Шарик массы m помещен в высокий сосуд с некоторой жидкостью

1.54. Чтобы определить коэффициент трения k между деревянными поверхностями, брусок положили на доску и стали поднимать один конец доски до тех пор, пока брусок не начал по ней скользить. Это произошло при угле наклона доски α = 14°. Чему равен k?

1.55. Два соприкасающихся бруска лежат на горизонтальном столе, по которому они могут скользить без трения. Масса первого бруска m1=2,00 кг, масса второго бруска m2=3,00 кг. Один из брусков толкают с силой F0=10,0 Н (рис. 1.9). Найти: 1. Силу F, с которой бруски давят друг на друга в случае, если сила F0, приложена к бруску 1 (а), к бруску 2 (б). 2. Что примечательного в полученных результатах?

1.56. Решить задачу 1.55 в предположении, что коэффициент трения между бруском и столом равен k1=0,100 для бруска 1 и k2=0,200 для бруска 2.

1.57. Решить задачу 1.56, положив k1=0,200 и k2=0,100. Сопоставить результаты задач 1.55, 1.56 и данной задачи.

1.58. Два соприкасающихся бруска скользят по наклонной доске (рис. 1.10). Масса первого бруска m1=2,00 кг, масса второго бруска m2=3,00 кг. Коэффициент трения между бруском и доской равен k1=0,100 для бруска 1 и k2=0,200 для бруска 2. Угол наклона доски α=45°. 1. Определить: а) ускорение ω, с которым движутся бруски, б) силу F, с которой бруски давят друг на друга. 2. Что происходило бы в случае k1>k2?

1.59. На горизонтальном столе лежат два тела массой M=1,000 кг каждое. Тела связаны невесомой нерастяжимой нитью (рис. 1.11). Такая же нить связывает тело 2 с грузом массы m=0,500 кг. Нить может скользить без трения по изогнутому желобу, укрепленному на краю стола. Коэффициент трения первого тела со столом k1=0,100, второго тела k2=0,150. Найти: а) ускорение ω, с которым движутся тела, б) натяжение F12 нити, связывающей тела 1 и 2, в) натяжение F нити, на которой висит груз.

1.60. Эстакада на пересечении улиц имеет радиус кривизны R=1000 м. В верхней части эстакады в дорожное покрытие вмонтированы датчики, регистрирующие силу давления на эстакаду. Отмечающий эту силу прибор проградуирован в кгс (1 кгс=9,81 Н). Какую силу давления F показывает прибор в момент, когда по эстакаде проезжает со скоростью v=60,0 км/ч автомобиль массы m=1,000 т?

1.61. На заряженную частицу, движущуюся в магнитном поле, действует магнитная сила F=q [vB] (q – заряд частицы, v – ее скорость, B – характеристика поля, называемая магнитной индукцией). Найти уравнение траектории, по которой будет двигаться частица в однородном магнитном поле (т. е. поле, во всех точках которого В одинакова по модулю и направлению) в случае, если в начальный момент вектор v перпендикулярен к В. Никаких сил, кроме магнитной, нет. Известными считать массу m, заряд q и скорость v частицы, а также магнитную индукцию поля B. В качестве координатной плоскости x, y взять плоскость, в которой движется частица.

1.62. Шарик массы m=0,200 кг, привязанный к закрепленной одним концом нити длины l=3,00 м, описывает в горизонтальной плоскости окружность радиуса R= 1,00 м. Найти: а) число оборотов n шарика в минуту, б) натяжение нити F.

1.63. Горизонтально расположенный диск вращается вокруг проходящей через его центр вертикальной оси с частотой n=10,0 об/мин. На каком расстоянии r от центра диска может удержаться лежащее на диске небольшое тело, если коэффициент трения k=0,200?

1.64. Небольшому телу сообщают начальный импульс, в результате чего оно начинает двигаться поступательно без трения вверх по наклонной плоскости со скоростью v0=3,00 м/с. Плоскость образует с горизонтом угол α=20,0°. Определить: а) на какую высоту h поднимется тело, б) сколько времени t1 тело будет двигаться вверх до остановки, в) сколько времени t2 тело затратит на скольжение вниз до исходного положения, г) какую скорость v имеет тело в момент возвращения в исходное положение.

1.65. Решить задачу 1.64 в предположении, что коэффициент трения между телом и плоскостью k=0,100. Масса тела m=1,00 кг. Помимо указанных в предыдущей задаче величин, определить: д) какую работу А совершает сила трения на всем пути снизу вверх и обратно. Сравнить результаты задачи 1.64 и данной задачи.

1.66. Шарик массы m помещен в высокий сосуд с некоторой жидкостью и отпущен без толчка. Плотность жидкости в η раз меньше плотности шарика. При движении шарика возникает сила сопротивления среды, пропорциональная скорости движения: F=-kv. а) Описать качественно характер движения шарика. б) Найти зависимость скорости шарика v от времени t.

1.67. Тонкая стальная цепочка с очень мелкими звеньями, имеющая длину l=1,000 м и массу m=10,0 г, лежит на горизонтальном столе. Цепочка вытянута в прямую линию, перпендикулярную к краю стола. Конец цепочки свешивается с края стола. Когда длина свешивающейся части составляет η=0,275 длины l, цепочка начинает соскальзывать со стола вниз. Считая цепочку однородной по длине, найти: а) коэффициент трения k между цепочкой и столом, б) работу А сил трения цепочки о стол за время соскальзывания, в) скорость v цепочки в конце соскальзывания.

1.68. Тонкая стальная цепочка с очень мелкими звеньями висит вертикально, касаясь нижним концом стола. Масса цепочки m, длина l. В момент t=0 цепочку отпускают. Считая цепочку однородной по длине, найти: а) мгновенное значение F(t) силы, с которой цепочка действует на стол, б) среднее значение <F> этой силы за время падения.

1.69. Сила, действующая на частицу, имеет вид F=aex(H), где a – константа. Вычислить работу А, совершаемую над частицей этой силой на пути от точки с координатами (1, 2, 3) (м) до точки с координатами (7, 8, 9) (м).

1.70. Частица движется равномерно по окружности. Чему равна работа А результирующей всех сил, действующих на частицу: а) за один оборот, б) за полоборота, в) за четверть оборота?

1.71. Частица перемещается по окружности радиуса r под действием центральной силы F. Центр окружности совпадает с силовым центром. Какую работу А совершает сила F на пути s?

1.72. Тангенциальное ускорение wτ частицы массы m, движущейся по некоторой криволинейной траектории, изменяется с расстоянием s, отсчитанным вдоль траектории от некоторого начального положения частицы, по закону ωτ=ωτ(s). Написать выражение для работы A, совершаемой над частицей всеми действующими на нее силами, на участке траектории от s1 до s2.

1.73. Тело массы m=1,00 кг падает с высоты h=20,0 м. Пренебрегая сопротивлением воздуха, найти: а) среднюю по времени мощность <P>, развиваемую силой тяжести на пути h, б) мгновенную мощность P на высоте h/2.

1.74. Брошенный камень массы m поднимается над уровнем, на котором находится точка бросания, на высоту h. В верхней точке траектории скорость камня равна v. Сила сопротивления воздуха совершает над камнем на пути от точки бросания до вершины траектории работу Aсопр. Чему равна работа A бросания камня?

1.75. Тело массы m брошено под углом α к горизонту с начальной скоростью v0. Пренебрегая сопротивлением воздуха, найти: а) мгновенную мощность P(t), развиваемую при полете тела приложенной к нему силой, б) значение мощности P в вершине траектории, в) среднее значение мощности <P>под за время подъема тела, г) среднее значение мощности <P>пол за все время полета (точка бросания и точка падения находятся на одном уровне).

1.76. Тело массы m начинает двигаться под действием силы F=2tex+3t2ey. Найти мощность P(t), развиваемую силой в момент времени t.

Читайте также:  Препараты очищающие сосуды ног

Источник

1.54. Чтобы определить коэффициент трения k между деревянными поверхностями, брусок положили на доску и стали поднимать один конец доски до тех пор, пока брусок не начал по ней скользить. Это произошло при угле наклона доски α = 14°. Чему равен k?

1.55. Два соприкасающихся бруска лежат на горизонтальном столе, по которому они могут скользить без трения. Масса первого бруска m1=2,00 кг, масса второго бруска m2=3,00 кг. Один из брусков толкают с силой F0=10,0 Н (рис. 1.9). Найти: 1. Силу F, с которой бруски давят друг на друга в случае, если сила F0, приложена к бруску 1 (а), к бруску 2 (б). 2. Что примечательного в полученных результатах?

1.56. Решить задачу 1.55 в предположении, что коэффициент трения между бруском и столом равен k1=0,100 для бруска 1 и k2=0,200 для бруска 2.

1.57. Решить задачу 1.56, положив k1=0,200 и k2=0,100. Сопоставить результаты задач 1.55, 1.56 и данной задачи.

1.58. Два соприкасающихся бруска скользят по наклонной доске (рис. 1.10). Масса первого бруска m1=2,00 кг, масса второго бруска m2=3,00 кг. Коэффициент трения между бруском и доской равен k1=0,100 для бруска 1 и k2=0,200 для бруска 2. Угол наклона доски α=45°. 1. Определить: а) ускорение ω, с которым движутся бруски, б) силу F, с которой бруски давят друг на друга. 2. Что происходило бы в случае k1>k2?

1.59. На горизонтальном столе лежат два тела массой M=1,000 кг каждое. Тела связаны невесомой нерастяжимой нитью (рис. 1.11). Такая же нить связывает тело 2 с грузом массы m=0,500 кг. Нить может скользить без трения по изогнутому желобу, укрепленному на краю стола. Коэффициент трения первого тела со столом k1=0,100, второго тела k2=0,150. Найти: а) ускорение ω, с которым движутся тела, б) натяжение F12 нити, связывающей тела 1 и 2, в) натяжение F нити, на которой висит груз.

Читайте также:  Как избавится от головной боли сосуды

1.60. Эстакада на пересечении улиц имеет радиус кривизны R=1000 м. В верхней части эстакады в дорожное покрытие вмонтированы датчики, регистрирующие силу давления на эстакаду. Отмечающий эту силу прибор проградуирован в кгс (1 кгс=9,81 Н). Какую силу давления F показывает прибор в момент, когда по эстакаде проезжает со скоростью v=60,0 км/ч автомобиль массы m=1,000 т?

1.61. На заряженную частицу, движущуюся в магнитном поле, действует магнитная сила F=q [vB] (q – заряд частицы, v – ее скорость, B – характеристика поля, называемая магнитной индукцией). Найти уравнение траектории, по которой будет двигаться частица в однородном магнитном поле (т. е. поле, во всех точках которого В одинакова по модулю и направлению) в случае, если в начальный момент вектор v перпендикулярен к В. Никаких сил, кроме магнитной, нет. Известными считать массу m, заряд q и скорость v частицы, а также магнитную индукцию поля B. В качестве координатной плоскости x, y взять плоскость, в которой движется частица.

1.62. Шарик массы m=0,200 кг, привязанный к закрепленной одним концом нити длины l=3,00 м, описывает в горизонтальной плоскости окружность радиуса R= 1,00 м. Найти: а) число оборотов n шарика в минуту, б) натяжение нити F.

1.63. Горизонтально расположенный диск вращается вокруг проходящей через его центр вертикальной оси с частотой n=10,0 об/мин. На каком расстоянии r от центра диска может удержаться лежащее на диске небольшое тело, если коэффициент трения k=0,200?

1.64. Небольшому телу сообщают начальный импульс, в результате чего оно начинает двигаться поступательно без трения вверх по наклонной плоскости со скоростью v0=3,00 м/с. Плоскость образует с горизонтом угол α=20,0°. Определить: а) на какую высоту h поднимется тело, б) сколько времени t1 тело будет двигаться вверх до остановки, в) сколько времени t2 тело затратит на скольжение вниз до исходного положения, г) какую скорость v имеет тело в момент возвращения в исходное положение.

1.65. Решить задачу 1.64 в предположении, что коэффициент трения между телом и плоскостью k=0,100. Масса тела m=1,00 кг. Помимо указанных в предыдущей задаче величин, определить: д) какую работу А совершает сила трения на всем пути снизу вверх и обратно. Сравнить результаты задачи 1.64 и данной задачи.

1.66. Шарик массы m помещен в высокий сосуд с некоторой жидкостью и отпущен без толчка. Плотность жидкости в η раз меньше плотности шарика. При движении шарика возникает сила сопротивления среды, пропорциональная скорости движения: F=-kv. а) Описать качественно характер движения шарика. б) Найти зависимость скорости шарика v от времени t.

1.67. Тонкая стальная цепочка с очень мелкими звеньями, имеющая длину l=1,000 м и массу m=10,0 г, лежит на горизонтальном столе. Цепочка вытянута в прямую линию, перпендикулярную к краю стола. Конец цепочки свешивается с края стола. Когда длина свешивающейся части составляет η=0,275 длины l, цепочка начинает соскальзывать со стола вниз. Считая цепочку однородной по длине, найти: а) коэффициент трения k между цепочкой и столом, б) работу А сил трения цепочки о стол за время соскальзывания, в) скорость v цепочки в конце соскальзывания.

1.68. Тонкая стальная цепочка с очень мелкими звеньями висит вертикально, касаясь нижним концом стола. Масса цепочки m, длина l. В момент t=0 цепочку отпускают. Считая цепочку однородной по длине, найти: а) мгновенное значение F(t) силы, с которой цепочка действует на стол, б) среднее значение <F> этой силы за время падения.

1.69. Сила, действующая на частицу, имеет вид F=aex(H), где a – константа. Вычислить работу А, совершаемую над частицей этой силой на пути от точки с координатами (1, 2, 3) (м) до точки с координатами (7, 8, 9) (м).

1.70. Частица движется равномерно по окружности. Чему равна работа А результирующей всех сил, действующих на частицу: а) за один оборот, б) за полоборота, в) за четверть оборота?

1.71. Частица перемещается по окружности радиуса r под действием центральной силы F. Центр окружности совпадает с силовым центром. Какую работу А совершает сила F на пути s?

1.72. Тангенциальное ускорение wτ частицы массы m, движущейся по некоторой криволинейной траектории, изменяется с расстоянием s, отсчитанным вдоль траектории от некоторого начального положения частицы, по закону ωτ=ωτ(s). Написать выражение для работы A, совершаемой над частицей всеми действующими на нее силами, на участке траектории от s1 до s2.

1.73. Тело массы m=1,00 кг падает с высоты h=20,0 м. Пренебрегая сопротивлением воздуха, найти: а) среднюю по времени мощность <P>, развиваемую силой тяжести на пути h, б) мгновенную мощность P на высоте h/2.

Читайте также:  На укрепление стенок сосудов

1.74. Брошенный камень массы m поднимается над уровнем, на котором находится точка бросания, на высоту h. В верхней точке траектории скорость камня равна v. Сила сопротивления воздуха совершает над камнем на пути от точки бросания до вершины траектории работу Aсопр. Чему равна работа A бросания камня?

1.75. Тело массы m брошено под углом α к горизонту с начальной скоростью v0. Пренебрегая сопротивлением воздуха, найти: а) мгновенную мощность P(t), развиваемую при полете тела приложенной к нему силой, б) значение мощности P в вершине траектории, в) среднее значение мощности <P>под за время подъема тела, г) среднее значение мощности <P>пол за все время полета (точка бросания и точка падения находятся на одном уровне).

1.76. Тело массы m начинает двигаться под действием силы F=2tex+3t2ey. Найти мощность P(t), развиваемую силой в момент времени t.

Источник

Шарик – масса

Cтраница 1

Шарик массы m закреплен на конце вертикального упругого стержня, зажатого нижним концом в неподвижной стойке. При небольших отклонениях стержня от его вертикального равновесного положения можно приближенно считать, что центр шарика движется в горизонтальной плоскости Оху, проходящей через верхнее равновесное положение центра шарика. Определить закон изменения силы, с которой упругий, изогнутый стержень действует на шарик, если выведенный из своего положения равновесия, принятого за начало координат, шарик движется согласно уравнениям x acoskt, y bsinkt, где a b k – постоянные величины.  [1]

Шарик массы т, двигавшийся на высоте h вдоль горизонтальной плоскости со скоростью v, ударяет в стену, наклоненную под углом а45 к горизонту.  [2]

Шарик массы т, двигавшийся на высоте Л 39 2 м параллельно горизонтальной поверхности пола со скоростью У 9 8 м / с, ударяет в стену, наклоненную под углом а 45 к горизонту. Считая удар абсолютно упругим и принимая ускорение свободного падения g 9 8 м / с2, установить, через какое время t отскочивший от стены шарик коснется пола.  [3]

Шарик массы т, привязанный к нерастяжимой нити, скользит по гладкой горизонтальной плоскости; другой конец нити втягивают с постоянной скоростью а в отверстие, сделанное на плоскости.  [4]

Шарик массы т, прикрепленный к концу горизонтальной пружины, коэффициент жесткости которой с, находится в положении равновесия в трубке на расстоянии а от вертикальной оси.  [5]

Шарик массы т помещен в высокий сосуд с некоторой жидкостью и отпущен без толчка.  [6]

Шарик массы т закреплен на конце вертикального упругого стержня, зажатого нижним концом в неподвижной стойке. При небольших отклонениях стержня от его вертикального равновесного положения можно приближенно считать, что центр шарика движется в горизонтальной плоскости Оху, проходящей через верхнее равновесное положение центра шарика.  [7]

Шарик массы т, прикрепленный к концу горизонтальной пружины, коэффициент жесткости которой с, находится в положении равновесия в трубке на расстеянии а от вертикальной оси.  [8]

Шарик массы т, имеющий заряд, находится внизу под закрепленным зарядом – на расстоянии / от него.  [9]

Шарик массы т, прикрепленный к концу горизонтальной пружины, коэффициент жесткости которой с, находится в положении равновесия в трубке на расстоянии а от вертикальной оси.  [10]

Шарик массы m закреплен на конце вертикального упругого стержня, зажатого нижним концом в неподвижной стойке. При небольших отклонениях стержня от его вертикального равновесного положения можно приближенно считать, что центр шарика движется в горизонтальной плоскости Оху, проходящей через верхнее равновесное положение центра шарика. Определить закон изменения силы, с которой упругий, изогнутый стержень действует на шарик, если выведенный из своего положения равновесия, принятого за начало координат, шарик движется согласно уравнениям x – acoskt, y bsmkt, где a b k – постоянные величины.  [11]

Шарик массы т, привязанный к нерастяжимой нити, скользит по гладкой горизонтальной плоскости; другой конец нити втягивают с постоянной скоростью а в отверстие, сделанное на плоскости.  [12]

Шарик массы т, прикрепленный к концу горизонтальной пружины, коэффициент жесткости которой с, находится в положении равновесия в трубке на расстоянии а от вертикальной оси.  [13]

Шарик массы т, подвешенный на нити, отклоняют от положения равновесия на угол а 90 и отпускают.  [14]

Шарик массы т, к которому привязана резинка длины – / ( длина в нерастянутом состоянии), нанизывают напрямую проволоку, образующую угол аф с горизонтом, где ср – угол трения шарика о проволоку. Свободный конец резинки прикрепляют к этой же проволоке на расстоянии / кверху от шарика, и затем шарик отпускают без начальной скорости.  [15]

Страницы:      1    2    3    4

Источник