Сила давления жидкости на стенку в цилиндрическом сосуде

Рассмотрим (рис. 3.16) некоторую ограниченную часть твердой цилиндрической поверхности, которую назовем цилиндрической стенкой. Пусть рассматриваемая стенка находится под односторонним воздействием покоящейся жидкости, которое сводится к тому, что в каждой точке на стенку действует давление жидкости. Разобьем стенку на элементарные площадки. В силу малости площадок будем считать их плоскими и выразим элементарную силу давления на них в общем виде dP = pdw. Силы dP уже не будут направлены параллельно друг другу, их линии действия могут не пересекаться в одной точке, и их сумма может не сводиться к одной равнодействующей.

Для шаровой или круговой цилиндрической стенки элементарные силы давления, будучи нормальными к элементарным площадкам на этих поверхностях, направлены по радиусам и, следовательно, пересекутся в центре сферы или в центре круга (поперечного сечения цилиндра).

Определение сил давления на цилиндрические и шаровые поверхности имеет большое значение, так как в гидротехнических сооружениях обычно применяются конструкции с такими поверхностями (секторные, сегментные, вальцовые и шаровые затворы, водонапорные баки и т.п.).

Рис. 3.16. Схема к определению силы давления жидкости на цилиндрическую стену

Рассмотрим цилиндрические стенки, находящиеся под односторонним воздействием покоящейся жидкости. Определим силу избыточного давления. При этом условимся одну из осей координат направлять вдоль образующей цилиндрической поверхности.

Цилиндрическая поверхность с горизонтальной образующей. Направим ось OY параллельно образующей (см. рис. 3.16), а ось OZ – вертикально вверх.

Значение силы давления на цилиндрическую поверхность в данном случае определяется следующим образом:

(3.17)

где Рх и Рz -горизонтальная и вертикальная составляющие силы давления.

Выделим на цилиндрической поверхности элементарную площад­ку dw, на которую действует направленная по нормали элементарная сила dP = rghdω. Найдем горизонтальную dPx и вертикальную dPу составляющие силы dP:

.

Учитывая, что

И ,

имеем

;

,

где dwх – проекция элементарной площадки dw на плоскость, перпендикулярную оси OX;

dωz – проекция элементарной площадки dw на плоскость, перпендикулярную оси OZ.

Проинтегрировав, получим для горизонтальной составляющей силы Р:

, (3.18)

где wх – проекциявсей цилиндрической поверхности на плоскость, нормальную к оси ОХ;

– глубина центра тяжести проекции wх под пьезометрической плоскостью.

Для вертикальной составляющей получим:

.

Интеграл представляет собой объем призмы, ограниченной снизу цилиндрической поверхностью, а сверху – ее проекцией wz на пьезометрическую плоскость. Направляющие этой призмы – вертикальные прямые. Полученное таким образом тело называется телом давления.

Тело давления – это объемная фигура, ограниченная снизу цилиндрической поверхностью, по бокам – вертикальными плоскостями, проходящими через крайние точки цилиндрической поверхности, и сверху – горизонтальной плоскостью, совпадающей с пьезометрической.

Вертикальная составляющая Pz численно равна весу жидкости в объеме тела давления:

, (3.19)

где – объем тела давления.

На рис. 3.16 тело давления заштриховано вертикальными линиями.

Горизонтальная составляющая Рх проходит через центр давления проекции wх, а вертикальная составляющая Рzпроходит через центр тяжести тела давления.

Направление вертикальной составляющей Рz для схемы, изображенной на рис. 3.16, а – вниз, а на рис. 3.16, б – вверх.

Направление линии действия силы Р определяется направляющими косинусами:

(3.20)

Источник

4.2. Элементы гидростатики

4.2.3. Гидростатическое давление

Жидкость, находящаяся в некотором сосуде, оказывает на его дно и стенки гидростатическое давление.

Гидростатическое давление (давление жидкости) на дно сосуда (рис. 4.10) рассчитывают по формуле

pгидр = ρ0gh,

где ρ0 – плотность жидкости; g – модуль ускорения свободного падения; h – высота столба жидкости.

В Международной системе единиц гидростатическое давление измеряется в паскалях (1 Па).

Сила гидростатического давления на дно сосуда (см. рис. 4.10) определяется как произведение:

Fгидр = pгидрS = ρ0ghS,

где pгидр – гидростатическое давление на дно сосуда; ρ0 – плотность жидкости; g – модуль ускорения свободного падения; h – высота столба жидкости; S – площадь дна сосуда.

Рис. 4.10

Гидростатическое давление (давление жидкости) на вертикальную стенку сосуда (рис. 4.11) рассчитывают по формуле

p гидр = ρ 0 g h 2 ,

где ρ0 – плотность жидкости; g – модуль ускорения свободного падения; h – высота вертикальной стенки сосуда (столба жидкости).

Рис. 4.11

Сила гидростатического давления на вертикальную стенку сосуда (см. рис. 4.11) определяется как произведение:

F гидр = p гидр S = ρ 0 g h 2 S ,

где pгидр – гидростатическое давление на дно сосуда; ρж – плотность жидкости; g – модуль ускорения свободного падения; h – высота столба жидкости; S – площадь вертикальной стенки.

Рис. 4.11

При расчете давленияна днооткрытого водоема (рис. 4.12) необходимо учитывать атмосферное давление:

p = pатм + ρ0gh,

где pатм – атмосферное давление; ρ0 – плотность жидкости; g – модуль ускорения свободного падения; h – глубина водоема.

Рис. 4.12

Сила давления на дно открытого водоема определяется произведением:

F = pS = (pатм + ρ0gh)S,

где S – площадь дна водоема.

Гидростатическое давление жидкости на дно мензурки (рис. 4.13), отклоненной от вертикали на некоторый угол:

p = ρ0gh1 cos α,

где ρ0 – плотность жидкости; g – модуль ускорения свободного падения; h1 – высота столба жидкости при вертикальном положении мензурки; h2 = h1 cos α – высота столба жидкости при отклонении мензурки на угол α от ее вертикального положения.

Рис. 4.13

Пример 25. Цилиндрический сосуд радиусом 10 см имеет высоту 30 см. Его заполнили до краев жидкостью плотностью 2,5 г/см3. Найти величину средней силы гидростатического давления, действующей на боковую поверхность цилиндра.

Решение. Средняя сила гидростатического давления, действующая на боковую поверхность цилиндра, определяется произведением:

⟨ F гидр ⟩ = ⟨ p ⟩ S ,

где ⟨ p ⟩ – среднее гидростатическое давление на боковую поверхность цилиндра; S – площадь боковой поверхности цилиндра.

Найдем каждый из сомножителей следующим образом:

  • среднее гидростатическое давление на боковую поверхность цилиндра

⟨ p ⟩ = ρ 0 g h 2 ,

где ρ0 – плотность жидкости, заполняющей сосуд; g – модуль ускорения свободного падения; h – высота цилиндра; т.е. среднее значение гидростатического давления определяется как давление на середину боковой поверхности цилиндра;

  • площадь боковой поверхности цилиндра

S = 2πRh,

где 2πr – длина окружности; R – радиус дна цилиндра; т.е. площадь боковой поверхности цилиндра определяется как площадь прямо­угольника, одна из сторон которого равна высоте цилиндра, а другая – периметру круга (длине окружности), лежащего в его основании.

Подстановка среднего гидростатического давления ⟨ p ⟩ и площади боковой поверхности цилиндра S в исходную формулу позволяет получить выражение для вычисления модуля искомой силы:

⟨ F гидр ⟩ = π ρ 0 g R h 2 .

Расчет дает значение:

⟨ F гидр ⟩ = π ⋅ 2,5 ⋅ 10 3 ⋅ 10 ⋅ 10 ⋅ 10 − 2 ⋅ ( 30 ⋅ 10 − 2 ) 2 ≈ 707 Н ≈ 0,71 кН.

Пример 26. Атмосферное давление составляет 100 кПа. Плотность воды в водоеме равна 1,0 г/см3. Найти глубину открытого водоема, на которой давление в четыре раза больше атмосферного.

Решение. Давление в открытом водоеме определяется формулой

p = pатм + ρ0gh,

где pатм – атмосферное давление; ρ0 – плотность воды; g – модуль ускорения свободного падения; h – искомая глубина водоема.

По условию задачи

p = 4pатм.

Подстановка указанного значения в исходную формулу дает:

Читайте также:  Препарат для расширения сосудов в спорте

4pатм = pатм + ρ0gh,

или

3pатм = ρ0gh.

Выразим отсюда искомую глубину водоема

h = 3 p атм ρ 0 g

и произведем вычисление:

h = 3 ⋅ 100 ⋅ 10 3 1,0 ⋅ 10 3 ⋅ 10 = 30 м.

Таким образом, давление в открытом водоеме в 4 раза превышает атмосферное на глубине 30 м.

Источник

2.5. Закон Архимеда и его приложение

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела.

где: V – объем плавающего тела;

ρm – плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется устойчивостью. Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением, а точку приложения равнодействующей давления (т.е. центр давления) – центром водоизмещения. При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O’-O”, представляющей ось симметрии судна и называемой осью плавания (рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K’L’M’, наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d’. Приложим к точке d’ подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O’-O”. Полученная точка m называется метацентром, а отрезок mC = h называется метацентрической высотой. Будем считать h положительным, если точка m лежит выше точки C, и отрицательным – в противном случае.

Рис. 2.5. Поперечный профиль судна

1) если h > 0, то судно возвращается в первоначальное положение;

2) если h = 0, то это случай безразличного равновесия;

3) если h&lt0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше будет остойчивость судна.

2.6. Поверхности равного давления

Как уже отмечалось выше, поверхность, во всех точках которой давление одинаково, называется поверхностью уровня или поверхностью равного давления. При неравномерном или непрямолинейном движении на частицы жидкости кроме силы тяжести действуют еще и силы инерции, причем если они постоянны по времени, то жидкость принимает новое положение равновесия. Такое равновесие жидкости называется относительным покоем.

Рассмотрим два примера такого относительного покоя.

В первом примере определим поверхности уровня в жидкости, находящейся в цистерне, в то время как цистерна движется по горизонтальному пути с постоянным ускорением a (рис.2.6).

Рис. 2.6. Движение цистерны с ускорением

К каждой частице жидкости массы m должны быть в этом случае приложены ее вес G = mg и сила инерции Pu, равная по величине ma. Равнодействующая этих сил направлена к вертикали под углом α, тангенс которого равен

Так как свободная поверхность, как поверхность равного давления, должна быть нормальна к указанной равнодействующей, то она в данном случае представит собой уже не горизонтальную плоскость, а наклонную, составляющую угол α с горизонтом. Учитывая, что величина этого угла зависит только от ускорений, приходим к выводу, что положение свободной поверхности не будет зависеть от рода находящейся в цистерне жидкости. Любая другая поверхность уровня в жидкости также будет плоскостью, наклоненной к горизонту под углом α. Если бы движение цистерны было не равноускоренным, а равнозамедленным, направление ускорения изменилось бы на обратное, и наклон свободной поверхности обратился бы в другую сторону (см. рис.2.6, пунктир).

В качестве второго примера рассмотрим часто встречающийся в практике случай относительного покоя жидкости во вращающихся сосудах (например, в сепараторах и центрифугах, применяемых для разделения жидкостей). В этом случае (рис.2.7) на любую частицу жидкости при ее относительном равновесии действуют массовые силы: сила тяжести G = mg и центробежная сила Pu = mω2r, где r – расстояние частицы от оси вращения, а ω – угловая скорость вращения сосуда.

Рис. 2.7. Вращение сосуда с жидкостью

Поверхность жидкости также должна быть нормальна в каждой точке к равнодействующей этих сил R и представит собой параболоид вращения. Из чертежа находим

С другой стороны:

где z – координата рассматриваемой точки. Таким образом, получаем:

откуда

или после интегрирования

В точке пересечения кривой АОВ с осью вращения r = 0, z = h = C, поэтому окончательно будем иметь

т.е. кривая АОВ является параболой, а свободная поверхность жидкости параболоидом. Такую же форму имеют и другие поверхности уровня.

Для определения закона изменения давления во вращающейся жидкости в функции радиуса и высоты выделим вертикальный цилиндрический объем жидкости с основанием в виде элементарной горизонтальной площадки dS (точка М) на произвольном радиусе r и высоте z и запишем условие его равновесия в вертикальном направлении. С учетом уравнения (2.11) будем иметь

После сокращений получим

Это значит, что давление возрастает пропорционально радиусу r и уменьшается пропорционально высоте z.

Проверить себя ( Тест )

Наверх страницы

Источник

Формула давления на дно и стенки сосуда

Давление жидкости обусловлено ее весом и, соответственно сила этого давления F равна весу жидкости P. Вес жидкости можно определить, зная ее массу m. А массу можно вычислить по формуле: m=ρV. Объем жидкости в прямоугольном сосуде легко рассчитать. Обозначим высоту сосуда h, а площадь дна буквой S. Тогда объем будет равен: V=Sh. Формула массы в таком случае принимает вид: m=ρV=ρSh . Вес жидкости будет равен: P=gm=gρSh. чтобы рассчитать давление, нам нужна сила этого давления. А мы уже говорили, что сила давления в данном случае равна весу жидкости, поэтому формула давления принимает следующий вид:

Формула для этого давления в атмосфере. Кроме того, поскольку давление представляет собой силу на единицу измерения площади, то. Чтобы рассчитать давление через инструмент барометра, можно было бы заменить объем ртути в барометре в уравнение. Это дало бы уравнение. Вероятно, метеоролог даст атмосферное давление или барометрическое давление в 30 дюймов. Он состоит из длинной трубки, закрытой на одном конце, заполненной ртутью и перевернутой в сосуде с ртутью. На уровне моря сила атмосферного давления будет поддерживать колонку с содержанием ртути 760 мм в высоту.

p=P/S=gρSh/S или p=gρh

То есть в итоге мы пришли к очень интересному моменту – давление не зависит от объема и формы сосуда. Оно зависит только от плотности и высоты столба конкретной жидкости в данном случае. Из чего следует, что, увеличив высоту сосуда, мы можем при небольшом объеме создать довольно высокое давление. Для давления газа на дно и стенки сосуда формула будет иметь точно такой же вид.

Простые приложения, связанные с давлением

Фактически вес столба ртути равен силе атмосферного давления. Подобным же образом атмосферное давление заставляет воду в подобной колонне высотой до 34 футов! После запуска атмосферное давление на поверхность верхнего контейнера заставляет воду за короткую трубу заменить воду, вытекающую из длинной трубки.

  • Фактически это приводит к снижению давления воздуха внутри соломы.
  • Сифон можно запустить, заполнив трубку водой.
Читайте также:  Если на руке тянет сосуд

Наблюдения Бойля можно суммировать в утверждении: при постоянной температуре объем газа изменяется обратно пропорционально давлению, оказываемому на него.

Применение давления на дно и стенки сосуда

Еще один интересный момент заключается в том, что согласно закону Паскаля давление распределяется равномерно не только на дно и стенки, но и в направлении вверх. То есть, если мы погрузим какое-либо тело на определенную глубину, то на него снизу будет действовать сила, равная силе давления на данной глубине, как бы выталкивая тело на поверхность. Именно благодаря этому явлению возможно плавание кораблей. Несмотря на довольно внушительный вес, вода выталкивает судно вследствие эффекта давления воды на стенки сосуда, которыми в данном случае являются борта корабля. С понижением глубины давление увеличивается. Люди научились использовать это явление , делая борта кораблей в форме сужающихся вниз конусов. Именно поэтому нас доступно покорение морей и океанов.

Кинетическая молекулярная теория Пояснение

Наблюдения за давлением можно объяснить, используя следующие идеи. Быстрое движение и столкновения молекул со стенками контейнера вызывает давление. Давление пропорционально числу молекулярных столкновений и силе столкновений в определенной области. Чем больше столкновений молекул газа со стенками, тем выше давление.

В 17 веке Роберт Бойл впервые сформулировал связь между давлением, объемом и температурой, поскольку они связаны с газом по формуле. Эта формула была результатом его экспериментов с газом, и, как он заметил, газ имел тенденцию к изменению давления, когда он занимал контейнеры различного размера.

А что по поводу давления газов?

Что касается газов, то для них расчет будет абсолютно таким же. Соответственно, наибольший вес окружающего нас газа – воздуха, будет у поверхности Земли. А с увеличением высоты будет уменьшаться как среднее давление, так и плотность окружающего газа. Поэтому воздух на высоте очень разреженный. Там очень трудно как дышать, так и летать, потому что крыльям самолетов не на что опираться. Именно поэтому набирать очень большую высоту летательные аппараты могут только на очень высокой скорости, увеличивая таким образом количество воздуха под крылом в единицу времени.

Эта связь часто упоминается как Закон Бойля. Кроме того, Бойл отметил, что газы имеют тенденцию «возвращаться» к его первоначальному давлению после удаления из контейнера, в котором он либо был сжат, либо расширен. Общая разница в высоте напрямую коррелировала с давлением атмосферы.

Бойл проиллюстрировал это через формула. Рон Куртус. Давление – это сила на объекте, который распространяется по поверхности. Уравнение для давления – это сила, деленная на область, где применяется сила. Хотя это измерение является простым, когда твердое тело надавливает на твердое тело, корпус твердого тела, нажимая на жидкость или газ, требует, чтобы жидкость была ограничена в контейнере.

Нужна помощь в учебе?

Предыдущая тема: Давление в жидкости и газе

Следующая тема:&nbsp&nbsp&nbspСообщающиеся сосуды

В соответствии с законом Паскаля гидростатическое давление на уровне горизонтального дна сосуда при высоте жидкости в сосуде, равной Н ,

Сила также может быть создана весом объекта. Вопросы, которые могут возникнуть, включают.

  • Какое давление, когда твердое тело подталкивает другое твердое тело?
  • Что происходит, когда твердое тело нажимает на ограниченную жидкость?
  • Что происходит, когда сила исходит из гравитации?

Этот урок ответит на эти вопросы.

Когда вы применяете силу к твердому объекту, давление определяется как прилагаемое усилие, деленное на область применения. Вы можете видеть, что при заданной силе, если площадь поверхности меньше, давление будет больше. Если вы используете большую область, вы распространяете силу, и давление становится меньше.

Отсюда следует, что абсолютное давление р на горизонтальное дно не зависит от формы сосуда и объема жидкости в нем. При данной плотности жидкости оно определяется лишь высотой столба жидкостиН и внешним давлениемр 0 .

Сила давления жидкости Р ж на дно сосуда зависит от его площадиF :

Сила давления жидкости на стенку в цилиндрическом сосуде(1.8)

Твердое прессование на ограниченной жидкости

Когда жидкость или газ заключены в контейнер или цилиндр, вы можете создать давление, применяя усилие с помощью твердого поршня. В ограниченной жидкости – пренебрегая влиянием силы тяжести на жидкость – давление одинаково во всем контейнере, одинаково нажимая на все стенки. В случае велосипедного насоса давление, создаваемое внутри насоса, будет передаваться через шланг в велосипедную шину. Но воздух все еще ограничен.

Увеличение силы увеличит давление внутри цилиндра. Поскольку вес объекта является силой, вызванной гравитацией, мы можем заменить вес в уравнении давления. Таким образом, давление, вызванное весом объекта, – это вес, разделенный на область, где применяется вес.

Общая сила давления на дно сосуда

Сила давления жидкости на стенку в цилиндрическом сосуде(1.9)

Внешнее давление р 0 передается жидкостью каждому элементу поверхности стенки одинаково, поэтому равнодействующая внешнего давления приложена в точке центра тяжести поверхности стенки. Давление веса жидкости на стенку не одинаково по высоте: чем глубже расположен элемент стенки, тем большее давление веса жидкости он испытывает. Поэтому центр давления жидкости на вертикальную стенку расположен всегда ниже центра тяжести смоченной поверхности стенки.

Если вы помещаете твердый предмет на пол, давление на пол над областью контакта – это вес предмета, разделенного областью на полу. Хороший пример того, как сила на небольшой площади может привести к очень сильному давлению, наблюдается в обуви женщин с высокими шипами. Эти типы обуви могут нанести ущерб некоторым полам из-за очень высокого давления на пол на каблук.

Средний ботинок распределяет вес человека более 20 квадратных дюймов. В некоторых случаях этого достаточно, чтобы повредить пол. Если вы положите жидкость в контейнер, вес этой жидкости будет нажимать на дно контейнера, аналогичную весу твердого объекта. Давление на дно контейнера будет таким же, как если бы вес был из твердого вещества.

Сила полного гидростатического давления на плоскую стенку равна произведению гидростатического давления в центре тяжести этой стенки и ее площади:

Сила давления жидкости на стенку в цилиндрическом сосуде(1.10)

где Сила давления жидкости на стенку в цилиндрическом сосуде– расстояние от верхнего уровня жидкости до центра тяжести смоченной поверхности стенки; оно зависит от геометрической формы стенки.

Единственное различие заключается в том, что давление в жидкости идет во все стороны. Таким образом, давление на сторонах внизу будет одинаковым. Газы и жидкости проявляют давление из-за их веса в каждой точке жидкости. Давление может быть измерено для твердого тела, нажимая на твердое тело, но в случае твердого тела, нажимающего на жидкость или газ, требуется, чтобы жидкость была ограничена в контейнере. Надавите на себя, чтобы преуспеть.

Самые популярные книги по физике силы. Если да, отправьте электронное письмо с отзывами. Пожалуйста, включите его в качестве ссылки на свой сайт или в качестве ссылки в своем отчете, документе или тезисе. Участники, подверженные воздействию осесимметричных нагрузок.

Читайте также:  Какая жидкость налита в сосуд объемом

Точка приложения сил Р иР изб носит название центра давленияh д и может быть определена в соответствии с законами теоретической механики через момент инерции смоченной поверхности стенки

Тонкостенный цилиндр под давлением. Преамбула: сосуды высокого давления чрезвычайно важны в промышленности. Обычно в обычной практике используются два типа сосудов высокого давления, такие как цилиндрический сосуд высокого давления и сферический сосуд высокого давления.

При анализе этих стеновых цилиндров, подвергнутых внутренним давлениям, предполагается, что радиальные планы остаются радиальными, а доза толщины стенки не изменяется из-за внутреннего давления. Далее, при анализе их стеновых цилиндров, вес жидкости считается пренебрежимым.

Сила давления жидкости на стенку в цилиндрическом сосуде(1.11)

где J x – момент инерции стенки относительно осиox .

Для прямоугольной стенки при уровне жидкости в сосуде, равном Н , и ширине стенкиВ

Сила давления жидкости на стенку в цилиндрическом сосуде

Следовательно,

Сила давления жидкости на стенку в цилиндрическом сосуде

Этот цилиндр подвергается разности гидростатического давления р между его внутренней и внешней поверхностями. Во многих случаях р между давлением избыточного давления внутри цилиндра, заставляя внешнее давление быть окружающим. Небольшой кусок стенки цилиндра показан изолированно, а напряжения в соответствующем направлении также показаны.

Такой компонент не срабатывает, поскольку при чрезмерно высоком внутреннем давлении. Хотя это может потерпеть неудачу, разрываясь по пути, следующему окружности цилиндра. При нормальных обстоятельствах он терпит неудачу по обстоятельствам, которые он терпит неудачу, разрываясь вдоль пути, параллельного оси. Это говорит о том, что напряжение пялец значительно выше, чем осевое напряжение.

  1. Практическое использование законов гидростатики

Применив закон Паскаля к сообщающимся сосудам, можно прийти к следующим выводам.

Если сосуды (рис. 1.4 а ) заполнены однородной жидкостью (одинаковой плотности), то при равновесии давление в точке 0 может быть выражено:

Сила давления жидкости на стенку в цилиндрическом сосуделибо

Сила давления жидкости на стенку в цилиндрическом сосуде,

Чтобы получить выражения для различных напряжений, сделаем следующее. Жидкие резервуары и емкости для хранения, водопроводные трубы, котлы, корпуса подводных лодок и некоторые компоненты воздушной плоскости являются общими примерами тонкостенных цилиндров и сфер, куполов крыши.

В стенке нет напряжений сдвига. Продольные и пястные напряжения не меняются через стену. Состояние выноса для элемента тонкостенного сосуда высокого давления считается двухосным, хотя внутреннее давление, действующее нормали к стене, вызывает локальное напряжение сжатия, равное внутреннему давлению. На самом деле состояние трехосевого напряжения существует на внутри судна. Однако для тогдашнего стенного сосуда давления третье напряжение намного меньше, чем два других напряжения, и по этой причине в этом можно пренебречь.

т.е. в сообщающихся сосудах заполняющая их однородная жидкость располагается на одинаковом уровне.

При заполнении сосудов жидкостями с различной плотностью (рис 1.4 б ) в условиях равновесия давление в точке О будет

Сила давления жидкости на стенку в цилиндрическом сосуделибо

Сила давления жидкости на стенку в цилиндрическом сосуде.

Тонкие цилиндры, подверженные внутреннему давлению. Когда тонкостенный цилиндр подвергается внутреннему давлению, в материалах цилиндра будут установлены три взаимно перпендикулярных главных напряжения, а именно. Окружность или шероховатость. Теперь определим эти напряжения и определим выражения для них.

Обруч или периферический стресс. Это напряжение, которое создается в противодействии разрушающему эффекту приложенного давления и может быть наиболее удобно обрабатываться с учетом равновесия цилиндра. На рисунке мы показали одну половину цилиндра. Общее усилие на одной половине цилиндра из-за внутреннего давления р.

Сила давления жидкости на стенку в цилиндрическом сосуде

Рисунок 1.4 – Сообщающиеся сосуды, заполненные жидкостью: а – одной плотности;б – разной плотности

Следовательно

Сила давления жидкости на стенку в цилиндрическом сосуде, т.е.

Сила давления жидкости на стенку в цилиндрическом сосуде. (1.12)

Т. – сила в одной стенке полуцилиндра. Требования к сложным системам автоматизированной обработки, потребность во все более жестком управлении технологическими процессами и все более строгая нормативная среда приводят к тому, что инженеры-разработчики стремятся получать более точные и надежные системы измерения уровня. Повышенная точность позволяет снизить изменчивость химического процесса, что приводит к повышению качества продукта, снижению затрат и меньшему количеству отходов. Правила, особенно касающиеся электронных документов, устанавливают жесткие требования к точности, надежности и электронной отчетности.

Соотношение (1.12) указывает на то, что высоты уровней жидкости, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.

Этот принцип используется для измерения уровня жидкости в закрытых аппаратах с помощью водомерных стёкол, в жидкостных манометрах.

Если сообщающиеся сосуды заполнены одной и той же жидкостью, но давление над уровнем жидкости в них разное – р 1 ир 2 , то при равновесии

Технология измерения уровня в переходном периоде

Новые технологии измерения уровня помогают удовлетворить эти требования. Простейшим и самым старым промышленным устройством, конечно же, является смотровое стекло. Ручной подход к измерению, очки зрения всегда имели ряд ограничений. Уплотнения подвержены утечке, а наращивание, если оно присутствует, скрывает видимый уровень. Можно безоговорочно заявить, что обычные смотровые стекла являются самым слабым звеном любой установки. Поэтому их быстро заменяют более современные технологии.

Сила давления жидкости на стенку в цилиндрическом сосуде,

Сила давления жидкости на стенку в цилиндрическом сосуде. (1.13)

Последнее выражение используется при измерении давления или разности давлений между различными точками с помощью дифференциальных U -образных манометров.

Сила давления жидкости на стенку в цилиндрическом сосуде

Другие устройства обнаружения уровня включают те, которые основаны на удельном весе, физическом свойстве, наиболее часто используемом для восприятия поверхности уровня. Простой поплавок, имеющий удельный вес между потоками технологической жидкости и паром свободного пространства, будет плавать на поверхности, точно после ее подъемов и падений. Измерения гидростатической головки также широко использовались для определения уровня.

Когда задействованы более сложные физические принципы, возникающие технологии часто используют компьютеры для выполнения вычислений. Это требует отправки данных в машиночитаемом формате от датчика к системе управления или мониторинга. Полезными форматами выходных сигналов преобразователя для компьютерной автоматизации являются токовые петли, аналоговые напряжения и цифровые сигналы. Аналоговые напряжения просты в настройке и работе, но могут иметь серьезные проблемы с помехами и помехами.

Рисунок 1.5. – К определению высоты гидравлического затвора

Этот же принцип используется для определения высоты гидравлического затвора в аппаратах, заполненных жидкостью (рис. 1.5).

На рисунке представлен сосуд, заполненный двумя жидкостями с плотностями  1 и 2 ; уровень их раздела на глубинеz 1 необходимо поддерживать в процессе работы постоянным с помощью гидрозатвора, представляющего собойU -образную трубку, подсоединённую снизу (на выходе жидкости из аппарата).

В соответствии с уравнением (1.12) высота гидравлического затвора в случае одинакового давления над жидкостью внутри аппарата и на выходе из затвора

Сила давления жидкости на стенку в цилиндрическом сосуде. (1.14)

На использовании данного уравнения гидростатики основана работа таких простейших гидравлических машин, как гидравлический пресс, мультипликатор (для повышения давления), домкрат, подъемник и др.

Сила давления жидкости на стенку в цилиндрическом сосуде

Рисунок 1.6 – Схема гидравлического пресса

На рис. 1.6 показана схема гидравлического пресса. Если к поршню П 1 , имеюшему площадьF 1 , приложена силаР 1 , то эта сила будет передаваться на жидкость; жидкость же будет давить на поршень П 2 , имеющий площадьF 2 , с силойР 2

Сила давления жидкости на стенку в цилиндрическом сосуде(1.15)

так как гидростатические давления в точках площади F 1 и площадиF 2 практически равны между собой:

Сила давления жидкости на стенку в цилиндрическом сосуде(1.16)

Из уравнения (1.16) следует, что при помощи пресса сила Р 1 увеличивается во столько раз, во сколько площадьF 2 больше площадиF 1 .

Источник