Сообщающиеся сосуды закон сообщающихся сосудов задачи

Сообщающиеся сосуды закон сообщающихся сосудов задачи thumbnail

4.2. Элементы гидростатики

4.2.5. Сообщающиеся сосуды

Сообщающимися называются сосуды, соединенные между собой каналом, заполненным жидкостью.

Для сообщающихся сосудов справедлив закон сообщающихся сосудов: высоты взаимно уравновешенных столбов разнородных жидкостей обратно пропорциональны плотностям этих жидкостей:

h 1 h 2 = ρ 2 ρ 1 ,

где h1 – высота столба жидкости плотностью ρ1; h2 – высота столба жидкости плотностью ρ2.

Указанный закон справедлив в отсутствие сил поверхностного натяжения.

Если сообщающиеся сосуды заполнены однородной жидкостью

ρ1 = ρ2,

то свободные поверхности жидкости устанавливаются на одном уровне, независимо от формы сосудов (рис. 4.14):

h1 = h2,

где h1 – высота столба жидкости в левом колене; h2 – высота столба жидкости в правом колене сообщающихся сосудов.

Рис. 4.14

Если сообщающиеся сосуды заполнены разнородными жидкостями

ρ1 ≠ ρ2,

то свободные поверхности жидкостей, независимо от формы сосуда (рис. 4.15), устанавливаются так, что выполняется отношение

h 1 h 2 = ρ 2 ρ 1 ,

где h1 – высота столба жидкости плотностью ρ1; h2 – высота столба жидкости плотностью ρ2.

Рис. 4.15

Если сообщающиеся сосуды заполнены несколькими жидкостями (например, как показано на рис. 4.16), то гидростатическое давление на одном уровне (отмеченном пунктиром) в левом колене определяется формулой

p1 = ρ1gh1,

в правом колене –

p2 = ρ2gh2 + ρ3gh3.

Рис. 4.16

Равенство давлений на указанном уровне

p1 = p2

позволяет записать тождество:

ρ1h1 = ρ2h2 + ρ3h3.

Пример 28. Два высоких сосуда, диаметр одного из которых в два раза больше диаметра второго, в нижней части соединены тонким шлангом. Площадь сечения узкого сосуда равна 10 см2. Система заполнена некоторым количеством жидкости плотностью 1,6 г/см3. Найти, на сколько миллиметров повысится уровень жидкости в каждом из сосудов, если в систему добавить 0,12 кг той же жидкости.

Решение. В сообщающихся сосудах однородная жидкость устанавливается на одном уровне.

Добавление в систему некоторого количества жидкости массой m приводит к ее распределению по двум сосудам в соответствии с площадью их поперечного сечения:

  • в первом сосуде оказывается масса жидкости

m1 = ρV1 = ρ∆h1S1,

где ρ – плотность жидкости; V1 = S1∆h1 – объем жидкости в первом сосуде; S1 – площадь поперечного сечения первого сосуда; ∆h1 – повышение уровня жидкости в первом сосуде;

  • во втором сосуде оказывается масса жидкости

m2 = ρV2 = ρ∆h2S2,

где V2 = S2∆h2 – объем жидкости во втором сосуде; S2 – площадь поперечного сечения второго сосуда; ∆h2 – повышение уровня жидкости во втором сосуде.

Повышение уровней жидкости в обоих сосудах одинаково:

∆h1 = ∆h2 = ∆h,

поэтому масса жидкости, добавленной в систему, определяется формулой

m = m1 + m2 = ρ∆h(S1 + S2).

Выразим отсюда искомое значение ∆h:

Δ h = m ρ ( S 1 + S 2 ) .

Площади поперечного сечения сосудов связаны с их диаметрами формулой:

  • для первого (широкого) сосуда

S 1 = π d 1 2 4 ,

  • для второго (узкого) сосуда

S 2 = π d 2 2 4 ,

где d1 = 2d2 – диаметр первого (широкого) сосуда; d2 – диаметр второго (узкого) сосуда.

Отношение площадей

S 1 S 2 = π d 1 2 4 4 π d 2 2 = d 1 2 d 2 2 = ( d 1 d 2 ) 2 = ( 2 d 2 d 2 ) 2 = 4

позволяет найти площадь широкого сосуда:

S1 = 4S2.

Подставив S1 в формулу для ∆h

Δ h = m ρ ( 4 S 2 + S 2 ) = m 5 ρ S 2 ,

рассчитаем значение высоты, на которую повысится уровень жидкости в сосудах:

Δ h = 0,12 5 ⋅ 1,6 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 15 ⋅ 10 − 3 м = 15 мм.

Пример 29. Два высоких сосуда, диаметр одного из которых в два раза больше диаметра другого, в нижней части соединены тонким шлангом. Площадь сечения широкого сосуда составляет 10 см2. Система заполнена жидкостью плотностью 6,0 г/см3. В узкий сосуд добавляют 0,12 кг жидкости плотностью 2,0 г/см3, а затем – 0,12 кг жидкости плотностью 4,0 г/см3. Найти разность уровней жидкостей в сосудах.

Решение. В сообщающихся сосудах неоднородная жидкость устанавливается на разных уровнях таким образом, что гидростатическое давление на выбранном уровне оказывается одинаковым:

p1 = p2,

где p1 – давление в широком сосуде; p2 – давление в узком сосуде.

На рисунке пунктирной линией обозначен уровень, на котором будем рассчитывать гидростатическое давление в широком и узком сосудах.

Гидростатическое давление на выбранном уровне:

  • в широком сосуде

p1 = ρ1gh1,

где ρ1 – плотность жидкости, заполняющей систему изначально; g – модуль ускорения свободного падения; h1 – высота столба жидкости в широком сосуде;

  • в узком сосуде

p2 = ρ2gh2 + ρ3gh3,

где ρ2 – плотность первой жидкости, добавленной в узкий сосуд; h2 – высота столба первой жидкости; ρ3 – плотность второй жидкости, добавленной в узкий сосуд; h3 – высота столба второй жидкости.

Равенство давлений на указанном уровне

ρ1gh1 = ρ2gh2 + ρ3gh3

позволяет определить высоту столба жидкости в широком сосуде:

h 1 = 1 ρ 1 ( ρ 2 h 2 + ρ 3 h 3 ) ,

где высоты жидкостей h2 и h3 определяются соответствующими массами и плотностями:

  • для первой жидкости

h 2 = m 2 ρ 2 S 2 ;

  • для второй жидкости

h 3 = m 3 ρ 3 S 2 ,

где S2 – площадь поперечного сечения узкого сосуда; m2 – масса первой жидкости, добавленной в узкий сосуд; m3 – масса второй жидкости, добавленной в узкий сосуд.

Подстановка h2 и h3 в формулу для h1 дает

h 1 = 1 ρ 1 ( ρ 2 m 2 ρ 2 S 2 + ρ 3 m 3 ρ 3 S 2 ) = m 2 + m 3 ρ 1 S 2 .

Площади поперечного сечения сосудов связаны с их диаметрами формулой:

  • для широкого сосуда

S 1 = π d 1 2 4 ,

  • для узкого сосуда

S 2 = π d 2 2 4 ,

где d1 = 2d2 – диаметр широкого сосуда; d2 – диаметр узкого сосуда.

Отношение площадей

S 1 S 2 = π d 1 2 4 4 π d 2 2 = d 1 2 d 2 2 = ( d 1 d 2 ) 2 = ( 2 d 2 d 2 ) 2 = 4

позволяет найти площадь узкого сосуда:

S 2 = S 1 4 .

Таким образом, высота столба жидкости в широком сосуде определяется выражением

h 1 = 4 ( m 2 + m 3 ) ρ 1 S 1 .

Высота столба жидкости над указанным уровнем в узком сосуде есть сумма:

h 2 + h 3 = m 2 ρ 2 S 2 + m 3 ρ 3 S 2 = 4 S 1 ( m 2 ρ 2 + m 3 ρ 3 ) .

Искомая разность верхних уровней жидкостей в узком (h2 + h3) и широком h1 сосудах рассчитывается по формуле

Δ h = ( h 2 + h 3 ) − h 1 = 4 S 1 ( m 2 ρ 2 + m 3 ρ 3 ) − 4 ( m 2 + m 3 ) ρ 1 S 1 =

= 4 S 1 ( m 2 ρ 2 + m 3 ρ 3 − ( m 2 + m 3 ) ρ 1 ) .

Произведем вычисление:

Δ h = 4 10 ⋅ 10 − 4 ( 0,12 2,0 ⋅ 10 3 + 0,12 4,0 ⋅ 10 3 − 0,12 + 0,12 6,0 ⋅ 10 3 ) = 0,20 м = 20 см.

Источник

Определение

Соединенные между собой сосуды называют сообщающимися.

В таких сосудах жидкость имеет возможность перетекать из одной емкости в другую (рис.1). Форма сообщающихся сосудов может быть самая разная.

Сообщающиеся сосуды, рисунок 1

Допустим, что в сообщающиеся сосуды налита однородная жидкость, то в этих сосудах жидкость устанавливается на одном уровне, если давление над поверхностью жидкости одинаково, и не важно какую форму имеют сосуды. В неподвижной жидкости давление ($p$) на одном уровне в сообщающихся сосудах является равным, так как мы знаем, что:

Читайте также:  Я не могу избавиться от красных сосудов в глазах

[p=rho gh left(1right),]

где $rho $ – плотность жидкости; $g$ – ускорение свободного падения; $h$ – высота столба жидкости. Так как давление на одном уровне жидкости одинаково, то равными будут и высоты столбов жидкости.

Жидкости разной плотности в сообщающихся сосудах

Допустим, что в сообщающиеся сосуды налили жидкость разной плотности (рис.2(б)). В состоянии равновесия жидкостей, их уровни не будут находиться на одном уровне (высоты столбов жидкости равными не будут).

Сообщающиеся сосуды, рисунок 2

Жидкости в сосудах находятся в равновесии. Давления на уровне A (граница раздела разных жидкостей) (рис. 2 (б)) равны:

[{rho }_1gh_1={rho }_2gh_2left(2right),]

где ${rho }_1$ и ${rho }_2$ – плотности жидкостей. Найдем отношение высот столбов жидкостей в сосудах:

[frac{h_1}{h_2}=frac{{rho }_2}{{rho }_1}left(3right).]

Формула (3) говорит о том, что в сообщающихся сосудах высоты столбиков жидкости над уровнем их раздела обратно пропорциональны плотностям этих жидкостей. При одинаковом давлении над поверхностями жидкостей, высота столба жидкости с меньшей плотностью будет больше, чем высота столба более плотной жидкости.

Гидравлический пресс и другие примеры использования сообщающихся сосудов

В технике сообщающиеся сосуды используют часто. Например, существует такое устройство, как гидравлический пресс. Его изготавливают из двух цилиндров разного радиуса, в которых находятся поршни (рис.3). Сообщающиеся сосуды пресса обычно заполняют минеральным маслом.

Сообщающиеся сосуды, рисунок 3

Пусть площадь первого поршня, к которому прикладывают силу ${overline{F}}_1,$ равна $S_1$, площадь второго $S_2$, к нему приложена сила ${overline{F}}_2$. Давление, которое создает первый поршень равно:

[p_1=frac{F_1}{S_1}left(4right).]

Второй поршень давит на жидкость:

[p_2=frac{F_2}{S_2}left(5right).]

Если система находится в состоянии равновесия, то по закону Паскаля давления $p_1$ и $p_2$ равны:

[frac{F_1}{S_1}=frac{F_2}{S_2}left(6right).]

Получим:

[F_1=F_2frac{S_1}{S_2}(7)]

величина первой силы больше модуля силы $F_2$ в $frac{S_1}{S_2}$ раз. Это означает, что при помощи гидравлического пресса, прикладывая небольшую силу к поршню малого сечения, можно получить большую по величине силу, которая будет действовать на большой поршень.

По принципу сообщающихся сосудов, в особенности раньше, действовал водопровод. Такой водопровод сейчас еще можно наблюдать на дачных участках. На относительно большой высоте устанавливается бак с водой, от бака идут водопроводные трубы, закрываемые кранами. Давление у кранов соответствует давлению столба воды, который равен разности высот уровень крана – уровень воды в баке.

Принципом сообщающихся сосудов пользовались, когда проектировали фонтаны, работающие без насосов, шлюзы на реках и каналах.

Примеры задач с решением

Пример 1

Задание. Имеются два цилиндрических сосуда. Высота столба жидкости в одном равна $h_1$, в другом $h_2$. Эти сосуды соединяют трубкой. Насколько изменится высота столба жидкости в левом сосуде, если площадь поперечного сечения его $S_1>S_2$ , $S_2$ – площадь сечения правого сосуда. Объемом трубки пренебречь.

Сообщающиеся сосуды, пример 1

Решение. После того как сосуды соединили, они стали сообщающимися. Часть жидкости из левого сосуда перетечет в правый. Так как жидкость в правом и левом сосудах одна и та же, то уровни жидкости в обоих сосудах будут находиться на одном уровне, то есть высота столбиков жидкости станет равна $H$ в обоих коленах емкости. Определим, какой объем воды перетечет из левого колена в правое:

[Delta V_1=left(h_1-Hright)S_{1 }left(1.1right),]

где $S_{1 }$ – площадь поперечного сечения левого сосуда (сосуда из которого вытекает жидкость). В правом сосуде эта жидкость займет объем равный:

[Delta V_2=left(H-h_2right)S_{2 }left(1.2right),]

где $S_{2 }$ – площадь поперечного сечения правого сосуда. Так как мы считаем, что жидкость не сжимаема, то имеем:

[Delta V_1=Delta V_2left(1.3right).]

Приравниваем правые части выражений (1.2) и (1.1), выражаем высоту столбиков жидкости в правой и левой части сообщающихся сосудов:

[left(h_1-Hright)S_{1 }=left(H-h_2right)S_{2 }to H=frac{h_1S_{1 }+S_{2 }h_2}{S_1+S_{2 }} left(1.4right).]

Используя выражение (1.4), изменение высоты жидкости в левом колене, получим равным:

[Delta h=h_1-H=h_1-frac{h_1S_{1 }+S_{2 }h_2}{S_1+S_{2 }}=frac{h_1S_1+h_1S_2-h_1S_{1 }-S_{2 }h_2}{S_1+S_{2 }}=] [=frac{h_1S_2-S_{2 }h_2}{S_1+S_{2 }}=frac{h_1-h_2}{S_1+S_{2 }}S_2.]

Ответ. $Delta h=frac{h_1-h_2}{S_1+S_{2 }}S_2$

Пример 2

Задание. Какой будет сила давления на большой поршень (площадью $S_1$) гидравлического пресса, если площадь его малого поршня равна $S_2$, при этом на него действует сила равная $F_2$?

Решение. В теоретическом разделе сказано, что гидравлический пресс представляет собой систему из сообщающихся сосудов (рис.3). Из закона Паскаля следует, что, прикладывая небольшую силу ($F_2$) к поршню малого сечения ($S_2$) пресса, можно получить большую по величине силу, которая будет действовать на большой поршень ($S_1$):

[F_1=F_2frac{S_1}{S_2}(2.1)]

Ответ. $F_1=F_2frac{S_1}{S_2}$

Читать дальше: условия плавания тел.

Источник

В этом состоянии сохраняется объем, но не сохраняется форма. Например, если перелить молоко из кувшина в стакан – молоко, имевшее форму кувшина, примет форму стакана. Кстати, в корове у молока тоже была другая форма.

Расстояние между молекулами в жидком состоянии чуть больше, чем в твердом, но все равно невелико. При этом частицы не собраны в кристаллическую решетку, а расположены хаотично. Молекулы почти не двигаются, но при нагревании жидкости делают это более охотно.

Вспомните, что происходит, если залить чайный пакетик холодной водой – он почти не заваривается. А вот если налить кипяточку – чай точно будет готов.

Агрегатных состояния точно три?

На самом деле, есть еще четвертое – плазма. Звучит, как что-то из научной фантастики, но это просто ионизированный газ – газ, в котором помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.

Сообщающиеся сосуды

Поскольку жидкость принимает форму сосуда, в который ее поместили, имеет место быть такое явление, как сообщающиеся сосуды.

  • Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости (в каждом сосуде). Так жидкость может перемещаться из одного сосуда в другой.

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Если в колена сообщающихся сосудов налить жидкости, плотности которых будут различны, то меньший объём более плотной жидкости в одном колене уравновесит больший объём менее плотной жидкости в другом колене сосуда.

Читайте также:  Примочки для ног при сосудах

Другими словами, высота столба жидкости с меньшей плотностью больше, чем высота столба жидкости с большей плотностью. Давайте рассчитаем, во сколько высота столба жидкости с меньшей плотностью больше высоты столба жидкости с большей плотностью, если эти две несмешивающиеся жидкости находятся в сообщающихся сосудах.

p = ρgh, p1 = p2, ρ1 gh1= ρ2 gh2,

Отсюда:

h1/h2 = ρ1/ρ2

ρ2 = (h1/h2) * ρ1

Применение сообщающихся сосудов

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор состоит из двух сообщающихся сосудов: двух вертикальных стеклянных трубок, соединенных между собой третьей изогнутой трубкой.

Одна из вертикальных трубок заполняется жидкостью, плотность которой нужно определить, а другая – жидкостью известной плотности (например, водой, плотность которой равна 1000 кг/м^3). Жидкости должны заполнить трубки настолько, чтобы их уровень в изогнутой трубке посередине был на отметке прибора 0. Высоты жидкостей в трубках над этой отметкой измеряют и находят плотность исследуемой жидкости, зная, что высоты обратно пропорциональны плотностям (об этом мы говорили выше).

Также на законе сообщающихся сосудах основаны устройства, которые определяют уровень жидкости в закрытых сосудах: резервуарах, паровых котлах.

Чтобы судно могло переплыть из одной водного бассейна в другой, если уровни воды в них разные, необходимо использовать шлюз. Устройство шлюза также основано на принципе сообщающихся сосудов. В первых воротах шлюза открывается клапан, камера соединяется с водоёмом, они становятся сообщающимися сосудами, уровни воды в них выравниваются. После этого ворота открываются, и судно проходит в первую камеру. Открывается следующий клапан, после выравнивания уровней воды открываются ворота, и так повторяется столько раз, сколько камер имеет шлюз.

Давление столба жидкости

Выведем формулу давления столба жидкости через основную формулу давления.

Давление

p = F/S

p – давление [Па]

F – сила [Н]

S – площадь [м^2]

В случае давления жидкости на дно сосуда мы можем заменить силу в формуле на силу тяжести.

p = mg/S

Также мы можем представить массу жидкости, как произведение плотности на объем:

p = ρ*V*g/S

Из геометрии мы знаем, что объем тела вращения (например, цилиндра) – это произведение площади основания на высоту: V = Sh.

Следовательно, высота будет равна h = V/S. Подставляем в формулу высоту вместо отношения объема к площади.

p = ρ*g*V/S

p = ρgh

В сообщающихся сосудах давление жидкости на одном уровне (на одной и той же высоте) будет одинаковым.

А можно сделать так, чтобы давление было разным?

С помощью перегородки можно сделать так, чтобы уровень жидкости, а следовательно, и давления в сообщающихся сосудах отличались.

Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем дополнительное давление. Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд, где её уровень ниже – до тех пор, пока высота жидкости в обоих сосудах не станет одинаковой.

Этот принцип используют в водонапорной башне. Чтобы создать высокое давление, башню наполняют водой. Затем открывают трубы на нижнем этаже, и вода устремляется в дома в наши краны и батареи.

Задачка

Какой площади необходимо сделать малый поршень в гидравлическом прессе, для того, чтобы выигрыш в силе получился равным 2? Площадь большого поршня равна 10 см^2.

Решение:

Гидравлический пресс – это два цилиндрических сообщающихся сосуда. Площадь большого поршня, с приложенной силой F1, равна 10 см^2.

Площадь малого поршня обозначим Sмал, к нему приложена сила F2.

Давления в сообщающихся сосудах на одинаковой высоте равны: p1 = p2

Подставим формулу давления:

F1/Sбол=F2/Sмал.

Выразим Sмал, получим:

Sмал = (F2/F1) * Sбол

Так как по условию выигрыш в силе F2/F1 равен 2, то:

Sмал=2*Sбол= 2*10 = 20 см^2

Ответ: малый поршень необходимо сделать с площадью равной 20 см^2

Понимать и любить этот мир гораздо проще, когда разбираешься в физике. В этом помогут небезразличные и компетентные преподаватели онлайн-школы Skysmart.

Чтобы формулы и задачки ожили и стали более дружелюбными, на уроках мы разбираем примеры из обычной жизни современных подростков. Приходите на бесплатный вводный урок по физике и начните учиться в удовольствие уже завтра!

Источник

Цель урока: сообщающиеся сосуды, закон сообщающихся сосудов, применение закона сообщающихся сосудов в жизни человека

Задачи урока:

  • образовательная
  • – продолжить формирование понятия давления жидкости на дно сосуда и изучение закона Паскаля на примере однородных и разнородных жидкостей в сообщающихся сосудах;
  • развивающая
  • – формировать интеллектуальные умения анализировать, сравнивать, находить примеры сообщающихся сосудов в быту, технике, природе, развивать навыки самостоятельной работы с дополнительной литературой;
  • воспитательная
  • – воспитание аккуратности, бережного отношения к оборудованию кабинета, умения слушать и быть услышанным.

Оборудование: различные виды сообщающихся сосудов, два стеклянных сосуда, соединенных резиновой трубкой, презентация “Сообщающиеся сосуды”, диск “Фонтаны С-П”.

Средства обучения: учебник, карточки-инструкция.

Тип урока: эвристическая беседа.

Структура урока

Этап урокаДеятельность учителяДеятельность ученикаВремя
1Постановка учебных проблем.Сообщение.Запись темы урока в тетради.2 мин.
2Изучение нового материала.Беседа, эксперимент, демонстрация Приложений 1-4.Записи в тетрадях, исследование зависимости уровня жидкости в сообщающихся сосудах.15 мин.
3Применение сообщающихся сосудов в быту, технике, природе.Демонстрация Приложений 5-8, обобщение сообщений учащихся.Сообщения учащихся о применении сообщающихся сосудов в быту, технике.18 мин.
4Закрепление материала.Демонстрация Приложений 9-10, обобщение ответов учащихся.Решают поставленные учителем задания, делают записи в тетрадях.7 мин.
5Итоги урока.Подведение итогов урока, оценивание результатов работы учащихся на уроке, запись домашнего задания на доске.Обсуждение и оценивание своих результатов работы на уроке, запись домашнего задания в дневниках.3 мин.

Ход урока

1. Мотивационный этап

Учитель. Здравствуйте! Сегодня речь пойдет сосудах, с которыми встречаемся каждый день дома и в школе, когда наливаем чай или поливаем цветы из лейки.

Демонстрация: Лека, чайник. Такие сосуды получили название сообщающиеся сосуды (Учащиеся записывают дату и тему урока в тетради).

Читайте также:  Сосуды стальные расчеты на прочность

Научное открытие свойства сообщающихся сосудов датируется 1586 г. (голландский ученый Стевин). Но оно было известно еще жрецам древней Греции. Археологи обнаружили в Грузии водопровод (XIII в), работающий по принципу сообщающихся сосудов.

2. Формирование умений и навыков

Учитель. Что общего у этих предметов? (Cлайд 1)

Учащиеся. Вода, налитая, например, в чайник, стоит всегда в резервуаре чайника и в боковой трубке на одном уровне. Боковая трубка и резервуар соединены между собой в нижней части.

Учитель. Правильно. Сообщающимися сосудами называют сосуды, соединенные между собой в нижней части. (Учащиеся записывают определение в тетради).

С сообщающимися сосудами можно проделать простой опыт. Возьмем две стеклянные трубки, соединенные резиновой трубкой. Сначала резиновую трубку в середине зажимают и в одну из трубок нальем воды. Что произойдет, если открыть зажим?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну из трубок поднять?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну из трубок опустить?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну из трубок наклонить?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. (Слайд 2)

(Учащиеся записывают закон в тетради).

Изменится ли уровень жидкости, если правый сосуд будет шире левого? уже левого? если сосуды будут иметь разную форму?

Учащиеся. Нет, жидкость установиться в обоих сосудах на одном уровне.

Учитель. При изменении формы сосудов может изменяться лишь высота уровня воды в сосудах, отмеренная от уровня стола (из-за того, что изменяется объем сосудов). Однако уровни воды в сообщающихся сосудах не зависят от формы сосудов и останутся равны. (Демонстрация опыта с сообщающимися сосудами различной формы).

(Слайд 3)

Что произойдет, если в сообщающиеся сосуды налить две несмешивающиеся жидкости разной плотности?

Учащиеся. Высота столбов жидкостей в сосудах будет разной.

Учитель. При равенстве давлений высота столба жидкости большей плотности меньше, чем высота столба жидкости меньшей плотности. (Учащиеся записывают в тетради).

Попробуйте доказать это, используя закон Паскаля и определение гидростатического давления… Проверим ваш результат.

(Слайд 4)

По закону Паскаля p1 = p2, по определению гидростатического давления p1 = g 1h1, p2 = g 2h2, отсюда g 1h1 = g 2h2, т.е h1: h2 = 2:1.

Высоты столбов разнородных жидкостей сообщающихся сосуда обратно пропорциональны их плотностям. (Учащиеся записывают в тетради).

Применение сообщающихся сосудов в быту, природе, технике.

Закон сообщающихся сосудов люди используют в разных технических устройствах: водопроводах с водонапорной башней; водомерных стеклах; гидравлическом прессе; фонтанах; шлюзах; сифонах под раковиной, “водяных затворах” в системе канализации.

Закон сообщающихся сосудов люди используют в водопроводах с водонапорной башней. Водонапорная башня и стояки водопровода являются сообщающимися сосудами, поэтому жидкость в них устанавливается на одном уровне.

В водомерном стекле парового котла, паровой котел (1) и водомерное стекло (3) являются сообщающимися сосудами. Когда краны (2) открыты, жидкость в паровом котле и водомерном стекле устанавливается на одном уровне, так как давления в них равны.

В устройстве гидравлических машин используется свойство сообщающихся сосудов. (Демонстрируется гидравлический пресс). Так, большой и малый цилиндры гидравлического пресса являются сообщающимися сосудами. Высоты столбов жидкости одинаковы, пока на поршни не действуют силы.

Видео “фонтаны города С-П” Каскады падающей воды украшают многие города, а действуют фонтаны благодаря закону сообщающихся сосудов. Виды знаменитых фонтанов Петродворца. Фонтаны в парке “Победы”, Тбилиси. Фонтаны на площади “Дружбы”, Ташкент. Фонтаны Еревана. И конечно знаменитые фонтаны С-П.

Действие артезианских колодцев и гейзеров основано на законе сообщающихся сосудов.

(Слайд 6) Горячий фонтан в местечке Гейзер в Исландии. От названия этого местечка возник термин “гейзер”.

(Cлайд 7) Римлянам был неизвестен закон сообщающихся сосудов. Для снабжения населения водой они возводили многокилометровые акведуки, водопроводы, доставлявшие воду из горных источников. Инженеры древнего Рима опасались, что в водоемах, соединенных очень длинной трубой, вода не установится на одинаковом уровне. Они полагали, что если трубы проложены в земле, следуя уклонам почвы, то в некоторых участках вода ведь должна течь вверх, – и вот римляне боялись, что вода вверх не потечет. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути. Одна из римских труб, Аква Марциа, имеет в длину 100 км, между тем как прямое расстояние между ее концами вдвое меньше. Полсотни километров каменной кладки пришлось проложить из-за незнания элементарного закона физики!

3. Систематизация умений и навыков

Учитель. Повторим изученное. Приведите примеры использования закона сообщающихся сосудов в природе, быту и технике.

Учащиеся. Это гейзеры, фонтаны, шлюзы, водопровод с водонапорной башней, гидравлический пресс, водомерные стекла, артезианские колодцы, сифоны под раковиной.

Учитель. (Слайд 7) Используя схему устройства шлюза и схему шлюзования судов, объясните принцип действия шлюзов.

Учащиеся. В работе шлюзов используется свойство сообщающихся сосудов: жидкость в сообщающихся сосудах находится на одном уровне. Когда ворота 1 открываются, вода в верхнем течении и шлюзе устанавливается на одном уровне и т.д., когда последние ворота откроются, уровень воды в шлюзе и нижнем течении сравняется, корабль будет опускаться вместе с водой и сможет продолжить плавание.

4. Итоги урока

Учитель. Сегодня на уроке мы познакомились с сообщающимися сосудами, в которых жидкость устанавливается на одном уровне. Мне очень интересно было работать с вами. Вы показали отличный уровень подготовки к уроку. Теперь вы знаете, что закон сообщающихся сосудов люди используют в разных технических устройствах: водопроводах с водонапорной башней; водомерных стеклах; гидравлическом прессе; фонтанах; шлюзах; сифонах под раковиной, “водяных затворах” в системе канализации.

5. Домашняя работа

Всем спасибо за работу. Записываем домашнее задание.

Обязательное: изучить §32 (Учебник, автор Белага В.В. Ломанченков И.А. Панебратцев Ю.А.) Создать модель фонтана.

(Учащиеся записывают домашнее задание в дневники)

Источник