Симпатическая система расширяет сосуды

Оглавление темы “Сосудистый тонус. Эндотелий сосудов. Кровоснабжение головного мозга. Кровоснабжение сердца ( миокарда ).”: Нервная регуляция тонуса сосудов. Парасимпатические воздействия на сосуды. Влияние симпатической нервной системы на сосуды.Нейрогенное сужение сосудов осуществляется путем возбуждения адренергических волокон, которые действуют на гладкие мышцы сосудов путем высвобождения в области нервных окончаний медиатора адреналина. Торможение импульсов в симпатических нервных волокнах влияет на гладкие мышцы сосудов путем снижения их тонуса. Парасимпатические вазодилататорные волокна холинергической природы доказаны для группы волокон сакрального отдела, идущих в составе п. pelvicus. В блуждающих нервах отсутствуют сосудорасширяющие волокна для органов брюшной полости. В скелетных мышцах доказано наличие симпатических вазодилататорных нервных волокон, которые являются холинергическими. Внутрицен-тральный путь этих волокон начинается в моторной зоне коры мозга. Тот факт, что эти волокна могут возбуждаться при стимуляции двигательной области коры мозга, позволяет предположить, что они вовлекаются в системную реакцию, способствующую увеличению кровотока в скелетных мышцах в начале их работы. Гипоталамическое представительство этой системы волокон указывает на их участие в эмоциональных реакциях организма. У теплокровных отсутствует «дилататорный» центр с особой системой «дилататорных» волокон. Вазомоторные сдвиги бульбоспинального уровня осуществляются исключительно путем изменения числа возбужденных констрикторных волокон и частоты их разрядов, т. е. сосудодвигательные эффекты возникают только путем возбуждения или торможения констрикторных волокон симпатических нервов. Адренергические волокна при электрической стимуляции могут передавать импульсацию с частотой 80—100 в 1 с. Однако в физиологическом покое частота импульсов в них составляет 1—3 в 1 с и может увеличиваться при прессорном рефлексе только до 12—15 имп/с. Из сказанного ясно, что практически весь диапазон величин сосудистых реакций, которые можно получить при электрической стимуляции нервов, соответствует увеличению частоты импульсов всего лишь на 1—12 в 1 мин, что вегетативная нервная система в норме функционирует при частоте разрядов значительно меньшей 10 имп/с. Электрическая стимуляция соответствующих симпатических волокон приводит к достаточно сильному повышению сопротивления сосудов скелетных мышц, кишечника, селезенки, кожи, печени, почки, жира; эффект выражен слабее в сосудах мозга, сердца. В сердце и почке этой вазоконстрикции противостоят местные вазодилататорные влияния, опосредованные активацией функций основных или специальных клеток ткани, одновременно запускаемые нейрогенным адренергическим механизмом. В результате такой суперпозиции двух механизмов выявление адренергической нейрогенной вазоконстрикции в сердце и почке составляет более сложную, чем для других органов, задачу. Общая закономерность все же состоит в том, что во всех органах стимуляция симпатических волокон вызывает активацию гладких мышц сосудов, иногда маскируемую одновременными или вторичными тормозными эффектами. При рефлекторном возбуждении симпатических нервных волокон, как правило, имеет место повышение сопротивления сосудов всех изученных областей (рис. 9.22). При торможении симпатической нервной системы (рефлексы с полостей сердца, депрессорный синокаротидный рефлекс) наблюдается обратный эффект. Различия между рефлекторными вазомоторными реакциями органов в основном количественные, качественные — обнаруживаются значительно реже. Одновременная параллельная регистрация сопротивления в различных сосудистых областях свидетельствует о качественно однозначном характере активных реакций сосудов при нервных влияниях. Учитывая небольшую величину рефлекторных констрикторных реакций сосудов сердца и мозга, можно полагать, что в естественных условиях кровоснабжения этих органов симпатические вазоконстрикторные влияния наних нивелируются метаболическими и общими гемодинамическими факторами, в результате чего конечным эффектом может быть расширение сосудов сердца и мозга. Этот суммарный дилататорный эффект обусловлен сложным комплексом влияний на указанные сосуды, а не только нейро-генных. Кроме того, эти отделы сосудистой системы обеспечивают обмен веществ в жизненно важных органах, поэтому слабость вазоконстриктор-ных рефлексов в этих органах обычно интерпретируют тем, что выраженные симпатические констрикторные влияния на сосуды мозга и сердца биологически нецелесообразно, так как это значительно уменьшало бы их кровоснабжение. – Также рекомендуем “Влияние простогландинов на сосуды. Воздействие кининов на стенку сосуда.” |
Источник
Давно собиралась рассказать о том, как воздействовать на вегетативную нервную систему, чтобы убрать неприятные физиологические последствия стрессов и восстанавливать балланс возбуждения и торможения в мозге. И вот пришло время. Наткнулась на просторах сети на забавную статью «Как преодолеть стресс и активизировать парасимпатическую нервную систему». Ну, думаю, кто-то меня опередил и решил приподнять завесу тайны над глубинными функциями мозга. Однако, статья меня разочаровала ибо стимулировать вегетатику предлагалось… поворотами головы и упражнениями с шеей. Всего рекомендации были две и обе никак не затрагивали вегетатику в каком-либо виде. В целом, в статье никаких обоснований сим экзерсисам и не приводилось: просто тупо двигайте головой и будет вам счастье.
Что касается содержания названия: тут кроется один подвох. Дело в том, что в процессе реализации стрессовой реакции парасимпатическая система может активироваться и сама по себе. При пассивно-оборонительной стратегии. И ничего приятного в ее включении нет: тошнота, непроизвольное мочеиспускание и дефекация, То есть в основном задействован желудочно- кишечный тракт.
Но рациональное зерно в названии статьи все же есть, если предположить, что речь идет о буйстве симпатического отдела нервной системы, который довольно часто акттивизируется при стрессовых реакциях типа бей- беги, то есть активном сценарии действия.
Но для начала вспомним как проявляют себя симпатический и парасимпатический отделы при стрессовых реакциях.
Активация симпатической нервной системы вызывает:
– тахикардию (повышенную частоту пульса)
– усиление сокращений сердца (оно ощущается лучше)
– сужает артерии (повышается артериальное давление)
– расширяет капилляры кожи (краснота и ощущение жара)
– расширяет зрачки (поэтому «у страха глаза велики»)
– уменьшает сокращения кишечника и выработку пищеварительных ферментов (запор)
– уменьшает слюноотделение (сухость во рту)
– уменьшает потоотделение (сухость кожи)
– расслабляет мочевой пузырь
– вызывает запор
– поднимает кожные волоски (гусиная кожа)
– расширяет бронхи и бронхиолы
– усиливает частоту дыхания
– возбуждает нервную систему,
– усиливает обмен веществ и регенерацию тканей
– мобилизует (расходует) противострессовые резервы
Действие парасимпатического отдела:
– урежает частоту пульса
– уменьшает силу сокращений сердца (не ощущаю своего сердца)
– расширяет артерий половых органов и мозга (застой в малом тазу и головные боли)
– расширяет артерии (снижает артериальное давление)
– усиливает сокращения кишечника и стимулирует выработку пищеварительных ферментов (бурление и плеск в животе, спазмы, жидкий стул)
– увеличивает слюноотделение.
– сокращает мочевой пузырь
– сужает бронхи и бронхиол
– уменьшает частоту дыхания
– сужает сосуды кожи (побледнение)
– сужает зрачки (глаза –бусинки)
– снижает активность нервной системы (поэтому после еды, при недосыпе и в жару так плохо думается).
– способствует восстановлению запасов энергии
Из вышеперечисленного заметно, что действие одного отдела противоположно другому. В норме они находятся в состоянии динамического равновесия, и в определенный момент времени преобладает один из отделов, в зависимости от степени активности организма и его функции. Так в период активного бодрствования и движения преобладает симпатический отдел, а во время переваривания пищи, отдыха и сна – парасимпатический.
То есть, реагировать на стрессовые события первым начнет симпатический отдел, пытаясь устранить неблагоприятный фактор, или устранится от него. Он потребляет большую часть резервов и когда они исчерпаны, в дело вступает парасимпатический отдел. Он позволяет перевести организм в режим восстановления резервов.
Если противострессовых резервов достаточно, или они расходуются организмом экономно – то проявления симпатической активности могут длиться долго. Так люди годами живут с паническими атаками, постепенно лишаясь сил. Но вот если у них появляются проявления парасимпатической активности – можно говорить о сильной астении, то есть серьезном упадке сил.
Если у людей противострессовые резервы от природы слабее, то длительность симпатической фазы может быть малозаметна и сразу переходит в парасимпатическую: это то, что студенты называют «медвежьей болезнью». Так же происходит и у большинства людей с ваготонией, то есть преобладанием тонуса парасимпатического отдела нервной системы.
Теперь о том, как утихомирить разбушевавший вегетативный отдел нервной системы и восстановить равновесие в системе. Тут важно помнить один интересный факт и отталкиваться от него. Дело в том, что вегетатика не поддается действиям с помощью волевых усилий и слов. В организме просто нет таких нервных путей – от префронтальной коры в ретикулярную формацию и лимбическую систему. То есть мантрами, уговорами и танцами с бубном ничего не изменить. Ни с каким ОНО, на самом деле, договориться вы просто не сможете. Настоящее бессознательное подчиняется только (!) рефлексам и определенным сигналам из внешней среды. Все остальное просто бессмысленно и бесполезно.
Таким образом, воздействовать на вегетативную систему можно только рефлекторно. Если сосуды расширены – сузить, если сужены – расширить. Вот тут то и пригождаются любые мысленные и волевые усилия – воссоздать условия, при которых организм будет вынужден реагировать по нужному вам пути. И прежде всего, создать условия для активации противоположного отдела вегетативной нервной системы и воспроизведения противоположной реакции. Это балансирует вегетатику.
Как обуздать симпатический отдел нервной системы? То есть реагирование по типу панических атак. Поскольку мы помним, что она расширяет сосуды – их нужно сузить. В русском языке даже термин специфический на этот случай есть – остудить голову. Таким образом нужно прежде всего сузить сосуды головы и лучше всего височной области – того места в мозгу, который нагнетает тревогу. С той же целью надо убирать чувство неприятного жара в теле, путем выхода на воздух и смачивания рук в холодной воде. Но это все касается наружных сосудов.
Сосуды внутренних органов и, особенно, желудочно-кишечного тракта, надо расширять. И вообще активизировать деятельность пищеварения, что растормаживает парасимпатику. То есть, внутрь надо пить горячий чай и принимать любую пищу, какая пойдет. Это запустит деятельность отдела.
У Л.А. Китаева-Смыка в книге «Сознание и стресс» встретила оригинальную методику, которой пользовались врачи в первую мировую войну. Солдат с тревожными неврозами, норовивших сбежать с поля боя, лечили клизмами-клистирами, вызывая понос. Таким же действием обладает действие слабительных средств (касторового масла). Помимо этого использовали промывания желудка, симулируя рвоту и вызывая болевые импульсы от желудка. Что также стимулировало активность парасимпатического отдела нервной системы.
Теперь что касается шейных физических упражнений, которыми в статье предлагалось запускать парасимпатику – толку от этого не будет никакого, поскольку к парасимпатическому отделу мышцы шеи отношения не имеют.
В физических упражнениях при симпатикотонии есть смысл для снятия тревоги и напряжения с мышц, но и то с других – рук и ног, поскольку тревога реализуется в действие и рефлекторный цикл в нервной системе оказывается завершен.
Физические упражнения так же окажутся эффективными в снятии избыточного влияния парасимпатического отдела нервной системы. Вот тут они помогут осуществить прилив энергии и сузить сосуды внутренних органов и расширить периферические сосуды, которые при ваготонии сужены. Поэтому у ваготоников вечно холодные руки-ноги. Первейшее лекарство для снятия избыточных влияний парасимпатики – физическая активность. Им так же показан массаж спины – поскольку вдоль позвоночника расположено множество симпатических ганглиев, которые при массаже стимулируются.
Если холодеют руки и ноги – их нужно греть – под струей горячей воды, в горячей ванне, или заворачивая во что-то теплое. То есть тело снаружи нужно греть.
Как остановить разбушевавшийся желудочно-кишечный тракт? Есть старинное, испытанное в 50-60 годах средство и имя ему – новокаин. Не удивляйтесь – его можно принимать внутрь без всякого ущерба для здоровья и даже с немалой пользой. Он блокирует болевую и любую другую патологическую импульсацию с желудочно-кишечного тракта, сигнализируя нервной системе, что все у нее спокойно и в порядке, и блокируя порочный круги от кишечника к мозгу и обратно.
Так же хорошо использовать лекарственные и другие народные средства, уменьшающие тонус кишечника и вызывают запоры. Кору дуба, например.
Рекомендована диета с ограничением раздражающих пищевых продуктов: острого, жирного, жареного и вызывающего повышенное газообразование.
Вот такими простыми и подручными способами можно помочь себе сбалансировать деятельность вегетативной нервной системы и ее отделов. Берите себе на заметку и будьте здоровы!
Источник
Сужение артерий и артериол, снабженных преимущественно симпатическими нервами (вазоконстрикция), было впервые обнаружено Вальтером (1842) в опытах на лягушках, а затем Бернаром (1852) в экспериментах на ухе кролика.
Главными сосудосуживающими нервами органов брюшной полости являются симпатические волокна, проходящие в составе внутренностного нерва.
Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий (в их адвентициальной оболочке). Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влиянием симпатических нервов.
Сосудорасширяющие эффекты (вазодилатация) впервые обнаружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу нервной системы. Например, раздражение барабанной струны (chorda timpani) вызывает расширение сосудов подчелюстной железы и языка, п. cavernosi penis — расширение сосудов пещеристых тел полового члена.
В некоторых органах, например в скелетной мускулатуре, расширение артерий и артериол происходит при раздражении симпатических нервов, в составе которых имеются, кроме вазоконстрик-торов, и вазодилататоры. При этом активация «-адренорецепторов приводит к сжатию (констрикции) сосудов. Активация р -адренорецепторов, наоборот, вызывает вазодилатацию. Следует заметить, что /3-адренорецепторы обнаружены не во всех органах.
Расширение сосудов (главным образом кожи) можно вызвать также раздражением периферических отрезков задних корешков спинного мозга, в составе которых проходят афферентные (чувствительные) волокна.
Эти факты, обнаруженные в 70-х годах прошлого столетия, вызвали среди физиологов много споров. Согласно теории Бейлиса и Л. А. Орбели, одни и те же заднекорешковые волокна передают импульсы в обоих направлениях: одна веточка каждого волокна идет к рецептору, а другая — к кровеносному сосуду. Рецепторные нейроны, тела которых находятся в спинномозговых узлах, обладают двоякой функцией: передают афферентные импульсы в спинной мозг и эфферентные импульсы к сосудам. Передача импульсов в двух направлениях возможна потому, что афферентные волокна, как и все остальные нервные волокна, обладают двусторонней проводимостью.
Согласно другой точке зрения, расширение сосудов кожи при раздражении задних корешков происходит вследствие того, чо в рецеп-торных нервных окончаниях образуются ацетилхолин и гистамин, которые диффундируют по тканям и расширяют близлежащие сосуды.
Сосудодвигательный центр
В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигательный центр — находится в продолговатом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перерезать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60—70 мм рт. ст. Отсюда следует, что сосудодвигательный центр локализован в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.
Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго — расширение артерий и падение АД.
Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.
Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.
СЕНСОРНЫЕ СИСТЕМЫ
95.Классификация рецепторов.Механизмы преобразования энергии действующего раздражителя в рецепторный и генераторный потенциал. Адаптация рецепторов.
1. Механорецепторы приспособлены к восприятию механической энергии раздражающего стимула. Механорецепторы представляют периферические отделы соматической, скелетно-мышечной, слуховой и вестибулярной оенсорных систем, а также боковой линии.
2. Терморецепторы воспринимают температурные раздражения. Они объединяют рецепторы кожи и внутренних органов, а также центральные термочувствительные нейроны.
3. Хеморецепторы чувствительны к действию химических агентов. У наземных животных они образуют периферические отделы обонятельной и вкусовой сенсорных систем, тогда как для водных животных эти понятия теряют смысл, что заставляет использовать термин хемо-рецепция или химическая чувствительность. 4. 4. Фоторецепторы воспринимают световую энергию. Они представлены цилиарными рецепторами, т. е. производными клетки со жгутиком, и рабдомерными, у которых жгутик отсутствует, а собственно фоторецепторная часть клетки образована совокупностью микровилл.
5. Электрорецепторы чувствительны к действию электромагнитных колебаний. Они обнаружены в составе боковой линии у круглоротых, пластиножаберных, многих костистых рыб и некоторых хвостатых амфибий.
6. Болевые (ноцицептивные) рецепторы воспринимают болевые раздражения.
К первичным относят такие рецепторные аппараты, у которых действие адекватного стимула осуществляется непосредственно периферическим отростком сенсорного нейрона, который, таким образом, первично встречается с раздражителем. Этот сенсорный нейрон находится на периферии, а не в центральной нервной системе, и представляет собой биполярный нейрон, на одном полюсе которого расположен дендрит с ресничкой или дендритными отростками, а на другом — центральный отросток — аксон, по которому возбуждение передаете в соответствующий центр.
К вторичным рецепторам относят такие рецепторы, у котор между окончаниями сенсорного нейрона и точкой приложения стимула располагается дополнительная специализированная (рецептирующая) клетка ненервного происхождения. Возбуждение,вознкающее в рецептирующей клетке, передается через синапс на с сорный нейрон.
Адаптация рецепторов. При длительном раздражении возбуждение влабеет в большей или меньшей степени. Она проявляется по отношению к воздействию постоянного раздражителя.
Мех-мы преобр энергии
1.Через вспомогательные структуры внешний стимул доходит до ре-цептирующего субстрата, определяющего модальность рецептора, и взаимодействует с ним. Этот первый этап специфического взаимодействия между стимулом и специальными рецепторами на молекулярном уровне еще недостаточно изучен: рецепторные участки очень малы, часто труднодоступны для исследования, а сами процессы взаимодействия протекают очень быстро. Однако каковы бы ни были эти механизмы, следствием их является изменение проницаемости плазматической мембраны рецептора.
2. изменение мембранной проницаемости. Вследствие этого происходит возникновение ионного тока через мембрану (в основном для ионов Nа , а также и для других ионов), создающего на ней локальный электрический потенциал. Это изменение мембранного потенциала рецепторной клетки, возникающее под воздействием раздражителя, называется рецепторным потенциалом (РП). В случае деполяризации мембраны рецептора происходит увеличение проницаемости каналов мембраны для ионов, тогда как при гиперполяризации — закрытие этих каналов. Важно подчеркнуть, что проницаемость мембраны изменяется лишь в той ее точке, где произошло взаимодействие стимула с рецептирующим субстратом. Именно здесь и развивается РП.Во время возникновения РП внутрь рецепторной клетки входит положительный ток, создаваемый ионами Nа или Са +. Для того чтобы цепь была замкнута, ток должен выходить через мембрану наружу. Однако, так как выход его через тот же участок, где находится вход, невозможен, ток пассивно распространяется вдоль волокна и выходит из последнего в области наименьшего сопротивления. Расстояние, на которое распространяется этот ток по волокну рецептора, определяют три фактора: сопротивление цитоплазмы, сопротивление клеточной мембраны и диаметр дендрита. Чем меньше сопротивления цитоплазмы и чем больше диаметр дендрита, тем легче и дальше ток распространяется через внутреннюю среду рецепторной клетки.
Распространение электрического тока, зависящее от постоянного сопротивления и емкости мембраны, называется электротоном. Поэтому пассивное распространение РП вдоль нервного волокна называют электротоническим.
3. Электротоническое распространение РП через дендриты и тело клетки к аксону.
4. перекодировании переданного электрического ответа рецептора в импульсный разряд, или потенциалы действия (ПД), в афферентном нервном волокне, который несет в себе информацию для остальных отделов нервной системы.
98.Зрительный анализатор представляет собой совокупность воспринимающих, проводящих и анализирующих структур, осуществляющих функцию зрения. Сетчатка глаза чувствительна к световому излучению (электромагнитным волнам с длиной волны 390 – 760 нм) Считается что с помощью зрительного анализатора человек получает до 80—90 % всей информации об окружающем мире.
Рецепторный отдел включает сетчатую оболочку глаза, проводниковый отдел представлен зрительным нервов (II пара), центральный отдел расположен на разных уровнях головного мозга (латеральное коленчатое тело таламуса, корковый отдел в затылочной области, 17,18 и 19 поля по Бродману).
Орган зрения — глаз, состоит из глазного яблока, защитных приспособлений (наружные оболочки склера и роговица, слезный аппарат, веки, ресницы, брови) и моторного (двигательного) аппарата.
Преломляющая система глаза (роговица, стекловидное тело и хрусталик) построена в согласии с законами оптики. Основной линзой оптической системы глаза служит хрусталик, двояковыпуклая линза с переменным фокусным расстоянием (60±14 диоптрий). Процесс изменения кривизны хрусталика называется аккомодацией и осуществляется непроизвольно.Аккомодацию осуществляет автономная нервная система, волокна которой иннервируют ресничную мышцу.
Хрусталик из-за эластичных свойств способен самопроизвольно становиться более выпуклым, уплощение его зависит от тяги, создаваемой ресничной мышцей, соединенной с боковой поверхностью хрусталика цинновой связкой. Иннервация цилиарной мышцы осуществляется симпатическими и парасимпатическими нервами. Импульсация, поступающая по парасимпатическим волокнам глазодвигательного нерва, вызывает сокращение мышцы (рассматривание далеких предметов). Симпатические волокна, отходящие от краниального шейного ганглия, вызывают ее расслабление (для зрения вблизи). Контроль активности вегетативных нервов осуществляется корой больших полушарий мозга.
При нормальной рефракции глаза лучи от далеко расположенных предметов после прохождения через светопреломляющую систему глаза собираются в фокусе на сетчатке в центральной ямке.
Автономная нервная система участвует и в оптимизации освещенности сетчатки, что достигается изменением просвета зрачка. Размер зрачка определяется активностью мышц радужной оболочки. Сокращение кольцевой мышцы зрачок суживает, сокращение радиальной, или дилататора – расширяет. Кольцевая иннервируется парасимпатическими двигательными волокнами ядра Эдингера-Вестфаля и цилиарного ганглия. Расширение зрачка (сокращение радиальной мышцы) осуществляется симпатическими влияниями, происходящими из нижних шейных и верхних грудных сегментов спинного мозга (преганглионары) и краниального шейного ганглия (ганглионарные нейроны). Просвет зрачка увеличивается при эмоциональном напряжении (влияние гормонального пула катехоламинов).
Строение сетчатки.
Пигментный слой. Этот слой образован одним рядом эпителиальных клеток, содержащих большое количество различных внутриклеточных органелл, включая меланосомы, придающие этому слою черный цвет. Этот пигмент, называемый также экранирующим пигментом, поглощает доходящий до него свет, препятствуя тем самым его отражению и рассеиванию, что способствует четкости зрительного восприятия. Клетки пигментного эпителия имеют многочисленные отростки, которые плотно окружают светочувствительные наружные сегменты палочек и колбочек, Пигментный эпителий играет решающую роль в целом ряде функций, в том числе в ресинтезе (регенерации) зрительного пигмента после его обесцвечивания, в фагоцитозе и переваривании обломков наружных сегментов палочек и колбочек, иными словами, в механизме постоянного обновления наружных сегментов зрительных клеток, в защите зрительных клеток от опасности светового повреждения, а также в переносе к фоторецепторам кислорода и других необходимых им веществ. Следует отметить, что контакт между клетками пигментного эпителия и фоторецепторами достаточно слабый.
Фоторецепторы. К пигментному слою изнутри примыкает слой фоторецепторов: палочек и колбочек1. В сетчатке каждого глаза человека находится 6—7 млн колбочек и НО—123 млн палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140 тыс. на 1 мм2). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает, так что на дальней периферии имеются только палочки. Колбочки функционируют в условиях больших освещенностей, они обеспечивают дневное . и цветовое зрение; намного более светочувствительные палочки ответственны за сумеречное зрение.
Цвет воспринимается лучше всего при действии света на центральную ямку сетчатки, где расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удаления от центра сетчатки восприятие цвета и пространственное разрешение становятся все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем палочкового, поэтому в сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет («ночью все кошки серы»).
Нарушение функции палочек, возникающее при недостатке в пище витамина А, вызывает расстройство сумеречного зрения — так называемую куриную слепоту: человек совершенно слепнет в сумерках, но днем зрение остается нормальным. Наоборот, при поражении* колбочек возникает светобоязнь: человек видит при слабом” свете, но слепнет при ярком освещении. В этом случае может развиться и полная цветовая слепота — ахромазия.
Строение фоторецепторной клетки. ганглион клетка., амакриновая клетка, горизон клетка, биполярн клетка , родопсин.
Нервные механизмы зрения
Нейроны сетчатки. Фоторецепторы сетчатки синапти-чески связаны с биполярными нейронами (см. рис. 14.6, Б). При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиоз-ные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный нейрон, так и от него на ганглиозную клетку происходит безымпульсным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.
На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зрительный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганг-лиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецептивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карликовой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, но резко уменьшает световую чувствительность.
Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные клетки) и между биполярными и ганглиозными клетками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.
Кроме афферентных волокон, в зрительном нерве есть и центробежные, или эфферентные, нервные волокна, приносящие к сетчатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчатки, регулируя проведение возбуждения между ними.
Нервные пути и связи в зрительной системе. Из сетчатки зрительная информация по волокнам зрительного нерва (II пара черепных нервов) устремляется в мозг. Зрительные нервы от каждого глаза встречаются у основания мозга, где формируется их частичный перекрест (хиазма). Здесь часть волокон каждого зрительного нерва переходит на противоположную от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое полушарие большого мозга информацией от обоих глаз. Проекции эти организованы так, что в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие — от левых половин сетчаток.
После зрительного перекреста зрительные нервы называют зрительными трактами. Они проецируются в ряд мозговых структур, но основное число волокон приходит в таламический подкорковый зрительный центр — латеральное, или наружное, коленчатое тело (НКТ). Отсюда сигналы поступают в первичную проекционную область зрительной зоны коры (стриарная кора, или поле 17 по Бродману). Вся зрительная зона коры включает несколько полей, каждое из которых обеспечивает свои, специфические функции, но получает сигналы от всей сетчатки и в общем сохраняет ее топологию, или ретинотопию (сигналы от соседних участков сетчатки попадают в соседние участки коры).
Источник