем уравнение состояния идеального газа PV=mM RT
Если состояние газа меняется, но при этом сохраняется масса и химический состав, то удобнее пользоваться уравнением Клапейрона P1V1T1=P2V2T2

Описание слайда:

Если состояние газа не меняется ,то применяем уравнение состояния идеального газа PV=mM RT Если состояние газа не меняется ,то применяем уравнение состояния идеального газа PV=mM RT Если состояние газа меняется, но при этом сохраняется масса и химический состав, то удобнее пользоваться уравнением Клапейрона P1V1T1=P2V2T2

Слайд 6

  Если же меняется масса или химический состав или и то и другое, то уравнение состояния идеального газа записывается для каждого из состояний.
Если же меняется масса или химический состав или и то и другое, то уравнение состояния идеального газа записывается для каждого из состояний.

Описание слайда:

Если же меняется масса или химический состав или и то и другое, то уравнение состояния идеального газа записывается для каждого из состояний. Если же меняется масса или химический состав или и то и другое, то уравнение состояния идеального газа записывается для каждого из состояний.

Слайд 7

  Тексты задач и подсказки к ним

Описание слайда:

Тексты задач и подсказки к ним

Слайд 8

  Какие из приведенных утверждений являются признаками идеального газа?
Какие из приведенных утверждений являются признаками идеального газа?
А)Молекулы – материальные точки
Б)Учитываются только силы притяжения между молекулами
В)Учитывают только среднюю кинетическую энергию поступательного  движения молекул

Описание слайда:

Какие из приведенных утверждений являются признаками идеального газа? Какие из приведенных утверждений являются признаками идеального газа? А)Молекулы – материальные точки Б)Учитываются только силы притяжения между молекулами В)Учитывают только среднюю кинетическую энергию поступательного движения молекул

Слайд 9

  Теплоход переходит из устья Волги в соленое Каспийское море. При этом сила Архимеда, действующая на теплоход:
Теплоход переходит из устья Волги в соленое Каспийское море. При этом сила Архимеда, действующая на теплоход:
1)уменьшается
2)увеличивается
3)не изменяется

Описание слайда:

Теплоход переходит из устья Волги в соленое Каспийское море. При этом сила Архимеда, действующая на теплоход: Теплоход переходит из устья Волги в соленое Каспийское море. При этом сила Архимеда, действующая на теплоход: 1)уменьшается 2)увеличивается 3)не изменяется

Слайд 10

  Шарик массой 100 г и объемом 200 см3 опустили в сосуд с водой, полностью погрузив его в воду. Выталкивающая сила, действующая на шарик равна:
Шарик массой 100 г и объемом 200 см3 опустили в сосуд с водой, полностью погрузив его в воду. Выталкивающая сила, действующая на шарик равна:
1)0,5Н    2)1Н  3)2Н 4)20Н

Описание слайда:

Шарик массой 100 г и объемом 200 см3 опустили в сосуд с водой, полностью погрузив его в воду. Выталкивающая сила, действующая на шарик равна: Шарик массой 100 г и объемом 200 см3 опустили в сосуд с водой, полностью погрузив его в воду. Выталкивающая сила, действующая на шарик равна: 1)0,5Н 2)1Н 3)2Н 4)20Н

Слайд 11

  Деревянный шарик  массой 100 г плавает на поверхности воды. При  этом над поверхностью находится половина объема шарика. Выталкивающая сила равна:
 Деревянный шарик  массой 100 г плавает на поверхности воды. При  этом над поверхностью находится половина объема шарика. Выталкивающая сила равна:
1) 0,5Н       2)1 Н
3) 50Н        4) 100 Н

Описание слайда:

Деревянный шарик массой 100 г плавает на поверхности воды. При этом над поверхностью находится половина объема шарика. Выталкивающая сила равна: Деревянный шарик массой 100 г плавает на поверхности воды. При этом над поверхностью находится половина объема шарика. Выталкивающая сила равна: 1) 0,5Н 2)1 Н 3) 50Н 4) 100 Н

Слайд 12

  Определите плотность азота при температуре 27 градусов Цельсия и давлении 100 кПа. Ответ выразите в кг/м3 и округлите до десятых.
Определите плотность азота при температуре 27 градусов Цельсия и давлении 100 кПа. Ответ выразите в кг/м3 и округлите до десятых.

Описание слайда:

Определите плотность азота при температуре 27 градусов Цельсия и давлении 100 кПа. Ответ выразите в кг/м3 и округлите до десятых. Определите плотность азота при температуре 27 градусов Цельсия и давлении 100 кПа. Ответ выразите в кг/м3 и округлите до десятых.

Слайд 13

  Шар объемом 0,2 м3, сделанный из тонкой бумаги, наполняют горячим воздухом, имеющим температуру 340К. Температура окружающего воздуха 290К. Давление воздуха внутри шара и атмосферное давление равны 100кПа. При каком значении массы бумажной оболочки шар будет подниматься?
Шар объемом 0,2 м3, сделанный из тонкой бумаги, наполняют горячим воздухом, имеющим температуру 340К. Температура окружающего воздуха 290К. Давление воздуха внутри шара и атмосферное давление равны 100кПа. При каком значении массы бумажной оболочки шар будет подниматься?

Описание слайда:

Шар объемом 0,2 м3, сделанный из тонкой бумаги, наполняют горячим воздухом, имеющим температуру 340К. Температура окружающего воздуха 290К. Давление воздуха внутри шара и атмосферное давление равны 100кПа. При каком значении массы бумажной оболочки шар будет подниматься? Шар объемом 0,2 м3, сделанный из тонкой бумаги, наполняют горячим воздухом, имеющим температуру 340К. Температура окружающего воздуха 290К. Давление воздуха внутри шара и атмосферное давление равны 100кПа. При каком значении массы бумажной оболочки шар будет подниматься?

Слайд 14

  Сферическая оболочка воздушного шара, сообщающаяся с атмосферой, имеет диаметр 10 м и массу 10 кг. На сколько градусов надо нагреть воздух в шаре, чтобы он взлетел? Температура воздуха 27 градусов, давление 735 мм рт. ст.
Сферическая оболочка воздушного шара, сообщающаяся с атмосферой, имеет диаметр 10 м и массу 10 кг. На сколько градусов надо нагреть воздух в шаре, чтобы он взлетел? Температура воздуха 27 градусов, давление 735 мм рт. ст.

Описание слайда:

Сферическая оболочка воздушного шара, сообщающаяся с атмосферой, имеет диаметр 10 м и массу 10 кг. На сколько градусов надо нагреть воздух в шаре, чтобы он взлетел? Температура воздуха 27 градусов, давление 735 мм рт. ст. Сферическая оболочка воздушного шара, сообщающаяся с атмосферой, имеет диаметр 10 м и массу 10 кг. На сколько градусов надо нагреть воздух в шаре, чтобы он взлетел? Температура воздуха 27 градусов, давление 735 мм рт. ст.

Слайд 15

  Определите подъемную силу воздушного шара, наполненного гелием, Радиус легкой оболочки шара 6 м, шар сообщается с атмосферой, давление воздуха 640 мм рт ст, температура 17 градусов.
Определите подъемную силу воздушного шара, наполненного гелием, Радиус легкой оболочки шара 6 м, шар сообщается с атмосферой, давление воздуха 640 мм рт ст, температура 17 градусов.

Описание слайда:

Определите подъемную силу воздушного шара, наполненного гелием, Радиус легкой оболочки шара 6 м, шар сообщается с атмосферой, давление воздуха 640 мм рт ст, температура 17 градусов. Определите подъемную силу воздушного шара, наполненного гелием, Радиус легкой оболочки шара 6 м, шар сообщается с атмосферой, давление воздуха 640 мм рт ст, температура 17 градусов.

Слайд 16

  Сколько балласта должен выбросить аэростат объемом 300 м3 для того, чтобы подняться с высоты, на которой барометр показывал давление 730 мм рт ст при температуре 258 К, до высоты, на которой барометр показывает давление 710 мм рт ст, а температура равна 253 К.
Сколько балласта должен выбросить аэростат объемом 300 м3 для того, чтобы подняться с высоты, на которой барометр показывал давление 730 мм рт ст при температуре 258 К, до высоты, на которой барометр показывает давление 710 мм рт ст, а температура равна 253 К.

Описание слайда:

Сколько балласта должен выбросить аэростат объемом 300 м3 для того, чтобы подняться с высоты, на которой барометр показывал давление 730 мм рт ст при температуре 258 К, до высоты, на которой барометр показывает давление 710 мм рт ст, а температура равна 253 К. Сколько балласта должен выбросить аэростат объемом 300 м3 для того, чтобы подняться с высоты, на которой барометр показывал давление 730 мм рт ст при температуре 258 К, до высоты, на которой барометр показывает давление 710 мм рт ст, а температура равна 253 К.

Слайд 17

  В задаче рассматриваются два состояния системы тел, поэтому необходимо написать условие равновесия для каждого из этих состояний. Получившиеся уравнения решаются совместно.
В задаче рассматриваются два состояния системы тел, поэтому необходимо написать условие равновесия для каждого из этих состояний. Получившиеся уравнения решаются совместно.
В каждом из состояний на аэростат действуют только сила тяжести и выталкивающая сила.

Описание слайда:

В задаче рассматриваются два состояния системы тел, поэтому необходимо написать условие равновесия для каждого из этих состояний. Получившиеся уравнения решаются совместно. В задаче рассматриваются два состояния системы тел, поэтому необходимо написать условие равновесия для каждого из этих состояний. Получившиеся уравнения решаются совместно. В каждом из состояний на аэростат действуют только сила тяжести и выталкивающая сила.

Слайд 18

  Суммарная сила тяжести складывается из силы тяжести, действующей на воздух, наполняющий оболочку и силы тяжести, действующей на оболочку и балласт.
Суммарная сила тяжести складывается из силы тяжести, действующей на воздух, наполняющий оболочку и силы тяжести, действующей на оболочку и балласт.
Воздух внутри и снаружи оболочки можно считать идеальным газом и для его  описания применять уравнение Менделеева-Клапейрона.

Описание слайда:

Суммарная сила тяжести складывается из силы тяжести, действующей на воздух, наполняющий оболочку и силы тяжести, действующей на оболочку и балласт. Суммарная сила тяжести складывается из силы тяжести, действующей на воздух, наполняющий оболочку и силы тяжести, действующей на оболочку и балласт. Воздух внутри и снаружи оболочки можно считать идеальным газом и для его описания применять уравнение Менделеева-Клапейрона.

Слайд 19

  Для каждого из состояний аэростата давление воздуха внутри и снаружи, а также температуры воздуха внутри и снаружи – одинаковы.
Для каждого из состояний аэростата давление воздуха внутри и снаружи, а также температуры воздуха внутри и снаружи – одинаковы.

Описание слайда:

Для каждого из состояний аэростата давление воздуха внутри и снаружи, а также температуры воздуха внутри и снаружи – одинаковы. Для каждого из состояний аэростата давление воздуха внутри и снаружи, а также температуры воздуха внутри и снаружи – одинаковы.

Слайд 20

  Сферическая оболочка воздушного шара сделана из материала, 1 м3 которого имеет массу 1 кг. Шар наполнен гелием при  нормальном атмосферном давлении, температуре воздуха и гелия 0 градусов Цельсия. При каком минимальном радиусе шара он начнет подниматься?
Сферическая оболочка воздушного шара сделана из материала, 1 м3 которого имеет массу 1 кг. Шар наполнен гелием при  нормальном атмосферном давлении, температуре воздуха и гелия 0 градусов Цельсия. При каком минимальном радиусе шара он начнет подниматься?

Описание слайда:

Сферическая оболочка воздушного шара сделана из материала, 1 м3 которого имеет массу 1 кг. Шар наполнен гелием при нормальном атмосферном давлении, температуре воздуха и гелия 0 градусов Цельсия. При каком минимальном радиусе шара он начнет подниматься? Сферическая оболочка воздушного шара сделана из материала, 1 м3 которого имеет массу 1 кг. Шар наполнен гелием при нормальном атмосферном давлении, температуре воздуха и гелия 0 градусов Цельсия. При каком минимальном радиусе шара он начнет подниматься?

Слайд 21

Молекулярно-кинетическая теория  Особенности заданий ЕГЭ, слайд №21

Источник

Читайте также:  Сосуд по уксусной кислоте