Соотношение сосудов и нервов
Оглавление темы “Вегетативная ( автономная ) нервная система.”:
Иннервация кровеносных сосудов. Иннервация сосудов.Степень иннервации артерий, капилляров и вен неодинакова. Артерии, у которых более развиты мышечные элементы в tunica media, получают более обильную иннервацию, вены — менее обильную; v. cava inferior и v. portae занимают промежуточное положение. Более крупные сосуды, расположенные внутри полостей тела, получают иннервацию от ветвей симпатического ствола, ближайших сплетений вегетативной нервной системы и прилежащих спинномозговых нервов; периферические же сосуды стенок полостей и сосуды конечностей получают иннервацию от проходящих поблизости нервов. Нервы, подходящие к сосудам, идут сегментарно и образуют периваскулярные сплетения, от которых отходят волокна, проникающие в стенку и распределяющиеся в адвентиции (tunica externa) и между последней и tunica media. Волокна иннервируют мышечные образования стенки, имея различную форму окончаний. В настоящее время доказано наличие рецепторов во всех кровеносных и лимфатических сосудах. Первый нейрон афферентного пути сосудистой системы лежит в спинномозговых узлах или узлах вегетативных нервов (nn. splanchnici, n. vagus); далее он идет в составе кондуктора интероцептивного анализатора (см. «Интероцептивный анализатор»). Сосудодвига-тельный центр лежит в продолговатом мозге. К регуляции кровообращения имеют отношение globus pallidus, таламус, а также серый бугор. Высшие центры кровообращения, как и всех вегетативных функций, заложены в коре моторной зоны головного мозга (лобная доля), а также впереди и сзади нее. Корковый конец анализатора сосудистых функций располагается, по-видимому, во всех отделах коры. Нисходящие связи головного мозга со стволовыми и спинальными центрами осуществляются, по-видимому, пирамидными и экстрапирамидными трактами. Замыкание рефлекторной дуги может происходить на всех уровнях центральной нервной системы, а также в узлах вегетативных сплетений (собственная вегетативная рефлекторная дуга). Эфферентный путь вызывает вазомоторный эффект — расширение или сужение сосудов. Сосудосуживающие волокна проходят в составе симпатических нервов, сосудорасширяющие волокна идут в составе всех парасимпатических нервов краниального отдела вегетативной нервной системы (III, VII, IX, X), в составе передних корешков спинномозговых нервов (признается не всеми) и парасимпатических нервов сакрального отдела (nn. splanchnici pelvini). Учебное видео вегетативной иннервации внутренних органовДругие видео уроки по данной теме находятся: Здесь – Также рекомендуем “Единство вегетативной и центральной нервной системы. Зоны Захарьина — Геда.” Редактор: Искандер Милевски. Дата последнего обновления публикации: 28.8.2020 |
Источник
Периферические нервы отличаются высоким уровнем кровообращения, что обеспечивает интенсивный метаболизм в них. Знание общих закономерностей кровоснабжения нервов и частной микрососудистой анатомии в зоне расположения конкретных нервных стволов очень важно при выполнении пластических и реконструктивных операций на конечностях. Оно позволяет свести к минимуму нарушения кровообращения в нервах при их выделении из тканей, а значит, создать более благоприятные условия для последующей регенерации нервных волокон.
Внешняя сосудистая сеть нерва
Внешняя сосудистая сеть образована сосудами, сопровождающими нерв на большем или меньшем протяжении. Различного калибра артериальные ветви подходят к крупным нервным стволам через каждые 2—10 см. Наибольшее практическое значение имеют следующие четыре основных типа кровоснабжения нервных стволов.
Рис. 2.5.1. Схематическое изображение некоторых типов кровоснабжения крупных многопучковых нервов.
Тип 1 отличается отсутствием доминирующей артерии (рис. 2.5.1, а).
В связи с тем, что большинство периферических нервов входят в состав сосудисто-нервных пучков, отсутствие доминирующей артерии может наблюдаться лишь на сравнительно небольших по протяженности участках крупных и мелких нервных стволов. Кровоснабжение в этих зонах осуществляется через мышечно-кожные и перегородочно-кожные перфорирующие артерии. Небольшие мелкие ветви нервов могут не сопровождаться сопутствующими сосудами и снабжаться за счет связей с сосудистыми сплетениями окружающих тканей.
Тип 2 характеризуется наличием одной доминирующей артерии (рис 2.5.1, б), которая может сопровождать нерв на значительном протяжении. Это —один из частых вариантов строения внешней сосудистой сети, характерный для большеберцового, межреберных нервов, нервов кисти и стопы, срединного и лучевого нервов (на уровне плеча) и других стволов.
Тип 3 предполагает питание нерва через множественные доминирующие артерии (рис. 2.5.1, в). Этот тип кровоснабжения характерен для локтевого нерва в верхней трети предплечья, для поверхностной ветви лучевого нерва и др.
Тип 4 встречается в той зоне нерва, где участок с преобладающей артерией переходит в свободный от доминирующих сосудов участок (рис. 2.5.1, г). Этот вариант кровоснабжения характерен для лучевого и малоберцового нервов в зоне их деления на конечные ветви.
Внутриствольная сосудистая сеть
Внутриствольная сосудистая сеть образуется ветвями расположенных вблизи нервов сосудов, которые подходят к нерву и делятся на восходящую и нисходящую ветви. Их конечные разветвления, анастомозируя между собой, образуют выраженную интраневральную непрерывную сеть, ячейки которой представлены прекапиллярами и капиллярами, вытянуты между волокнами и располагаются между ними
С практической точки зрения, целесообразнс выделить два основных варианта строения интраневральной сосудистой сети. Первый из них отличается наличием внутриствольно расположенной доминирующей артерии и характерен только для крупных нервных стволов на тех участках, где они проходят вне сосудистых пучков.
Это — срединный (на предплечье) и седалищный нервы, сосуды которых располагаются субэпиневрально или внутриствольно и могут достигать 1—2 мм в диаметре. Для второго варианта характерно отсутствие интраневральной доминирующей артерии. При этом внутриствольная сеть представлена сосудами малого калибра.
Следует отметить, что в любых крупных многопучковых нервах наиболее значительные по диаметру сосуды располагаются в наружном эпииеприи, что позволяет использовать их для идентификации соответствующих нервных пучков при сшивании и пластике.
Кровообращение в нервах с позиций пластической хирургии
Как известно, успех пластических и реконструктивных операций на нервах в значительной степени зависит от того, насколько хирургу удастся сохранить кровообращение в концах нервного ствола. Описанные выше типы строения экстра- и интраневральной сосудистой сети определяют оптимальную технику подготовки концов нерва к сшиванию или пластике, которая в той или иной степени всегда связана с выделением концов нерва из окружающих тканей, т.е. с отсечением на определенном отрезке внешних источников питания.
Так, при отсутствии доминирующих артерий во внешней сосудистой сети (тип 1) внутриствольнос кровообращение в нерве обеспечивается в максимальной степени при выделении его концов из тканей вместе с прилегающей клетчаткой, когда сохраняют непрерывность сосудистой сети (рис. 2.5.2).
Рис. 2.5.2. Схематическое изображение оптимального уровня пересечения параневральных сосудов (стрелки) при отсутствии доминирующей экстраневральной артерии.
Однако клинические наблюдения показывают, что и в этом случае кровоснабжение концов нерва, выделенных на протяжении 8—10 см (или более), значительно снижается, особенно на периферическом отрезке. Эти нарушения выражены в минимальной степени, когда концы нерва выделяют вместе с доминирующей артерией. При этом протяженность участка выделения существенного значения не имеет.
Особенно просто задача выделения нерва из тканей решается при субэпиневральном расположении доминирующей артерии. При этом выделение концов нерва ограничивается прежде всего необходимостью выделения (пересечения) его ветвей.
При экстраневральном расположении доминирующей артерии (тип 2) выделение концов нерва из тканей следует по возможности осуществлять с включением сопутствующего сосудистого пучка, что сохраняет сосудистую сеть нерва практически неизменной.
При 3-м и 4-м типах строения внешней сосудистой сети нерва, когда рядом с ним на определенном участке проходит крупный сосудистый пучок (например, локтевой на предплечье или плечевой на плече), хирург может оказаться в трех различных ситуациях.
Прежде всего при сохранении целости магистральных сосудов их пересечение и выделение из тканей вместе с нервом, как правило, нецелесообразны, а часто —недопустимы. Поэтому нервный ствол выделяют так же, как и при 1-м типе его кровоснабжения.
Когда поврежден весь сосудисто-нервный пучок и когда нет необходимости в восстановлении магистральных сосудов (рис. 25.3, а), концы нерва можно выделять одним блоком с сосудами до того участка, где сосуды уходят в сторону (рис. 2 53, б). Если – же необходимо выделить нерв и более проксимально, то включать сосудистый пучок в выделяемый лоскут, как правило, нецелесообразно (рис. 2 5 3, в).
Рис. 2.5.3. Схема вариантов выделения концов нервного ствола в зависимости от расположения внешней доминирующей артерии (объяснение в тексте).
Следует отметить, что протяженность участка выделения концов нерва из тканей и техника этого этапа операции определяются не только архитектоникой сосудистой сети в зоне повреждения, но и такими факторами, как тип оперативного вмешательства (сшивание нерва, пластика, транспозиция и пр.), выраженность и распространенность рубцовых изменений окружающих тканей, наличие сопутствующих повреждений других сосудов сегмента и т. д.
А.Е. Белоусов
Опубликовал Константин Моканов
Источник
Анатомо-топографические взаимоотношения кровеносных сосудов и нервов в различных частях тела и органа
Выполнил студентка
208 группы
лечебного факультета
Колоколова Анастасия Андреевна
Проверил:
доц. Мельников Игорь Иванович
Пермь, 2015
Содержание
1. Различия в формировании, ходе, ветвлении и связях кровеносных сосудов и нервов……………………………………………………………………………3
2. Три закона Пирогова……………………………………………………………4
3. Общее положение топографии кровеносных сосудов……………………….5
4. Основные принципы коллатерального кровообращения……………………6
Список литературы……………………………………………………..…………7
Различия в формировании, ходе, ветвлении и связях кровеносных сосудов и нервов
Закономерности распределения артерий
1. Артерии располагаются по ходу нервной трубки и нервов.
2. Артерии делятся на париетальные (к стенкам полостей тела) и висцеральные (к содержимому их, т.е. к внутренностям).
3. Каждая конечность получает один главный ствол.
4. Артерии туловища сохраняют сегментарное строение.
5. Большая часть артерий располагается по принципу двухсторонней симметрии: парные артерии сомы и внутренностей.
6. Артерии идут вместе с другими частями сосудистой системы – с венами и лимфатическими сосудами, образуя общий сосудистый комплекс (пучок).
7. Артерии идут соответственно скелету, составляющему основу организма.
Форма ветвления бедренной артерии
А) Рассыпная форма ветвления
Б) Магистральная форма ветвления
Закономерности распределения вен
1. В венах кровь течет в большей части тела (туловище и конечности) против направления действия силы тяжести и потому медленнее, чем в артериях.
2. Венозное русло в своей массе значительно шире, чем артериальное.
Большая ширина венозного русла по сравнению с артериальным обеспечивается большим калибром вен, большим их числом, парным сопровождением артерий, наличие вен не сопровождающих артерии, большим количеством анастомозов и большей густотой венозной сети, образованием венозных сплетений и синусов наличием воротной системы в печени.
3. Глубокие вены, сопровождающие артерии, при своем распределении подчиняются тем же законам, что и сопровождаемые ими артерии, при этом в большинстве случаев одну артерию сопровождают две вены.
4. Вены идут по кратчайшему расстоянию, т.е. приблизительно по прямой линии, соединяющей место происхождения данной вены с местом впадения ее.
5. Венозные сплетения встречаются главным образом на внутренних органах, объем которых изменяется, но располагаются в полостях с неподатливыми стенками и облегчают отток венозной крови. Этим объясняется обилие венозных сплетений вокруг органов малого таза, в позвоночном канале, где постоянно колеблется давление спиномозговой жидкости, и в других аналогичных местах при увеличении органов и сдавлении их стенки.
6. В полостях черепа, где мельчайшее затруднение венозного оттока отражается на функции головного мозга, имеются, кроме вен, специальные приспособления – венозные синусы с неподатливыми стенками, образованными твердой мозговой оболочной.
7. К специальным приспособлениям относятся вены, расположенные в каналах diploe – venae diploicae.
8. У человека в связи с вертикальным положением тела ряд вен имеют клапанны, особенно в нижних конечностях.
Закономерности распределения нервов
1. Соответственно группировке органов тела вокруг нервной системы нервы расходятся стороны о срединной линии, на которой располагается центральная нервная система.
2. Соответственно строению тела по принципу двусторонней симметрии нервы являются парными и идут симметрично.
3. Соответственно метамерному строению туловища нервы этой области сохраняют сегментарное строение.
4. Нервы идут по кратчайшему расстоянию от места выхода из спинного или головного мозга к органу.
Три закона Пирогова
Первый (основной) закон
Все сосудистые влагалища образованны фасциями мышц, расположенных возле сосудов.
Задняя стенка влагалища мышцы является, как правило, передней стенкой влагалища сосудисто-нервного пучка, проходящего возле этой мышцы.
Второй закон
Если натянуть стенки мышечных влагалищ, имеющих отношение к сосудам, то форма артериальных влагалищ представится призматической, а в поперечном разрезе – треугольной.
Третий закон
Вершина призматического влагалища, как правило, прямо или опосредованно соединяется с близлежащей костью или капсулой сустава.
Общее положение топографии кровеносных сосудов
Сосудисто-нервный пучок (нерв, артериальные и венозные стволы и лимфатические сосуды) представляет собой анатомически и функционально единое целое.
Между компонентами сосудисто-нервного пучка существует взаимосвязь: нервы обеспечивают иннервацию соседних артерий, вен и лимфатических сосудов, артерия снабжает перечисленные образования кровью, в вены и лимфатические сосуды происходит венозный и лимфатический отток из всего пучка в целом.
Различия во внешнем строении нервов, артерий и вен
1. Артериальный ствол в составе сосудисто-нервного пучка, как правило, имеет меньший диаметр, чем сопровождающая его вена, но более плотную и толстую стенку.
2. При повреждении просвет артерии зияет, впросвет вены чаще спавшийся.
3. На конечностях артерию сопровождают две вены.
4. Нервный ствол имеет более светлую окраску, никогда не спадается при сдавлении и не имеет пульсации.
Сосудисто-нервный пучок
1. Сосудисто-нервный пучок располагается на сгибательных поверхностях тела.
2. Крупные сосудисто-нервные пучки находятся в укрытых местах, в желобах и каналах, образованных костями, мышцами и фасциями.
3. На фасциях в местах, соответствующих межмышечным промежуткам и расположениям сосудисто-нервных пучков видны беловатые полоски.
У относительно крупных артерий, вен и нервов почти всегда есть собственные фасциальные влагалища разной степени выраженности, которые составляют единый комплекс с общими фасциальными влагалищами сосудисто-нервных пучков.
Источник
Влияние ионов на сосуды. Нервная регуляция кровообращения
Различные ионы и другие химические факторы могут вызывать местное расширение или сужение сосудов. Большинство из них не принимают заметного участия в регуляции системной гемодинамики, однако вызывают местные специфические эффекты.
1. Увеличение концентрации ионов кальция вызывает сужение сосудов.
2. Увеличение концентрации ионов калия вызывает расширение сосудов, т.к. ионы калия тормозят сокращение гладких мышц.
3. Увеличение концентрации ионов магния вызывает значительное расширение сосудов, т.к. ионы магния тормозят сокращение гладких мышц.
4. Увеличение концентрации ионов водорода (уменьшение рН) вызывает расширение артериол; и наоборот, небольшое снижение концентрации ионов водорода вызывает сужение артериол.
5. Анионами, которые оказывают заметное влияние на кровеносные сосуды, являются ацетат и цитрат, которые вызывают умеренное расширение сосудов.
6. Увеличение концентрации углекислого газа вызывает выраженное расширение сосудов в большинстве тканей, особенно в тканях головного мозга. Кроме того, от концентрации углекислого газа зависит состояние сосудодвигательного центра головного мозга. Это непрямое влияние углекислого газа, опосредованное симпатической сосудосуживающей нервной системой, приводит к повсеместному сужению сосудов во всех сосудистых областях организма.
Нервная регуляция кровообращения
Регуляцию тканевого кровотока в зависимости от метаболических потребностей тканей осуществляют местные механизмы самих тканей. В данной главе увидим, что нервные механизмы регуляции гемодинамики выполняют такие общие функции, как перераспределение кровотока между разными органами и тканями, усиление или торможение насосной функции сердца и, что особенно важно, быстрый контроль над уровнем системного артериального давления.
В регуляции кровообращения принимает участие автономная (вегетативная) нервная система. Здесь мы дадим только краткий обзор анатомических и функциональных особенностей автономной нервной системы, необходимых для предстоящего изложения механизмов нервной регуляции.
Важную роль в регуляции кровообращения играет симпатическая нервная система. Парасимпатическая нервная система также участвует в регуляции кровообращения, главным образом в регуляции деятельности сердца.
Анатомия симпатической регуляции кровообращения. Пунктирной красной линией показан блуждающий нерв, несущий парасимпатические сигналы к сердцу
Симпатическая иннервация сосудов большого круга кровообращения
Симпатическая нервная система. На рисунке представлена схема симпатической регуляции системы кровообращения. Симпатические сосудодвигательные волокна в составе спинномозговых нервов отходят от грудных и верхних поясничных сегментов спинного мозга. Они следуют к ганглиям симпатического ствола, который располагается по обе стороны от позвоночника. Затем симпатические волокна идут в двух направлениях: (1) в составе специфических симпатических нервов, которые иннервируют кровеносные сосуды внутренних органов и сердце, как показано в правой части рисунка; (2) в составе периферических спинномозговых нервов, которые иннервируют кровеносные сосуды головы, туловища и конечностей.
Симпатическая иннервация кровеносных сосудов. На рисунке показано, что в большинстве тканей все сосуды (за исключением капилляров, прекапиллярных сфинктеров и метартериол) иннервируются симпатическими нервными волокнами (симпатическими вазоконстрикторами).
Стимуляция симпатических нервов мелких артерий и артериол приводит к увеличению сосудистого сопротивления и, следовательно, к уменьшению кровотока в тканях.
Стимуляция симпатических нервов крупных кровеносных сосудов, особенно вен, приводит к уменьшению объема этих сосудов. Это способствует продвижению крови по направлению к сердцу и, следовательно, играет важную роль в регуляции сердечной деятельности, о чем будет сказано в следующих главах.
Симпатические нервные волокна сердца. Симпатические нервные волокна иннервируют и кровеносные сосуды, и сердце. Симпатическая стимуляция приводит к усилению сердечной деятельности за счет увеличения частоты и силы сердечных сокращений.
– Также рекомендуем “Парасимпатическая регуляция кровообращения. Сосудодвигательный центр головного мозга”
Оглавление темы “Регуляция кровоснабжения”:
1. Различия в кровоснабжении разных органов и тканей. Механизмы регуляции кровотока
2. Вазодилататорная и гипоксическая теория регуляции кровотока в органах и тканях
3. Реактивная гиперемия. Активная гиперемия
4. Метаболическая и миогенная регуляция кровотока. Краткосрочная регуляция кровотока
5. Эндотелиальный сосудорасширяющий фактор. Долговременная регуляция местного кровотока
6. Васкуляризация тканей. Формирование и рост новых кровеносных сосудов
7. Коллатеральное кровообращение. Гуморальная регуляция кровообращения
8. Ангиотензин II и вазопрессин. Эндотелин и брадикинин
9. Влияние ионов на сосуды. Нервная регуляция кровообращения
10. Парасимпатическая регуляция кровообращения. Сосудодвигательный центр головного мозга
Источник