Сосуд для создания вакуума

Сосуд для создания вакуума thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 февраля 2013; проверки требует 21 правка.

Первые исследования вакуума можно отнести ко временам Торричелли, когда после создания им манометра начались исследования так называемой Торричеллиевой пустоты, возникающей в ртутном манометре над поверхностью ртути. Долгое время шли споры о степени разрежения в этой области. Сейчас очевидно, что давление в этой области было около 10−3 мм рт.ст. (давление насыщенного пара ртути при комнатой температуре), что по современным классификациям относится к области низкого вакуума. Однако такой метод откачки хотя и даёт возможность создавать достаточно неплохой вакуум, достаточный для проведения некоторых экспериментов, однако откачивание таким методом значительных объёмов не представляется возможным. Кроме того для многих экспериментов необходим высокий (10−6) либо сверхвысокий (10−9) вакуум.

Для получения столь высокого вакуума используются специальные насосы (кроме того, для создания сверхвысокого вакуума необходимо использовать прогреваемые системы со специальными тефлоновыми или металлическими прокладками). Для получения высокого и сверхвысокого вакуума используется комбинированная откачка. Форвакуумная откачка осуществляется например механическим насосом, либо, если высоковакуумный насос является орбитроном, форвакуум создаётся криосорбционным насосом, который позволяет получить вакуум, достаточный для запуска высоковакуумных насосов.

Используется два типа высоковакуумных насосов: магниторазрядные и диффузионные.

Принцип работы магниторазрядных насосов основан на нескольких эффектах. Первый – это геттерные свойства свеженапыленной плёнки титана, захватывающей молекулы остаточных газов, что используется в насосах типа орбитрон, в которых осуществляется термическое распыление титана; или воздействие на ионизированные молекулы газа электромагнитным полем, распылящее титан для создания свеженапыленной плёнки титана.

Диффузионный насос по принципу действия подобен пылесосу, использующемуся для побелки: поток молекул рабочего газа увлекает за собой молекулы остаточных газов.

Для создания сверхвысокого вакуума, как средство предварительной откачки, используются криосорбционные насосы, создающие вакуум, достаточный для запуска орбитронов. Принцип их работы основан на зависимости абсорбционных свойств материала от температуры. Для откачки геттер (газопоглотитель) охлаждается жидким азотом, при этом его геттерные свойства улучшаются и он активно абсорбирует газ, создавая вакуум.

Сверхвысокий вакуум можно получить в космосе при разгерметизации сверхпрочного баллона с последующим герметичным закрыванием этого баллона. Применение специальных фильтров, не позволяющих попасть в этот баллон микрочастицам космического вещества, позволяет получить чистый сверхвысокий вакуум, способы достижения которого в земных условиях пока не изобретены.

Преимущества и недостатки различных типов высоковакуумных насосов[править | править код]

Диффузионные насосы были одними из первых типов насосов использовавшихся для создания вакуума, недостижимого для механических насосов. До создания термически стабильных синтетических масел, обладающих низким давлением насыщенных паров, рабочей жидкостью была ртуть, что вызывало затруднения, из-за активного взаимодействия ртути с металлами, особенно в области высоких температур. Кроме того ртуть токсична. После создания синтетических масел от ртути отказались, однако при этом возникли проблемы с термическим разложением масла и загрязнением им вакуумных систем. Серийные модели диффузионных насосов позволяют получать вакуум 10−4…10−5 мм рт. ст. При применении вымораживающей ловушки может быть достигнуто давление на порядок ниже. Преимуществами диффузионных насосов считают высокую скорость откачки, возможность использования без охлаждения жидким азотом, запуск при высоком давлении, возможность экспонирования в атмосфере остановленного насоса, отсутствие эффекта памяти и селективности откачки. Однако из-за загрязнения вакуумной системы маслом диффузионные насосы редко используются как средства предварительной откачки. Необходимость откачки форвакуумным насосом требует наблюдения за системой при остановке. Важным недостатком является быстрый выход из строя ионизационных манометрических ламп из-за загрязнения системы маслом.

Гетерионные насосы. Насосы типа НОРД — позволяют получить давление 10−7 мм рт. ст. без загрязнения маслом если попадание паров масла из форвакуумного насоса сведено к минимуму использованием различных, в том числе и вымораживающих, ловушек. Однако насосы такого типа плохо откачивают масло, которое может попасть в систему при её откачке форвакуумным насосом, работают медленнее диффузионных, требуют много дорогостоящего титана и очень мощных, дорогих магнитов, работа с которыми требует осторожности, но позволяют получить высокий вакуум без загрязнения маслом. По сравнению с системами, откачиваемыми диффузионными насосами, используемые в гетерионных насосах для контроля вакуума ионизационные манометрические лампы работают намного дольше.

Насосы типа ОРБИТРОН можно назвать неполноценными НОРДами. Они позволяют получать более высокий вакуум – в прогреваемых системах можно достигать 10−9 мм рт. ст. В ОРБИТРОНах используется лишь один механизм связывания остаточных газов, основанный на геттерных свойствах свеженапылённой плёнки титана. Они лучше откачивают масло, поскольку обычно для создания форвакуума в них используются криосорбционные насосы и загрязнение системы маслом меньше, чем при использовании механических форвакуумных насосов. ОРБИТРОНы имеют более высокую скорость откачки по сравнению с НОРДами. К недостаткам можно отнести высокий расход титана и низкое давление запуска, что обуславливает необходимость использования криосорбционных насосов, требующих жидкий азот.

Читайте также:  Низкое давление это суженные или расширенные сосуды

Криоадсорбционные насосы используются как средство предварительной откачки для запуска орбиронов. Главными недостатками являются необходимость использования жидкого азота и необходимость восстановления длительным вакуумным прогревом. Преимуществами считают низкое для форвакуумного насоса остаточное давление и полностью безмасляную откачку.

Указанные значения давлений ориентировочны, обычно вакуум определяется с точностью до порядка.

Методы контроля вакуума[править | править код]

Для контроля высокого вакуума неприменимы методы измерения давления из области обычных и умеренно высоких давлений. Обычные методы контроля основаны на измерении силы, а в случае даже низкого вакуума придётся иметь дело с измерением малых сил или их разностей, хотя для давлений до 10−3 мм рт. ст. это ещё возможно при применении ртутных манометров специальных конструкций. Жидкостные манометры не могут измерить давление меньше давления насыщенных паров рабочей жидкости и могут быть источником загрязнений.

Для контроля форвакуума используют термопарные манометрические лампы. Принцип их работы основан на зависимости теплоотдачи от давления. Принципиальная конструкция их достаточно проста: термопарой контролируется температура нагреваемой от источника постоянного тока (обычно меньше 150 мА). Поскольку подвод тепла постоянен, температура проволоки определяется теплоотдачей, зависящей от давления. Лампы этого типа позволяют контролировать давление форвакуума и позволяют определить давление, при котором можно запускать высоковакуумные насосы. Преимущества: возможность экспонирования на атмосферу даже во включённом состоянии. Загрязнение вакуума маслом незначительно портит лампы этого типа. Однако их использование невозможно для контроля высокого вакуума.

Для контроля высокого вакуума, в котором и производится напыление, применяются ионизационные типы манометрических ламп, у которых ионизационный ток зависит от степени вакуума. За счёт разогрева катод эмитирует электроны; благодаря напряжению между катодом и анодом электроны ускоряются и ионизируют молекулы остаточных газов. По развиваемому току можно судить о вакууме. К недостаткам этих ламп можно отнести выход из строя не только от загрязнения маслом или экспонирования работающей лампы на атмосферу, но и необходимость включения в форвакууме.

Показания ламп обоих типов зависят от многих трудно учитываемых и плоховоспроизводимых условий, однако для многих экспериментов они обеспечивают достаточную точность.

Стоит отметить, что для контроля вакуума в случае использования гетерионных насосов можно использовать их ионный ток, который связан со степенью вакуума. С допустимой в области их работы (но не в области запуска) точностью можно считать ток обратно пропорциональным давлению в насосе. Присутствующая в выражении для зависимости тока от давления константа определяется с использованием показаний ионизационных манометрических ламп. Недостатком этого метода контроля является то, что измеряется давление в насосе, – оно может значительно отличаться от давления в откачиваемой системе. Но при таком способе контроля можно значительно уменьшить износ ионизационных ламп.

Особенности создания сверхвысокого вакуума[править | править код]

Остаточное давление в системе определяется:

  1. Скоростью откачки и остаточным давлением обеспечиваемым насосами;
  2. Натеканием газа в систему.

В области высокого вакуума остаточное давление в основном определяется типом используемого насоса, однако в области сверхвысокого вакуума важной становится десорбция конструктивными элементами системы газов, абсорбированных при экспонировании на атмосферу.

Для получения сверхвысокого вакуума необходим предварительный прогрев (обезгаживание). Поскольку нагрев осуществляется до максимально возможных температур, при этом возникают:

  1. Деформация деталей системы вследствие разницы температурных коэффициентов расширения, например металла и стекла;
  2. Термическая нестабильность прокладок.

Если первый вопрос успешно решается подбором материалов с малыми, либо близкими коэффициентами температурного расширения, то нестабильность полимерных прокладок является фактором, ограничивающим температуру прогрева. При больших температурах начинается разложение прокладок и вместо обезгаживания получаем загрязнение. Одним часто используемых и из наиболее стабильных полимеров до температур порядка 300 градусов, является тефлон (фторопласт, тетрафторэтилен), однако он способен течь при приложении давления. Для работы с вакуумом выше 10-9 мм рт. ст. чаще применяются металлические прокладки, но при их использовании возникают сложности при открывании и герметизации системы. Однако для создания «рекордного» вакуума (10−11 мм рт. ст.) использование таких прокладок является единственно возможным.

Ссылки[править | править код]

  • под редакцией Л. Майссела, Р. Гленга,. Технология тонких плёнок. Справочник / пер. с англ. под редакцией М. И. Елисона, Г. Г. Смолко. — Москва «Советское радио», 1977. — Т. 1. — 664 с. — 20 000 экз.
  • В. И. Курашов, М. Г. Фомина. Вакуумная техника: средства откачки, их выбор и применение / под ред. проф. Г. Х. Мухамедзянова. — Учеб. пособие. — КГТУ, 1997. — 57 с. — ISBN 5-7882-0022-9.
Читайте также:  Спазм сосудов причины лечение

Источник

Для создания необходимого вакуума или избыточного давления в лабораторных реакционных сосудах или приборах применяют различные типы вакуум-насосов и небольших компрессоров. Вместо компрессоров часто используют газовые баллоны, из которых газ может поступать в рабочее пространство прибора или установки под давлением от 1 до 200 атм (0,1 – 20 МПа)

Иногда применяют для создания невысокого давления газа (не более 1 кПа) малогабаритные лабораторные вентиляторы и газодувки. С их устройством и основными характеристиками работы можно ознакомиться по проспектам фирм, их выпускающих.

Основные типы вакуум-насосов и их основные характеристки приведены в табл. 36.

Водоструйные насосы. Для получения разряжения, не превышаюшего 6*00 – 1300 Па (5 – 10 торр), применяют водоструйные насосы, действующие по принципу инжектора. Они могут металлическими, стеклянными и пластмассовыми.

Сосуд для создания вакуума

Водоструйные насосы работают под напором водопроводной воды, поступающей в насос через трубку 1. Вода, проходя с большой скоростью через сопло 3 (рис. 258,д-г) и диффузор 4, создает в небольшом зазоре между соплом и диффузором разряжение. Воздух вокруг зазора увлекается в направлении водяной струи и выводится вместе с водой через трубку 5 (рис. 258,а,б) наружу. Зазор между соплом и диффузором не должен быть более 0,3 мм, иначе насос не будет работать.

Для увеличения производительности применяют сдвоенные водоструйные насосы (рис. 258,а).

Сосуд для создания вакуума

Чтобы получить более глубокое разряжение, близкое к 600 Па (5 торр), соплу насоса придают винтообразную форму (рис. 258,в), благодаря которой узкая струя воды приходит в спиральное движение и, выходя из отверстия сопла 3, тотчас же расширяется в диффузоре 4, заполняя весь просвет диффузора.

В некоторых водоструйных насосах (рис. 258,г) струю воды направляют сбоку в рубашку через трубку 7, а воздух засасывается через трубку 2. Такие насосы легко захлебываются, а создаваемое ими разряжение сильно зависит от расстояния нижнего среза трубки 2 от входного отверстия диффузора.

Известны водоструйные насосы, корпус которых разделен перегородкой 6 (рис. 258,д), выполняющей функции сопла. Срез перегородки всегда находится по центру над- диффузором 4.

Трубку, через которую вода вытекает из насоса, делают достаточно широкой, чтобы не создавалось излишнего сопротивления потоку воды. В противном случае насос начинает захлебываться и неравномерно работать.

Создаваемый насосом вакуум зависит от конструкции прибора, давления и температуры воды в водопроводе. Как следует из табл. 37, предельный вакуум, создаваемый водоструйным насосом, не может превышать давление пара воды при данной температуре. Чем ниже температура протекающей через насос воды, тем большее разряжение можно получить при прочих равных условиях.

Водоструйный насос присоединяют к водопроводному крану с помощью толстостенной резиновой трубки, которую закрепляют на кране и насосе металлическими хомутами, но не проволокой, которая может разрезать резиновый шланг.

Сосуд для создания вакуума

Сосуд для создания вакуума

Рис. 259. Водоструйные насосы Ветцеля (а) и Оствальда (б). Насос Шпренгеля(в)

Чтобы проверить исправность водоструйного насоса, медленно пускают воду, а трубку 2, всасывающую воздух, закрывают влажным пальцем. Если палец присасывается быстро, то насос пригоден для работы.

Водоструйные насосы могут создавать не только вакуум, но и избыточное давление. Первую конструкцию водоструйного насоса, создающего избыточное давление, предложил Ветцель. Устройство насоса Ветцеля довольно простое. Вода поступает в насос через трубку 1 и сопло 3 и вместе с засасываемым через трубку 2 воздухом выбрасывается через отверстия грушевидного Расширения диффузора 4, погруженного в воду, и удаляется через сифон 6, а воздух выходит через боковую трубку 5 к привру, где нужно создать избыточное давление. Такой насос создает давление порядка 400 Па (3 торр).

Своеобразной воздуходувкой является прибор Оствальда, в котором нижний конец водоструйного насоса 1 введен в склянку 3 вместимостью 2 – 10 л с нижним тубусом 5 для спуска воды. При помощи крана 6 спуск воды регулируют так, чтобы при работе водоструйного насоса склянка 3 оставалась Наполненной водой примерно на 1/3. В склянке 3 паровоздушная смесь, выбрасываемая насосом, разделяется и воздух с небольшим избыточным давлением выходит через трубку 2.

Между водоструйным насосом и сосудом, из которого удд» ют воздух, должна всегда находиться предохранительная скляи ка . Для этой цели лучше всего подходит трехтубусная склянка Салюцо – Вульфа вместимостью 1 – 2 л (рис. 29). При падении давления в водопроводной сети вода и насоса начнет переливаться в предохранительную склянку, а не в вакуумированный сосуд. В склянке одна стеклянная трубка доходит почти до дна, и ее соединяют с водоструйным насосом. Другая стеклянная трубка выступает из пробки во внутреннюю часть склянки всего на 1 – 2 см. Ее соединяют с вакуумируемым сосудом, например с колбой Бунзена для фильтрования. Средний тубус склянки Салюцо – Вульфа закрывают пробкой с трубкой, имеющей кран. Если необходимо отсоединить вакуумируемый сосуд, не останавливая работу водоструйного насоса, то сначала открывают этот кран, а затем отсоединяют сосуд. После этого можно закрыть и водопроводный кран насоса. Вместо предохранительных склянок применяют иногда запорные клапаны .

Читайте также:  Заболевание сосудов что нельзя

К рассматриваемой категории насосов можно отнести и ртутно-капельный насос Шпренгеля (рис. 259,в). Он состоит из резервуара 1 с ртутью, поверхность которой покрыта небольшим слоем воды для уменьшения испарения ртути, капиллярной трубки 4 длиной около 1000 мм и приемника 5. Ртуть капает через кран 2 в капиллярную трубку 4 и капли, перекрывая трубку, стекают вниз. В образующиеся между каплями разрывы через кран 3 захватывается газ. Из приемника 5 он либо удаляется в атмосферу, либо выводится в другой сосуд. В этом случае верх приемника герметично закрыт и имеет отводную трубку.

Каждая капля ртути работает как маленький поршень, толкая газ перед собой. Иногда насос Шпренгеля называют ртутным поршневым насосом. Скорость откачки газа таким насосом, естественно, невелика. Его применяют в некоторых специальных работах.

Шпренгель Карл (1787-1859) – немецкий агрохимик, специалист по искусственным удобрениям.

Ротационные поршневые насосы применяют в основном для создания предварительного вакуума (форвакуума) перед диффузионными насосами.

В лаборатории наиболее часто используют пластинчат-роторный масляный насос (рис. 260,а). Он состоит из корпуса 2, котором выточена цилиндрическая полость 4, включающая эксцентрично вращающийся цилиндрический ротор 3, пришлифованный к внутренней стенке полости.

Сосуд для создания вакуума

По всей длине ротора его диаметру проделаны две глубокие прорези, в которых находятся металлические пластинки 5, прижимаемые спиральной

пружиной к внутренней стенке полости. Пластинки могут вдвигаться и выдвигаться и при вращении ротора скользят по поверхности цилиндра 4. Они играют роль поршней, всасывающих и выбрасывающих газ.

Корпус 2 насоса погружен в масляную баню б. Выпускной патрубок снабжен клапаном 1. Трубка 7, соединяющая насос и вакуумируемый сосуд, должна иметь предохранительный клапан , предотвращающий выброс масла при внезапной остановке насоса. За клапаном ставят ловушку Для поглощения мельчайших капелек масла, а за ловушкой помещают поглотительные склянки и колонки для извлечения из удаляемого газа или воздуха прежде всего паров воды и агрессивных примесей, затем легколетучих органических

веществ, которые попадая в масло, резко ухудшают работу насоса.

Важнейшим условием хорошей работы насоса является применение масла, указанного в паспорте к насосу.

Обычно используют компрессорное, машинное, вазелиновое и турбинное масла Они не должны быть слишком густыми в обычных условиях, иначе пуск насоса будет затруднен.

Давление пара масла, измеряемое на входе в насос, работающий “на себя”, Должно превышать для одноступенчатого насоса 5 • 104 торр (0,07 Па).

Перед заливкой в насос масло высушивают. Для этого его наливают в толстостенную сухую круглодонную колбу вместимостью 1,5 – 2,5 л на 1/3 объема.

Колбу закрывают пришлифованной стеклянной пробкой с отводной трубкой через вакуумный резиновый шланг присоединяют к действующему пластинчато-роторному насосу. После этого колбу нагревают на водяной бане. масло содержит влагу, то при нагревании оно сильно вспенивается. Отхачку водяного пара продолжают 2 – 3 ч; обезвоженное масло после охлаждения сливают в склянку с притертой пробкой для хранения перед заливкой в насос.

При откачке между колбой и насосом ставят поглотительную склянку с Р4O10 (рис. 237,в). 

Пластинчато-роторный масляный насос может при нормаль ной работе создавать вакуум порядка 0,001 торр (0,13 Па) при производительности 0,5 – 7,0 л/с. Уровень вакуума существеннo зависит от способности масла растворять воздух и другие газы

При первых признаках ухудшения работы насоса следует немедленно сменить масло, а перед этим, после слива старого масла надо промыть насос смесью, состоящей на 1/3 из свежего масла и на 2/3 из бензина. Если хорошо работавший насос после смены масла начнет очень туго проворачиваться, то либо слишком высока вязкость масла, либо низка температура в лаборатории В последнем случае для пуска насос обогревают ИК излучателями , а вначале насос проворачивают с руки, предварительно сняв текстропные ремни.

При пуске насоса в первый раз возможен выброс масла через клапан 1 (см. рис. 260,а), особенно если его было налито чересчур много. Во избежание этого на клапан надевают отрезок резинового шланга, конец которого опускают в склянку, заполненную стеклянной или полимерной ватой для задержания мелких капелек масла.

Другие части:

10.8. Получение вакуума и избыточного давления. Часть 1

10.8. Получение вакуума и избыточного давления. Часть 2

10.8. Получение вакуума и избыточного давления. Часть 3

К оглавлению

Источник