Сколько воздуха в сосуде


КАТЕГОРИИ:
Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)
З 2.6
З-2.5
З-2.4
З-2.3
З-2.2
З-2.1
Задачи
Решение.
П-2.2
Решение.
П-2.1
Примеры
Баллон с кислородом емкостью 20 л находится под давлением
10 МПа при 15 ºС. После израсходования части кислорода давление понизилось до 7,6 МПа, а температура упала до 10 ºС.
Определить массу израсходованного кислорода.
Из характеристического уравнения (2.5)
Следовательно, до расходования кислорода масса его состояла
кг,
а после израсходования
кг.
Таким образом, расход кислорода
ΔМ = М1 –М2 = 2,673 – 2,067 = 0,606 кг.
Определить плотность и удельный объем окиси углерода СО при давлении 0,1 МПа при температуре 27 ºС.
Удельный объем определяется из характеристического уравнения (2.6)
м3/кг.
Плотность окиси углерода (1.2)
кг/м3.
В цилиндре с подвижным поршнем находится кислород при
t = 80 ºС и разряжении (вакууме), равном 427 гПа. При постоянной температуре кислород сжимается до избыточного давления
pизб = 1,2 МПа. Барометрическое давление В = 933 гПа.
Во сколько раз уменьшится объем кислорода?
Ответ:V1/V2 = 22,96.
В комнате площадью 35 м2 и высотой 3,1 м воздух находится при t = 23 ºС и барометрическом давлении В = 973 гПа.
Какое количество воздуха проникнет с улицы в комнату, если барометрическое давление увеличится до В = 1013 гПа. Температура воздуха остается постоянной.
Ответ: М = 5,1 кг.
В сосуде объемом 5 м3 находится воздух при барометрическом давлении В = 0,1 МПа и температуре 300 ºС. Затем воздух выкачивается до тех пор, пока в сосуде не образуется вакуумметрическое давление, равное 80 кПа. Температура воздуха после выкачивания остается той же.
Сколько воздуха выкачано? Чему будет равно давление в сосуде после выкачивания, если оставшийся воздух охладить до температуры t = 20 ºС?
Ответ:выкачано 2,43 кг воздуха. После охлаждения воздуха давление будет равным 10,3 кПа.
В воздухоподогреватель парового котла подается вентилятором 130000 м3/ч воздуха при температуре 30 ºС.
Определить объемный расход воздуха на выходе из воздухоподогревателя, если он нагревается до 400 ºС при постоянном давлении.
Ответ:V = 288700 м3/ч.
Во сколько раз изменится плотность газа в сосуде, если при постоянной температуре показание манометра уменьшится от р1 = 1,8 МПа до р2 = 0,3 МПа?
Барометрическое давление принять равным 0,1 МПа.
Ответ:
В сосуде объемом 0,5 м3 находится воздух при давлении 0,2 МПа и температуру 20 ºС.
Сколько воздуха надо выкачать из сосуда, чтобы разрежение в нем составило 56 кПа при условии, что температура в сосуде не изменится? Атмосферное давление по ртутному барометру равно 102,4 кПа при температуре ртути в нем, равной 18 ºС. Разрежение в сосуде измерено ртутным вакуумметром при температуре ртути 20 ºС.
Ответ: М = 1,527 кг.
Часто приходится решать задачи, в которых рассматриваются не отдельные газы, а их смеси. При смешении химически невзаимодействующих газов, имеющих различные давления и температуры, обычно приходится определять конечное состояние смеси. При этом различают два случая (таблица 1).
Таблица 1
Смешение газов*
Здесь ki – отношение теплоемкостей газов (см.формулу (4.2)).
Под газовыми смесями понимают механическую смесь нескольких газов, химически между собой не взаимодействующих. Состав газовой смеси определяется количеством каждого из газов, входящих в смесь, и может быть задан массовыми mi или объемными riдолями:
mi = Mi / M; ri = Vi / V, (3.1)
где Mi – масса i-го компонента,
Vi – парциальный или приведенный объем i-го компонента;
M, V – масса и объем всей смеси соответственно.
Очевидно, что
М1 + М2 +…+Мn = M; m1 + m2 +…+mn = 1, (3.2)
а также
V1 + V2 +…+ Vn = V ;r1 + r2 +…+rn = 1, (3.3)
Связь между давлением газовой смеси р и парциальным давлением отдельных компонентов рi, входящих в смесь, устанавливается законом Дальтона
р = Sрi , (3.4)
Если заданы состав газовой смеси, а также характеристики составляющих смесь газов, то можно рассчитать необходимые характеристики смеси по приводимым в таблице 2 формулам.
Таблица 2
Формулы для расчета газовых смесей
В таблице 2 mi – молекулярная масса i-го компонента;
8314 Дж/(кмоль×К) – значение универсальной газовой постоянной;
Ri – газовая постоянная i-го компонента.
Дата добавления: 2015-05-09; Просмотров: 3804; Нарушение авторских прав?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Рекомендуемые страницы:
Читайте также:
Источник
2017-10-13
Теплоизолированный сосуд с внутренним объемом $V$ откачан до глубокого вакуума. Окружающий воздух имеет температуру $Т_{0}$ и давление $p_{0}$. В некоторый момент открывается кран и происходит быстрое заполнение сосуда атмосферным воздухом. Какую температуру $T$ будет иметь воздух в сосуде после его заполнения?
Решение:
Почему вообще при заполнении сосуда атмосферным воздухом должна измениться его температура? Чтобы разобраться в этом, нужно рассмотреть энергетические превращения, происходящие при заполнении сосуда. При открывании крана какая-то порция воздуха «заталкивается» в сосуд атмосферным давлением. Это значит, что над вошедшим в сосуд воздухом силами атмосферного давления совершается некоторая работа. Благодаря этой работе врывающийся в сосуд воздух приобретает кинетическую энергию направленного макроскопического движения — воздух в сосуд входит струей. При встрече со стенками сосуда и с уже попавшим в сосуд воздухом струя меняет направление, ослабевает и в конце концов исчезает совсем. При этом кинетическая энергия упорядоченного движения воздуха в струе превращается во внутреннюю энергию, т. е. в энергию хаотического теплового движения его молекул.
Все это происходит настолько быстро, что теплообменом входящего в сосуд воздуха с воздухом в атмосфере можно пренебречь. Поэтому применительно к рассматриваемому процессу первый закон термодинамики имеет вид: работа $A$ сил атмосферного давления над вошедшим в сосуд воздухом равна изменению внутренней энергии этого воздуха $Delta U$:
$A = Delta U$. (1)
Как же подсчитать эту работу? Проще всего для этого поступить следующим образом. Представим себе, что наш откачанный сосуд находится внутри большого цилиндра с подвижным поршнем (рис. 1). Давление и температура воздуха внутри большого цилиндра такие же, как и в атмосфере. Так как при заполнении откачанного сосуда воздухом давление и температура воздуха в окружающей сосуд атмосфере остаются неизменными, то процессу заполнения сосуда на рис. 1 соответствует перемещение поршня вправо при постоянном давлении $p_{0}$. При этом действующая слева на поршень сила совершает работу $p_{0}V_{0}$, где $V_{0}$ — уменьшение объема внутри цилиндра. Поскольку энергия не вошедшего в сосуд воздуха внутри цилиндра остается неизменной, то эта совершенная при перемещении поршня работа равна работе, совершаемой силами атмосферного давления при «заталкивании» воздуха в сосуд.
Обратите внимание на то, что приведенное здесь вычисление работы при перемещении воздуха отличается от вычисления, рассмотренного в задаче 4192. Объясняется это различие тем, что в предыдущей задаче нас интересовала работа, совершаемая над отдельной порцией движущегося газа, в то время как здесь мы находим суммарную работу внешних сил над всем вошедшим в сосуд воздухом.
Изменение внутренней энергии $Delta U$ того воздуха, который попал в сосуд, выражается только через изменение его температуры, если считать воздух идеальным газом:
$Delta U = nu C_{V}(T – T_{0})$, (2)
где $C_{V}$ — молярная теплоемкость воздуха. Количество пошедшего в сосуд воздуха $nu$ можно выразить с помощью уравнения состояния. Так как в откачанный сосуд вошло ровно столько воздуха, сколько вытеснил из цилиндра переместившийся поршень (рис. 1), то можно написать
$p_{0}V_{0} = nu RT_{0}$. (3)
Теперь выражение (2) для изменения внутренней энергии $Delta U$ переписывается в виде
$Delta U = frac{p_{0}V_{0}}{RT_{0}} C_{V}( T – T_{0})$. (4)
Приравнивая, в соответствии с первым законом термодинамики (I), изменение внутренней энергии (4) совершенной работе $A = p_{0}V_{0}$, находим
$C_{V} (T – T_{0}) = RT_{0}$,
откуда для конечной температуры воздуха в сосуде $T$ получаем
$T = T_{0}(1 + R/C_{V})$. (5)
Так как сумма $C_{V} + R$ равна молярной теплоемкости при постоянном давлении $C_{ mu}$, то выражение (5) можно переписать в виде
$T = T_{0} C_{p}/C_{V} = gamma T_{0}$. (6)
Температура заполнившего откачанный сосуд воздуха оказывается выше температуры воздуха в атмосфере. Отметим, что результат не зависит ни от объема сосуда, ни от давления воздуха в атмосфере. Температура воздуха в сосуде не зависит также и от того, будет ли заполнение сосуда происходить до конца, пока давление воздуха в нем не. сравняется с атмосферным, или же кран будет перекрыт раньше. Действительно, все приведенные в решении рассуждения справедливы и в том случае, когда конечное давление воздуха в сосуде меньше атмосферного.
Увеличение температуры при заполнении сосуда, рассчитываемое по формуле (6), оказывается весьма значительным. Так как для воздуха $gamma approx 1,4$, то находящийся при комнатной температуре воздух должен нагреваться на сотни кельвинов. Однако наблюдать на опыте такое большое повышение температуры затруднительно. Дело в том, что в течение промежутка времени, необходимого для измерения температуры воздуха, будет устанавливаться термодинамическое равновесие не только между воздухом в сосуде и термометром, но и между воздухом и стенками сосуда. Но теплоемкость сосуда при решении задачи в расчет не принималась. Поэтому формула (6) справедлива только до тех пор, пока воздух в сосуде не успеет прийти в термодинамическое равновесие со стенками.
Источник
Уровень кислорода в крови при Covid-19 уменьшается потому, что легочные альвеолы воспаляются, заполняются жидкостью и утрачивают способность брать его из воздуха. Такое явление называется гипоксемией и сопровождается характерными признаками – одышкой, головокружением, побледнением/посинением кожных покровов, учащенным дыханием и пульсом.
Если показатели падают до критических значений – ниже 93% – необходима экстренная госпитализация и принудительная подача кислорода.
Что это такое
Сатурация в медицине – это насыщение крови кислородом, измеряемое в процентах и обозначаемое как SpO2. Ее значения очень важны, поскольку указывают на проблемы с дыхательной и сердечной деятельностью еще до появления первых признаков дефицита кислорода.
В организме происходит непрерывный газообмен между клетками крови и тканями. Кровь насыщается кислородом в легких и переносит его к тканям. Последние в процессе обмена отдают отходы, образовавшиеся в результате дыхания и «меняют» углекислый газ на кислород.
Углекислый газ, в свою очередь, транспортируется кровью обратно в легкие, из которых выходит при выдохе наружу. В это же время в эритроцитах освобождается пространство, сразу занимаемое кислородом. Таков круговорот газов, представляющий собой дыхательный цикл.
Газообмен осуществляется благодаря проникновению газов в молекулы гемоглобина, связываясь с ним через молекулу железа в его составе. Гемоглобин формирует эритроциты, придающие крови характерный красный цвет.
Гемоглобин с кислородом внутри называется оксигемоглобин – именно его цифровое значение отражает уровень сатурации и насыщенность кислородом.
Сатурация измеряется специальным прибором – пульсоксиметром, включая его разновидности для домашнего использования, и фитнес-браслетами. Однако последние могут показывать менее точные цифры.
При низких значениях насыщенности крови кислородом подключается аппарат искусственной вентиляции легких – ИВЛ. Вначале вентиляция выполняется посредством ингаляции через маску или носовой катетер, если этого недостаточно, проводится интубация трахеи с установкой эндотрахеальной трубки или процедура ЭКМО – экстракорпоральной мембранной оксигенации.
Цель измерений
Смысл действий медперсонала по замеру сатурации состоит в предупреждении дыхательной недостаточности. После попадания коронавируса в легкие его молекулы повреждают альвеолы, ответственные за газообмен с легочными капиллярами.
Ткань легких начинает отекать, что приводит к развитию воспалительного процесса – пневмонии. Из-за отека в кровь перестает поступать необходимый объем кислорода. Кроме того, согласно результатам последних исследований, обнаружилась способность Covid-19 нарушать структуру гемоглобина: новый коронавирусный штамм лишает его способности доставлять кислород к клеткам.
Пневмония при новом Sars-CoV-2 может достаточно долго протекать в скрытой, латентной форме и никак не проявляться. У некоторых больных бывает лишь слабость и недомогание, температура при этом не поднимается, одышка и кашель либо отсутствуют, либо выражены слабо.
Затем на фоне почти полного здоровья состояние резко ухудшается, болезнь стремительно прогрессирует, и выявляют ее уже на критическом этапе. Поэтому сатурация при коронавирусе – это один из ранних и наиболее достоверных симптомов риска развития дыхательной недостаточности. Он объективно указывает на то, нуждается ли больной в проведении интенсивной терапии и незамедлительной подаче кислорода.
В зависимости от показателя сатурации осуществляется выбор методики поддержания функции дыхательной системы. Если снижение незначительное, достаточно подаваемого воздуха через маску или катетер, и человек дышит сам.
В случае резкого падения концентрации кислорода в крови пациента подключают к аппарату ИВЛ. При тяжелом течении коронавирусной инфекции применяется метод ЭКМО, и к больному подсоединяют мембранный оксигенатор. Производится забор венозной либо артериальной крови, которая очищается, насыщается кислородом и возвращается в кровеносное русло.
Какая должна быть сатурация в норме
Норма у взрослых – 95-98%, но при коронавирусе она может снижаться до 91-92% и ниже. При тяжелых формах дыхательной недостаточности возможно падение сатурации до 70% и меньше. Однако в случае имеющихся сопутствующих болезней бронхолегочной системы организм несколько по-другому реагирует на нехватку кислорода, и ее признаки появляются уже при снижении сатурации до 88%.
Как проявляется недостаток оксигена
При уменьшении показателей сатурации у взрослого человека возникает одышка, он дышит часто и поверхностно, делает больше 20 вдохов и выдохов в минуту. Сердце бьется быстро, кожа бледнеет, на ней может появляться синюшный оттенок. Многие пациенты жалуются на внезапную слабость, быструю усталость даже после незначительной физической активности.
Небольшое снижение кислорода в крови проявляется апатичностью, головной болью, головокружением и сонливостью. Пациент, у которого развивается гипоксемия, не испытывает интереса к тому, что происходит вокруг, с трудом концентрирует внимание, у него может ухудшаться память. У некоторых в буквальном смысле наблюдается «помрачение рассудка».
Измерительные приборы
В легких и среднетяжелых случаях измерения проводят пульсоксиметром – прибором, напоминающим обычную прищепку, надеваемую на палец, мочку уха или другую часть тела. С одной стороны пульсоксиметра расположен экран, где высвечиваются показатели сатурации.
Принцип работы аппарата основывается на свойствах веществ поглощать световые волны разной длины. В данном случае таким веществом является гемоглобин и его способность поглощать свет в зависимости от насыщенности кислородом.
В реанимационных отделениях измеряют не только уровень сатурации, но и высчитывают индекс оксигенации, или респираторный индекс. С этой целью сначала проводят спирометрию для проверки функционирования легких, давая пациенту подышать в трубочку.
Аппарат считывает информацию в конкретный момент времени, но некоторые модели способны также сохранять данные и строить графики.
Пониженные значения индекса оксигенации – это самый точный критерий, указывающий на развитие грозного осложнения коронавирусной пневмонии – острого респираторного дистресс-синдрома (ОРДС).
Чтобы решить, как и какие процедуры делать больному, требуется комплексная оценка его состояния. Поэтому проводится детальное обследование, в которое входят общий анализ крови, исследование газового состава и кислотно-щелочного баланса, анализ на содержание электролитов. По результатам осуществляется выбор метода подачи O2, и решается вопрос о подключении к ИВЛ.
Как подается кислород
Надо сразу сказать, что обогащением крови кислородом нельзя вылечить или убить коронавирус. Повышение сатурации является методом симптоматической терапии, позволяющим нормализовать работу органов дыхания.
Более того, при легком протекании Ковида проводить кислородонасыщающие мероприятия нецелесообразно, и их делают только тяжелым больным или тем, кто находится в критическом состоянии.
Для стимуляции и поддержания дыхательной деятельности применяются:
- стандартная подача кислорода через маску или назальную канюлю (ставится в нос);
- кислородотерапия в прон-позиции, когда больной лежит на животе;
- интубация с введением трубки в трахею и подключение к ИВЛ.
Стоит отметить, что кислородотерапия в прон-позиции весьма активно и успешно применяется в отделениях реанимации. Когда человек лежит на животе, меняются вентиляционно-перкуссионные соотношения в легких – проще говоря, альвеолы дышат свободнее за счет снижения давления воспалительной жидкости.
В итоге лучше вентилируются те области легких, в которые до этого поступало недостаточно кислорода, так как больной лежал на спине. Кроме того, в процесс дыхания вовлекается большая площадь легких, и несколько уменьшается отрицательное влияние прибора ИВЛ.
Другими словами, прон-позиция способствует улучшению перехода кислорода в кровь из альвеол, повышая тем самым оксигенацию. Такой несложный метод позволяет лечить многих людей с тяжелыми формами пневмонии.
К ИВЛ подключаются только те больные, которым не помогло дыхание через маску или назальную канюлю и терапия в прон-позиции.
В реанимационных палатах способ подачи кислорода выбирается в зависимости от того, сколько процентов сатурации покажет пульсоксиметр. При ее уровне от 80 до 93% используется маска, значение ниже 75% является показанием к подключению ИВЛ с введением эндотрахеальной трубки или проведением трахеостомии.
Гелий – облегчение для легких
Насытить кровь кислородом можно, смешав его с гелием. Такая методика позволяет добиться:
- ускорения нормализации газового состава;
- восстановления кислотности;
- предотвращения тяжелых осложнений;
- улучшения кровоснабжения и микроциркуляции в тканях легких.
Смесь кислорода с гелием предварительно нагревают до t=92° и подают ее пациенту. Процедура длится около 15 минут. Сторонники такого метода констатируют, что вдыхание «лечебного пара» не доставляет дискомфорта, а ощущения напоминают пребывание в сауне.
На данном этапе кислородно-гелиевая методика проходит клинические испытания в институте им. Склифосовского.
Нужно отметить, что в аппаратах ИВЛ используется чистый кислород без примесей. Однако особого смысла в его чистоте нет, поскольку он почти не доходит до легочных альвеол. Кроме того, плотность кислорода превышает плотность воздуха – 1.43 против 1.2 кг/м 3, а это означает, что дышать им достаточно сложно.
Совсем другое дело, когда кислород сочетается с гелием. В составе воздуха, которым мы дышим, 78% азота и всего 21% кислорода, азот здесь является своеобразным «растворителем» данного соединения, так как его плотность меньше по сравнению с кислородом. Плотность гелия ниже плотности азота в 6.5 раз, поэтому в соединении с кислородом он служит его настоящим «разжижителем».
С другой стороны, гелий пока нельзя назвать панацеей. Его эффективность при лечении пациентов с Covid-19 еще не нашла клинического подтверждения, хотя и отмечается некий положительный эффект. Значимым фактором является и его дороговизна – стоимость гелия в 2020 г. выросла вдвое и составляет порядка 2 тыс. руб за м 3. Но главное даже не это, а отсутствие специальных установок, более сложных и дорогостоящих по сравнению с аппаратами ИВЛ, а также квалифицированных специалистов для работы с ними.
Ранее гелиотерапия применялась в специализированных медцентрах. Возможности для ее скорого внедрения имеются у московского института Склифосовского, а когда эта практика дойдет до остальных клиник, тем более в провинциальных городах, зависит от высшего руководства здравоохранения.
Читайте также: Выпадение волос после коронавируса: чем личить, что делать, как остановить при ковиде у женщин?
Источник apkhleb.ru
Пишу о том, что мне интересно. Чтобы не пропустить что нибудь важное, рекомендую подписаться на 9111.ру
Источник