Широкий сосуд с небольшим отверстием в дне наполнен

Широкий сосуд с небольшим отверстием в дне наполнен thumbnail

#хакнем_физика ???? рубрика, содержащая интересный, познавательный контент по физике как для школьников, так и для взрослых ????

Если решая математические задачи, следует руководствоваться только условиями, в том числе и неявно заданными (например: находя градусную меру одного из смежных углов в случаях, когда известна градусная мера другого, непременной частью условия является значение суммы градусных мер смежных углов, равной 180 град.), то при решении физических задач следует учитывать ВСЕ физические явления и процессы, влияющие на результат рассматриваемой в задаче ситуации.

Вот для примера известная и часто встречающаяся во многих учебниках и сборниках задач, в том числе и олимпиадных (и не только для семиклассников) по физике.

ЗАДАЧА

В стакане с водой плавает кусок льда. Изменится ли уровень воды, когда лёд растает?

Прежде чем продолжить чтение, предлагаю читателю дать (хотя бы для себя) обоснованный ответ на вопрос задачи…

В «Сборнике вопросов и задач по физике» [Н.И. Гольдфарб, изд. 2, «Высшая школа», М.: 1969] эта задача, помещённая как часть № 10.7 на стр. 48, на стр.193 приводится ответ:

«Лёд вытесняет воду, вес которой равен весу льда. Когда лёд растает, образуется такое же количество воды, поэтому уровень не изменится».

Такой же ответ приводится и во многих других сборниках…

А вот в популярнейшем и по сей день, выдержавшим множество изданий трёхтомнике «Элементарный учебник физики» под редакцией академика Г.С. Ландсберга [т. I, изд. 7, стереотипное, «Наука», М.: 1971] ответа на эту задачу (№ 162.2, стр. 351) не приводится. И это не случайно!

Что же не учтено в вышеприведённом ответе? Правильно! Не учтено, что при таянии льда вода в стакане охлаждается — именно поэтому мы и бросаем туда кусочек льда!

Вот как должен выглядеть правильный ответ:

«При таянии льда вода в стакане охлаждается. При охлаждении все вещества уменьшаются в объёме. Однако вода, единственная из всех известных веществ, имеет наибольшую плотность при температуре +4 град. С, а это значит, что при дальнейшем охлаждении данная масса воды увеличивается в объёме, что, как мне это было известно из курса природоведения в 5 классе (1961/1962 учебный год), является условием сохранения жизни на Земле, поскольку позволяет достаточно глубоким водоёмам не промерзать до самого дна!).

При этом возможно три варианта развития ситуации:

I. Если температура воды до начала таяния льда была выше 4 град. С и, хотя и понизилась после таяния льда, но осталась выше этой температуры, то уровень воды в стакане уменьшится.

II. Если температура воды до начала таяния льда была ниже 4 град. С, а после таяния льда ещё и уменьшилась, то уровень воды в стакане увеличится.

III. В случае, когда начальная температура воды была выше 4 град. С, а после того как лёд растаял, оказалась ниже этой температуры, то об уровне ничего определённого сказать нельзя — нужны конкретные данные о температуре и массе воды и льда, чтобы дать точный ответ на вопрос задачи!».

С этой задачей связана для меня одна интересная история.

Лет 15 назад во дворе дома, в котором я живу, ко мне с грустным выражением лица подошёл паренёк по имени Серёжа и попросил помочь подготовиться к предстоящей ему завтра апелляции по физике в нашем Политехническом институте (ныне Технический университет).

Поскольку времени было слишком мало, то я ограничился советом: если, по его мнению, апелляция пройдёт не очень удачно, и надежды исправить тройку на вступительном экзамене не будет, то попросить экзаменатора ответить на вопрос этой задачи и заставил его дословно вызубрить приведённый выше ответ и даже отработал с ним интонацию изложения этого ответа. На следующий вечер он подошёл ко мне с достаточно счастливым видом.

Вот его рассказ, каким я его запомнил:

«Всё получилось так, как Вы и хотели. Апелляцию проводили два человека: профессор и ассистент кафедры общей физики института. Мне выпало общаться с ассистентом, а профессор в это время общался с другим абитуриентом.

В ответ на мою просьбу ответить на мой вопрос ассистент слегка улыбнувшись сказал: «Пожалуйста…».

«После того, как я проговорил условие задачи, ассистент, широко улыбнувшись, произнёс: «Ну, это известная задача. Уровень воды не изменится — это следует из закона Архимеда: плавающий лёд вытесняет массу воды, равную массе льда. Образовавшаяся при таянии льда вода заполнит тот объём, который занимал в воде плавающий лёд…».

Читайте также:  Допплерография сосудов нижних конечностей владивосток

«Позвольте с Вами не согласиться», — начал я и затем совершенно спокойно слово в слово пересказал заготовленный нами ответ…

В это время профессор жестом остановил своего абитуриента и стал внимательно меня слушать…

Когда я закончил, возникла небольшая пауза…Профессор, обращаясь к ассистенту спросил: «Что скажешь?».

«Кажется, всё верно», — неуверенно ответил тот, на что профессор сказал, что никогда ещё не слышал столь аргументированного ответа, после чего, уже обращаясь ко мне, добавил: «Молодой человек, мы, к сожалению, не можем поднять Вам оценку сразу на два балла, но четвёрку Вы очевидно заслужили!»».

Мне остаётся лишь добавить, что Серёжа был зачислен студентом!…

Наши читатели могут поделиться своим мнением по поводу решения задачи. Если вам было интересно, не забудьте подписаться на наш канал и хэштег #хакнем_физика

Автор: #себихов_александр 71 год, много лет проработал конструктором-технологом микроэлектронных приборов и узлов в одном из НИИ г. Саратова, затем преподавателем математики и физики.

Другие статьи автора:

Вы читаете контент канала “Хакнем Школа”. Подпишитесь на наш канал, чтобы не терять его из виду.

Источник

Страница 2 из 2

232. В боковой поверхности цилиндрического сосуда, стоящего на горизонтальной поверхности, имеется отверстие, поперечное сечение которого значительно меньше поперечного сечения самого сосуда. Отверстие расположено на расстоянии h1 = 49 см от уровня воды в сосуде, который поддерживается постоянным, и на расстоянии h2 = 25 см от дна сосуда. Пренебрегая вязкостью воды, определите расстояние по горизонтали от отверстия до места, куда попадает струя воды.

233. На столе стоит наполненный водой широкий цилиндрический сосуд высотой h = 40 см. Пренебрегая вязкостью, определите, на какой высоте от дна сосуда должно располагаться небольшое отверстие, чтобы расстояние по горизонтали от отверстия до места, куда попадает струя воды, было максимальным.

234. Для вытекания струи жидкости из сосуда с постоянной скоростью применяют устройство, приведенное на рисунке (сосуде Мариотта). Определить скорость истечения струи.

235. Площадь соприкосновения слоев текущей жидкости S = 10 см2, коэффициент динамической вязкости жидкости η = 10-3 Па с, а возникающая сила трения между слоями F = 0,1 мН. Определить градиент скорости.

236. Шарик всплывает с постоянной скоростью в жидкости, плотность которой в три раза больше плотности материала шарика. Определить отношение силы трения, действующей на всплывающий шарик, к его весу.

237. Смесь свинцовых дробинок (плотность ρ = 11,3 г/см3) диаметром 4 мм и 2 мм одновременно опускают в широкий сосуд глубиной h = 1,5 м с глицерином (плотность ρ = 1,26 г/см3, динамическая вязкость η = 1,48 Па*с). Определить, насколько больше времени потребуется дробинам меньшего размера, чтобы достичь дна сосуда.

238. В широком сосуде, наполненном глицерином (плотность ρ = 1,26 г/см3, динамическая вязкость η = 1,48 Па * с), падает свинцовый шарик (плотность ρ = 11,3 г/см3). Считая, что при числе Рейнольдса Re <= 0,5 выполняется закон Стокса (при вычислении Re в качестве характерного размера берется диаметр шарика), определите предельный диаметр шарика.

239. Стальной шарик (плотность ρ = 9 г/см3) диаметром d = 0,8 см падает с постоянной скоростью в касторовом масле (плотность ρ` = 0,96 г/см3, динамическая вязкость η = 0,99 Па*с). Учитывая, что критическое значение числа Рейнольдса Reкр = 0,5, определить характер движения масла, обусловленный падением в нем шарика.

240. Пробковый шарик (плотность ρ = 0,2 г/см3) диаметром d = 6 мм всплывает в сосуде, наполненном касторовым маслом (плотность ρ` = 0,96 г/см3), с постоянной скоростью v = 1,5 см/с. Определить для касторового масла: 1) динамическую вязкость η; 2) кинетическую вязкость ν.

241. В боковую поверхность сосуда вставлен горизонтальный капилляр с внутренним диаметром d = 2 мм и длиной l = 1,2 см. Через капилляр вытекает касторовое масло (плотность ρ = 0,96 г/см3, динамическая вязкость η = 0,99 Па * с), уровень которого в сосуде поддерживается постоянным на высоте h = 30 см выше капилляра. Определите время, которое требуется для протекания через капилляр 10 см3 масла.

242. В боковую поверхность цилиндрического сосуда D вставлен капилляр с внутренним диаметром d и длиной l. В сосуд налита жидкость с динамической вязкостью η. Определить зависимость скорости и понижение уровня жидкости в сосуде от высоты h этого уровня над капилляром.

Читайте также:  Народный рецепт для чистки сосудов чесноком

243. В боковую поверхность цилиндрического сосуда, установленного на столе, вставлен на высоте h1 = 10 см от его дна капилляр с внутренним диаметром d = 2 мм и длиной l = 1 см. В сосуде поддерживается постоянный уровень машинного масла (плотность ρ = 0,9 г/см3, динамическая вязкость η = 0,1 Па * с) на высоте h2 = 70 см выше капилляра. Определите расстояние по горизонтали от конца капилляра до места, куда попадает струя масла.

244. Определить наибольшую скорость, которую может приобрести свободно падающий в воздухе (ρ = 1,29 кг/м3) свинцовый шарик (ρ` = 11,3 г/см3) массой m = 12 г. Коэффициент сопротивления Cx принять равным 0,5.

245. Парашют (m1 = 32 кг) пилот (m2 = 65 кг) в раскрытом состоянии имеет форму полусферы диаметром d = 12 м, обладая коэффициентом сопротивления Cx = 1,3. Определить максимальную скорость, развиваемую пилотом, при плотности воздуха 1,29 кг/м3.

246. Автомобиль с площадью миделя (наибольшая площадь сечения в направлении, перпендикулярном скорости) S = 2,2 м2, коэффициентом лобового сопротивления Сх = 0,4 и максимальной мощностью P = 45 кВт может на горизонтальных участках дороги развивать скорость до 140 км/ч. При реконструкции автомобиля уменьшают площадь миделя до S1 = 2 м2, оставляя Сх прежним. Принимая силу трения о поверхность дороги постоянной, определить, какую максимальную мощность должен иметь автомобиль, чтобы он развивал на горизонтальных участках дороги скорость до 160 км/ч. Плотность воздуха принять равной 1,29 кг/м3.

247. Объясните, зависит ли разность давлений на нижнюю и верхнюю поверхность крыла самолета от высоты его подъема.

Источник

Добавил:

Upload

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

12 Гидростатика.docx

Скачиваний:

16

Добавлен:

04.11.2018

Размер:

375.54 Кб

Скачать

  1. Определить скорость ветра, если он
    оказывает давление 200 Па. Ветер дует
    перпендикулярно стене. Плотность
    воздуха 1,29 кг/м3. (≈ 8,8 м/с)

  2. В широкой части горизонтальной трубы
    нефть течет со скоростью 2 м/с. Определить
    скорость течения нефти в узкой части
    трубы, если разность давлений в широкой
    и узкой частях трубы равна 50 мм рт. ст.
    (≈ 4,33 м/с)

  3. Поршень шприца приводится в движение
    пружиной жесткости k.
    Собственная длина пружины равна длине
    шприца. В шприц закачивают воду, сжимая
    пружину, и кладут его на гладкий стол
    вплотную к стене. Как зависит сила
    давления шприца на стену от величины
    деформации пружины x?
    Площадь поршня равна S,
    площадь отверстия шприца – s
    (s << S).

  1. Площадь поперечного сечения поршня в
    шприце S1, а площадь
    выходного отверстия S2
    << S1. Шприц
    расположен горизонтально. На поршень
    действует постоянная горизонтальная
    сила F. Ход поршня равен
    l. Найти время вытекания
    жидкости из шприца, если ее плотность
    равна ρ.

  1. На какой высоте площадь поперечного
    сечения струи фонтана будет в n
    раз больше площади выходного отверстия.
    Скорость воды в выходном отверстии v.

  1. Под каким углом к горизонту вытекает
    вода из брандспойта и какой наибольшей
    высоты она достигает, если площадь ее
    поперечного при выходе из брандспойта
    равна S1, а в высшей
    точке – S2? Скорость
    истечения воды из сопла равна v0.

  1. На поверхности стола стоит широкий
    сосуд с водой. Высота уровня воды в
    сосуде равна h, вес сосуда
    вместе с водой равен Р. В боковой
    поверхности сосуда у самого дна имеется
    отверстие площадью S,
    заткнутое пробкой. При каком значении
    коэффициента трения между сосудом и
    столом сосуд придет в движение, если
    вытащить пробку?

  1. Широкий сосуд с небольшим отверстием
    в дне наполнен водой и керосином.
    Пренебрегая вязкостью, найти скорость
    вытекающей воды, если толщина слоя воды
    равна h1, а слоя
    керосина h2.

  1. Две манометрические трубки установлены
    на горизонтальной трубе переменного
    сечения в местах, где сечения трубы
    равны S1 и S2.
    По трубе течет вода. Какой объем воды
    протекает по трубе в единицу времени,
    если разность уровней воды в манометрических
    трубках равна h?

  1. На горизонтальном столе стоит замкнутый
    цилиндрический сосуд, заполненный до
    высоты Н жидкостью плотностью ρ.
    Пространство над жидкостью заполнено
    газом. В боковой стенке сосуда на
    расстоянии h < H
    от его дна открывают отверстие площадью
    S1. При каком давлении газа в сосуде
    он начнет двигаться? Коэффициент трения
    между сосудом и столом равен μ, площадь
    сосуда S >> S1.
    Атмосферное давление Р0. Массой
    сосуда, газа и вязким трением пренебречь.

Читайте также:  Виды сосудов по назначению

11
В этой и следующих задачах, связанных
с движением тел в жидкости, закон
Архимеда считать действующим.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Решебник по физике Л.А. Кирик Самостоятельные и контрольные работы

1. а) Два сосуда одинаковой формы и размеров установлены так, как показано на рисунке. Что можно сказать: а) о массах воды в сосудах; б) о давлении на дно сосудов; в) о силах давления на дно сосудов?

а) массы одинаковы

б) давление на дно одинаково

в) сила давления на дно в первом сосуде больше, так как площадь дна больше

б) В сосуде находится один над другим три слоя несмешивающихся жидкостей: воды, керосина и ртути. Высота каждого слоя 5 см. Сделайте пояснительный рисунок и укажите на нем порядок расположения слоев. Определите давление жидкостей на дно сосуда и на глубине 7,5 см.

2. а) Под колоколом воздушного насоса находится сосуд, закупоренный пробкой. Почему при интенсивном выкачивании воздуха из-под колокола пробка может вылететь (см. рисунок)?

Давление под колоколом на пробку по мере выкачивания воздуха уменьшается, а внутри колбы остается постоянным. Когда сила давления газа, обусловленная разностью давлений, превысит максимальное значение силы трения покоя пробки о стекло, пробка вылетит.

б) Кубик с длиной ребра 10 см погружен в воду так, что его нижняя грань находится на глубине 25 см. С какой силой вода давит на нижнюю грань?

3. а) Будет ли гидравлический пресс работать на Луне? Если да, то будет ли какое-то различие в его работе на Луне по сравнению с работой на Земле?

Давление пресса на Луне будет меньше, чем на Земле, так как сила тяжести на Луне меньше.

б) В левое колено U-образной трубки с водой долили слой керосина высотой 20 см. На сколько поднимется уровень воды в правом колене?

4. а) Сосуды имеют одинаковые площади дна. Что можно сказать: а) о массах воды в сосудах; б) о давлении на дно сосудов; в) о силах давления на дно сосудов?

а) масса в 1-ом сосуде больше

б) давления одинаковы

в) силы давления одинаковы, так как площади дна равны

б) Малый поршень гидравлического пресса площадью 2 см2 под действием внешней силы опустился на 16 см. Площадь большего поршня 8 см2. Определите вес груза, поднятого поршнем, если на малый поршень действовала сила 200 Н. На какую высоту был поднят груз?

5. а) Справедлив ли закон сообщающихся сосудов в условиях невесомости?

Нет. В состоянии невесомости вес тела равен 0, следовательно, жидкость не будет оказывать давление.

б) Со дна аквариума убрали камень массой 780 г. В результате давление на дно сосуда уменьшилось на 50 Па. Какова плотность камня, если известно, что длина аквариума 30 см, а ширина 20 см? Камень был погружен в воду полностью.

6. а) Что вы можете сказать о величине давления и силах давления на дно сосуда во всех трех отсеках, изображенных на рисунке?

Давление зависит только от высоты сосуда и плотности жидкости. Сила давления на дно будет больше там, где площадь дна больше. => Давление одинаково во всех трёх отсеках, сила давления в 1-ом сосуде больше, чем во 2,3 отсеках.

б) В цилиндрических сообщающихся сосудах находится вода. Площадь поперечного сечения широкого сосуда в 4 раза больше площади поперечного сечения узкого сосуда. В узкий сосуд наливают керосин, который образует столб высотой 20 см. На сколько повысится уровень воды в широком сосуде и на сколько опустится в узком?

Пусть относительно начального уровня воды в сосудах в узком сосуде уровень воды понизится на h2, а в широком повысится на h1. Тогда давление столба керосина высотой Н в узкой трубке будет равно g ρк Н, давление воды в широкой трубке равно g ρв (h1 + h2), где ρк – плотность керосина и ρв – плотность воды. Так как жидкости находятся в равновесии, то

g ρк Н = g ρв (h1 + h2), или ρк Н = ρв (h1 + h2)

Воду считаем несжимаемой жидкостью, поэтому уменьшение объёма в узкой трубке площадью S должно быть равно увеличению объёма в широкой трубке площадью 4S:

Sh2 = 4Sh1, или h2 = 4h1.

Определим h1 = ρк Н/ 5 ρв.

Получаем h1 = 3,2 см и h2 = 12,8 см.

Источник