Состояние вещества когда оно принимает форму сосуда

Состояние вещества когда оно принимает форму сосуда thumbnail

Агрегатных состояния точно три?????

На самом деле, есть еще четвертое – плазма. Звучит, как что-то из научной фантастики, но это просто ионизированный газ – газ, в котором помимо нейтральных частиц есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.

С агрегатными состояниями разобрались, ура! Но до сих пор неясно, каким образом у каждого вещества их целых три, и как одно переходит в другое. Для этого узнаем, что такое фазовые переходы.

Фазовые переходы: изменение агрегатных состояний вещества

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы – изменения агрегатных состояний вещества.

Фазовые переходы интересны тем, что все живое не Земле существует лишь благодаря тому, что вода умеет превращаться в лед или пар. С кристаллизацией, плавлением, парообразованием и конденсацией связаны многие процессы металлургии и микроэлектроники.

На схеме – названия всех фазовых переходов:

Переход из твердого состояния в жидкое – плавление;

Переход из жидкого состояния в твердое – кристаллизация;

Переход из газообразного состояния в жидкое – конденсация;

Переход из жидкого состояния в газообразное – парообразование;

Переход из твердого состояния в газообразное, минуя жидкое – сублимация;

Переход из газообразного состояния в твердое, минуя жидкое – десублимация.

График фазовых переходов

Если взять процесс превращения льда в воду, воды – в пар, и обратные действия, то мы получим очень информативный график.

Разбираемся по шагам. Сначала взяли лед, конечно, при отрицательной температуре, потому что при нуле лед начинает плавиться. Нагрели лед до температуры плавления (до 0 градусов).

  • AB – нагревание льда

После того, как лед нагрелся до температуры плавления, он начинает плавиться. Плавление происходит при постоянной температуре тем дольше длится, чем больше масса плавящегося вещества. Еще этот процесс зависит от свойств самого вещества, но об этом немного позже.

  • BC – плавление льда

Расправившись вещество уже в жидком состоянии снова начинает нагреваться, и температура увеличивается, пока не достигает температуры кипения. В данном случае нагревается вода – это значит, что ее температура кипения равна 100 градусам Цельсия.

  • CD – нагревание воды

При 100 градусах вода кипит, пока не выкипит целиком. В данном случае процесс аналогично плавлению происходит при постоянной температуре. Данный процесс нельзя путать с испарением, потому что парообразование происходит при конкретной температуре, а испарение – при любой.

  • DE – кипение (парообразование) воды

Далее полученный пар нагревается, но путем нагревания невозможно дойти до другого фазового перехода – можно пойти только обратно.

  • EF – нагревание пара

Первый шаг в обратную сторону – охлаждение до температуры кипения.

  • FG – охлаждение пара

Дойдя до температуры кипения (в данном случае 100 градусов), пар начинает переходить в жидкое состояние. Этот процесс также происходит при постоянной температуре.

  • GH – конденсация пара

Сконденсировавшись, вода охлаждается, пока не начнет замерзать.

  • HI – охлаждение воды

Кристаллизуется (замерзает) вода при той же температуре, что и плавится лед – 0 градусов. Кристаллизация также происходит при постоянной температуре.

  • IK – кристаллизация воды

После кристаллизации лед охлаждается.

  • KL – охлаждение льда

С нагреванием и охлаждением все совсем просто – мы либо передаем теплоту телу (веществу), и оно идет на увеличение температуры, либо тело отдает тепло и охлаждается.

В остальных процессах температура не меняется. Это связано с тем, что количество теплоты не всегда зависит от температуры. Формулы для всех процессов выглядят так:

Нагревание

Q = cm(tконечная-tначальная)

Охлаждение

Q = cm(tначальная-tконечная))

Q – количество теплоты [Дж]

c – удельная теплоемкость вещества [Дж/кг*˚C]

m – масса [кг]

tконечная – конечная температура [˚C]

tначальная – начальная температура [˚C]

Плавление

Q = λm

Кристаллизация

Q = – λm

Q – количество теплоты [Дж]

λ – удельная теплота плавления вещества [Дж/кг]

m – масса [кг]

Парообразование

Q = Lm

Конденсация

Q = – Lm

Q – количество теплоты [Дж]

L – удельная теплота парообразования вещества [Дж/кг]

m – масса [кг]

Решение задач по фазовым переходам

С теорией разобрались – а теперь давайте практиковаться!

Задачка раз. Температура медного образца массой 100 г повысилась с 20 °С до 60 °С. Какое количество теплоты получил образец? Удельную теплоёмкость меди считать равной 380 Дж/(кг умножить на °С)

  1. Сначала нужно перевести массу в килограммы:

    100 г = 0,1 кг

  2. Берем формулу количества теплоты для нагревания вещества:

    Q = cm(tконечная-tначальная)

  3. Подставляем числа:

    Q = 380 * 0,1*(60-20) = 1520 Дж

Ответ: образец получил 1520 Дж

Задачка два. Какое количество теплоты необходимо для плавления 2,5 т стали, взятой при температуре плавления? Удельная теплота плавления стали λ=80кДж/кг. Теплопотерями пренебречь.

  1. Сначала нужно перевести массу в килограммы и удельную теплоту в Дж/кг:

    2,5 т = 2500 кг

    80 кДж/кг = 80000 Дж/кг

  2. Берем формулу количества теплоты для плавления вещества:

    Q = λm

  3. Подставляем числа:

    Q = 80000*2500 = 200 000 000 Дж = 200 МДж

Читайте также:  Масляный укол попал в сосуд

Ответ: для плавления 2,5 т стали необходимо 200 МДж теплоты.

Сублимация и десублимация

Мы уже рассказали про такие процессы, как сублимация и десублимация.

  • Переход из твердого состояния в газообразное, минуя жидкое – сублимация (возгонка);
  • Переход из газообразного состояния в твердое, минуя жидкое – десублимация.

Примерчики из жизни????

Про белье. Попробуйте повесить белье сушиться на улицу в мороз. Поскольку вода замерзает из-за низких температур, белье должно вернуться домой в виде большого айсберга, но этого не происходит – оно возвращается абсолютно сухим. В данном процессе произошла возгонка молекул воды (сублимация).

Про принтеры. Цветные принтеры (только не лазерные) печатают путем сублимации. Вот как это работает: частицы краски быстро переходят из твердого состояния в газообразное и оседают на бумаге – так получается цветная картинка.

Рисуночки на окнах. Если вы решите проехаться на автобусе в холодную погоду – увидете на стеклах чудесные узоры. Из-за огромной разницы температур между улицей и автобусом, мы можем наблюдать процесс десублимации в виде красивых рисунков на стеклах. Иней образуется похожим способом – резкое похолодание приводит к десублимации воздуха.

Влажность воздуха: испарение и конденсация

Такие процессы, как испарение и конденсация, становятся более логичными и простыми, если их рассмотреть на примере влажности воздуха.

Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Любое количество пара в воздух не запихнешь, поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация – это когда образуется роса.

Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% – испарения не будет, больше пара в этот воздух уже не запихнешь. Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит, что его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.

Как влажность влияет на человека

Для человека влажность очень важна, потому что мы состоим из воды на 90%. Если окружающей среде нечего испарять, она будет испарять нас. Поэтому при низкой влажности мы чувствуем сухость во рту, а при высокой – волосы впитывают влагу, разбухают и начинают виться. На этом принципе построены некоторые гигрометры – приборы для измерения влажности. Они так и называются – волосяные гигрометры. Только внутри не человеческий волос, а конский, но принцип от этого не меняется.

При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой, но при высокой влажности пот не может испариться. При испарении пота мы теряем избыточное тепло, а в данном случае этого не происходит.

При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно, а при высокой влажности – он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.

Влажностью можно управлять. Существуют мешочки с шариками адсорбентами, которые кладут в коробки с обувью, чтобы впитать лишнюю влагу. Чтобы окна не запотевали, можно насыпать в рамы соль, которая также впитает влагу. А если вам наоборот нужно больше влаги – берем увлажнитель воздуха (классная вещь!): он добавляет в воздух водяной пар.

Чтобы управлять не только влажностью, но и другими физическими явлениями, приходите на занятия по физике в онлайн-школу Skysmart.

Индивидуальные уроки по физике – это много захватывающей практики и примеров из мира современных подростков, личная программа под цели ученика, шкала прогресса и мотивация. Мы показываем, что физику можно учить интересно и с огоньком!

Источник

Агрегатное состояние – состояние какого-либо вещества, имеющее определенные свойства: способность сохранять форму и объем, иметь дальний или ближний порядок и другие. При изменении агрегатного состояния вещества происходит изменение физических свойств, а также плотности, энтропии и свободной энергии.

Как и почему происходят эти удивительные превращения? Чтобы разобраться в этом, вспомним, что все вокруг состоит из атомов и молекул. Атомы и молекулы различных веществ взаимодействуют друг с другом, и именно связь между ними определяет, какое у вещества агрегатное состояние.

Читайте также:  Что делать при узких сосудах

Выделяют четыре типа агрегатных веществ:

  • газообразное,

  • жидкое,

  • твердое,

  • плазма.

Кажется, что химия открывает нам свои тайны в этих удивительных превращениях. Однако это не так. Переход из одного агрегатного состояния в другое, а также броуновское движение или диффузия относятся к физическим явлениям, поскольку в этих превращениях не происходит изменений молекул вещества и сохраняется их химический состав.

Газообразное состояние

На молекулярном уровне газ представляет собой хаотически движущиеся, сталкивающиеся со стенками сосуда и между собой молекулы, которые друг с другом практически не взаимодействуют. Поскольку молекулы газа между собой не связаны, то газ заполняет весь предоставленный ему объем, взаимодействуя и изменяя направление только при ударах друг о друга.

К сожалению, невооруженным глазом и даже с помощью светового микроскопа увидеть молекулы газа невозможно. Однако газ можно потрогать. Конечно, если вы просто попробуете ловить молекулы газов, летающие вокруг, в ладони, то у вас ничего не получится. Но наверняка все видели (или делали это сами), как кто-то накачивал воздухом шину автомобиля или велосипеда, и из мягкой и сморщенной она становилась накачанной и упругой. А кажущуюся «невесомость» газов опровергнет опыт, описанный на странице 39 учебника «Химия 7 класс» под редакцией О.С. Габриеляна.

Это происходит потому, что в замкнутый ограниченный объем шины попадает большое количество молекул, которым становится тесно, и они начинают чаще ударяться друг о друга и о стенки шины, а в результате суммарное воздействие миллионов молекул на стенки воспринимается нами как давление.

Но если газ занимает весь предоставленный ему объем, почему тогда он не улетает в космос и не распространяется по всей вселенной, заполняя межзвездное пространство? Значит, что-то все-таки удерживает и ограничивает газы атмосферой планеты?

Совершенно верно. И это – сила земного тяготения. Для того чтобы оторваться от планеты и улететь, молекулам нужно развить скорость, превышающую «скорость убегания» или вторую космическую скорость, а подавляющее большинство молекул движутся значительно медленнее.

Тогда возникает следующий вопрос: почему молекулы газов не падают на землю, а продолжают летать? Оказывается, благодаря солнечной энергии молекулы воздуха имеют солидный запас кинетической энергии, который позволяет им двигаться против сил земного притяжения.

Сборник вопросов и задач. Физика. 9 класс

Сборник вопросов и задач. Физика. 9 класс

В сборнике приведены вопросы и задачи различной направленности:расчетные, качественные и графические; технического, практического и исторического характера. Задания распределены по темам в соответствии со структурой учебника «Физика. 9 класс» авторов А. В. Перышкина, Е. М. Гутник и позволяют реализовать требования, заявленные ФГОС к метапредметным, предметным и личностным результатам обучения.

Купить

Жидкое состояние

При повышении давления и/или снижении температуры газы можно перевести в жидкое состояние. Еще на заре ХIХ века английскому физику и химику Майклу Фарадею удалось перевести в жидкое состояние хлор и углекислый газ, сжимая их при очень низких температурах. Однако некоторые из газов не поддались ученым в то время, и, как оказалось, дело было не в недостаточном давлении, а в неспособности снизить температуру до необходимого минимума.

Жидкость, в отличие от газа, занимает определенный объем, однако она также принимает форму заполняемого сосуда ниже уровня поверхности. Наглядно жидкость можно представить как круглые бусины или крупу в банке. Молекулы жидкости находятся в тесном взаимодействии друг с другом, однако свободно перемещаются относительно друг друга.

Если на поверхности останется капля воды, через какое-то время она исчезнет. Но мы же помним, что благодаря закону сохранения массы-энергии, ничто не пропадает и не исчезает бесследно. Жидкость испарится, т.е. изменит свое агрегатное состояние на газообразное.

Испарение – это процесс преобразования агрегатного состояния вещества, при котором молекулы, чья кинетическая энергия превышает потенциальную энергию межмолекулярного взаимодействия, поднимаются с поверхности жидкости или твердого тела.

Испарение с поверхности твердых тел называется сублимацией или возгонкой. Наиболее простым способом наблюдать возгонку является использование нафталина для борьбы с молью. Если вы ощущаете запах жидкости или твердого тела, значит происходит испарение. Ведь нос как раз и улавливает ароматные молекулы вещества.

Жидкости окружают человека повсеместно. Свойства жидкостей также знакомы всем – это вязкость, текучесть. Когда заходит разговор о форме жидкости, то многие говорят, что жидкость не имеет определенной формы. Но так происходит только на Земле. Благодаря силе земного притяжения капля воды деформируется.

Однако многие видели как космонавты в условиях невесомости ловят водяные шарики разного размера. В условиях отсутствия гравитации жидкость принимает форму шара. А обеспечивает жидкости шарообразную форму сила поверхностного натяжения. Мыльные пузыри – отличный способ познакомиться с силой поверхностного натяжения на Земле.

Читайте также:  Лопаются сосуды руках лечение

Еще одно свойство жидкости – вязкость. Вязкость зависит от давления, химического состава и температуры. Большинство жидкостей подчиняются закону вязкости Ньютона, открытому в ХIХ веке. Однако есть ряд жидкостей с высокой вязкостью, которые при определенных условиях начинают вести себя как твердые тела и не подчиняются закону вязкости Ньютона. Такие растворы называются неньютоновскими жидкостями. Самый простой пример неньютоновской жидкости – взвесь крахмала в воде. Если воздействовать на неньютоновскую жидкость механическими усилиями, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело.

Твёрдое состояние

Если у жидкости, в отличие от газа, молекулы движутся уже не хаотически, а вокруг определенных центров, то в твёрдом агрегатном состоянии вещества атомы и молекулы имеют четкую структуру и похожи на построенных солдат на параде. И благодаря кристаллической решетке твердые вещества занимают определенный объем и имеют постоянную форму.

Между твердыми и жидкими телами существует промежуточная группа аморфных веществ, представители которой с одной стороны за счет высокой вязкости долго сохраняют свою форму, а с другой – частицы в нем строго не упорядочены и находятся в особом конденсированном состоянии. К аморфным веществам относится целый ряд веществ: смола, стекло, янтарь, каучук, полиэтилен, поливинилхлорид, полимеры, сургуч, различные клеи, эбонит и пластмассы. Про аморфные тела подробно можно прочитать на странице 40 учебника «Химия 7 класс» под редакцией О.С. Габриеляна.

При определенных условиях вещества, находящиеся в агрегатном состоянии жидкости, могут переходить в твердое, а твердые тела, наоборот, при нагревании плавиться и переходить в жидкое.

Это происходит потому, что при нагревании увеличивается внутренняя энергия, соответственно молекулы начинают двигаться быстрее, а при достижении температуры плавления кристаллическая решетка начинает разрушаться и изменяется агрегатное состояние вещества. У большинства кристаллических тел объем увеличивается при плавлении, но есть исключения, например – лед, чугун.

В зависимости от вида частиц, образующих кристаллическую решетку твердого тела, выделяют следующую структуру:

  • молекулярную,

  • атомную,

  • ионную

  • металлическую.

У одних веществ изменение агрегатных состояний происходит легко, как, например, у воды, для других веществ нужны особые условия (давление, температура). Но в современной физике ученые выделяют еще одно независимое состояние вещества – плазма.

Плазма – ионизированный газ с одинаковой плотностью как положительных, так и отрицательных зарядов. В живой природе плазма есть на солнце, или при вспышке молнии. Северное сияние и даже привычный нам костер, согревающий своим теплом во время вылазки на природу, также относится к плазме.

Искусственно созданная плазма добавляет яркости любому городу. Огни неоновой рекламы – это всего лишь низкотемпературная плазма в стеклянных трубках. Привычные нам лампы дневного света тоже заполнены плазмой.

Плазму делят на низкотемпературную – со степенью ионизации около 1% и температурой до 100 тысяч градусов, и высокотемпературную – ионизация около 100% и температурой в 100 млн градусов (именно в таком состоянии находится плазма в звездах).

Низкотемпературная плазма в привычных нам лампах дневного света широко применяется в быту.

Высокотемпературная плазма используется в реакциях термоядерного синтеза и ученые не теряют надежду использовать ее в качестве замены атомной энергии, однако контроль в этих реакциях очень сложен. А неконтролируемая термоядерная реакция зарекомендовала себя как оружие колоссальной мощности, когда 12 августа 1953 года СССР испытал термоядерную бомбу.

Физика. 7 класс. Дидактические материалы

Физика. 7 класс. Дидактические материалы

Данное пособие включает тренировочные задания, тесты для самоконтроля, самостоятельные работы, контрольные работы и примеры решения типовых задач. Всего в предлагаемом комплекте дидактических материалов содержится более 1000 задач и заданий по следующим темам: «Первоначальные сведения о строении вещества», «Взаимодействие тел», «Давление твердых тел, жидкостей и газов» и «Работа и мощность. Энергия». Пособие адресовано учителям и учашимся образовательных школ и может использоваться при работе с учебником А. В. Перышкина «Физика. 7 класс».

Купить

Для проверки усвоения материала предлагаем небольшой тест.

1. Что не относится к агрегатным состояниям:

  • жидкость

  • газ

  • свет +

2. Вязкость ньютоновских жидкостей подчиняется:

  • закону Бойля-Мариотта

  • закону Архимеда

  • закону вязкости Ньютона +

3. Почему атмосфера Земли не улетает в открытый космос:

  • потому что молекулы газа не могут развить вторую космическую скорость

  • потому что на молекулы газа воздействует сила земного притяжения +

  • оба ответа правильные

4. Что не относится к аморфным веществам:

  • сургуч
  • стекло

  • железо +

5.При охлаждении объем увеличивается у:

  • янтаря

  • льда +

  • сахара

#ADVERTISING_INSERT#

Источник