Сосуд объемом 2 л с давлением воздуха в нем 300 кпа

Решение задач по химии на основные газовые законы

Задача 28.
При 17°С некоторое количество газа занимает объем 580 мл. Какой объем займет это же количество газа при 100°С, если давление его останется неизменным?
Решение:
По закону Гей – Люссака при постоянном давлении объём газа изменяется прямо пропорционально абсолютной температуре (Т):

V2 – искомый объём газа;
T2 – соответствующая V2 температура;
V1 – начальный объём газа при соответствующей температуре Т1.

По условию задачи V1 = 580мл; Т1 = 290К (273 + 17 = 290) и Т2 = 373К (273 + 100 = 373). Подставляя эти значения в выражение закона Гей – Люссака, получим:

Ответ: V2 = 746мл.

Задача 29.
Давление газа, занимающего объем 2,5л, равно 121,6 кПа (912мм рт. ст.). Чему будет равно давление, если, не изменяя температуры, сжать газ до объема в 1л?
Решение:
Согласно закону Бойля – Мариотта, при постоянной температуре давление, производимое данной массой газа, обратно пропорционально объёму газа:

Обозначив искомое давление газа через Р2, можно записать:

Ответ: Р2 = 304кПа (2280мм.рт.ст.).

Задача 30. На сколько градусов надо нагреть газ, находящийся в закрытом сосуде при 0 °С, чтобы давление его увеличилось вдвое?
Решение:
При постоянном объёме давление газа изменяется прямо пропорционально температуре:

По условию задачи Т1 = 0 °С + 273 = 273К; давление возросло в два раза: Р2 = 2Р1.

Подставляя эти значения в уравнение, находим:

Ответ: Газ нужно нагреть на 273 0 С.

Задача 31.
При 27°С и давлении 720 мм.рт. ст. объем газа равен 5л. Кой объем займет это же количество газа при 39°С и давлении 104кПа?
Решение:
Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V — давление и объём газа при температуре Т; Р и V – давление и объём газа при нормальных условиях. Данные задачи: V = 5л; Т = 298К (273 + 25 = 298); Р = 720 мм.рт.ст. (5,99 кПа); Р = 104 кПа; Т = 312К (273 + 39 = 312); Т = 273К. Подставляя данные задачи в уравнение, получим:

Задача 32.
При 7°С давление газа в закрытом сосуде равно 96,0 кПа. Каким станет давление, если охладить сосуд до —33 °С?
Решение:
При постоянном объёме давление газа изменяется прямо пропорционально абсолютной температуре:

Обозначим искомое давление через Р2, а соответствующую ему температуру через Т2. По условию задачи Р1 = 96,0 кПа; Т1 = 280К (273 + 7 = 280); Т2 = 240К (273 – 33 = 240). Подставляя эти значения в уравнение, получим:

Ответ: Р2 = 82,3кПа.

Задача 33.
При нормальных условиях 1г воздуха занимает объем 773 мл. Какой объем займет та же масса воздуха при 0 °С и )и давлении, равном 93,3 кПа (700мм. рт. ст.)?
Решение:
Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V — давление и объём газа при температуре Т; Р и V – давление и объём газа при нормальных условиях. Данные задачи: Р = 101,325кПа; V = 773мл; Т = 298К (273 + 25 = 298); Т = 273К; Р = 93,3кПа. Подставляя данные задачи и преобразуя уравнение, получим:

Ответ: V = 769, 07 мл.

Задача 34.
Давление газа в закрытом сосуде при 12°С равно 100 кПа (750мм рт. ст.). Каким станет давление газа, если нагреть сосуд до 30°С?
Решение:
При постоянном объёме давление газа изменяется прямо пропорционально абсолютной температуре:

Обозначим искомое давление через Р2, а соответствующую ему температуру через Т2. По условию задачи Р1 = 100 кПа; Т1 = 285К (273 + 12 = 285); Т2 = 303К (273 + 30 = 303). Подставляя эти значения в уравнение, получим:

Ответ: Р2 = 106,3кПа.

Задача 35.
В стальном баллоне вместимостью 12л находится при 0°С кислород под давлением 15,2 МПа. Какой объем кислорода, находящегося при нормальных условиях можно получить из такого баллона?
Решение:
Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V — давление и объём газа при температуре Т; Р и V – давление и объём газа при нормальных условиях. Данные задачи: V = 12л; Т = 273К (273 + 0 = 2273); Р =15,2МПа); Р = 101,325кПа; Т = 298К (273 + 25 = 298). Подставляя данные задачи в уравнение, получим:

Ответ: V = 1,97м 3 .

Задача 36.
Температура азота, находящегося в стальном баллоне под давлением 12,5 МПа, равна 17°С. Предельное давление для баллона 20,3МПа. При какой температуре давление азота достигнет предельного значения?
Решение:
При постоянном объёме давление газа изменяется прямо пропорционально абсолютной температуре:

Обозначим искомое давление через Р2, а соответствующую ему температуру через Т2. По условию задачи Р1 = 12,5МПа; Т1 = 290К (273 + 17 = 290); Р2 = 20,3МПа. Подставляя эти значения в уравнение, получим:

Задача 37.
При давлении 98,7кПа и температуре 91°С некоторое количество газа занимает объем 680 мл. Найти объем газа при нормальных условиях.
Решение:
Зависимость между объёмом газа, давлением и температурой выражается общим уравнением, объединяющим законы Гей-Люссака и Бойля-Мариотта:

где Р и V — давление и объём газа при температуре Т; Р и V – давление и объём газа при нормальных условиях. Данные задачи: Р = 101,325кПа; V = 680мл; Т = 298К (273 + 25 = 298); Т = 364К (273 + 91 = 364); Р = 98,7кПа. Подставляя данные задачи и преобразуя уравнение, получим:

Ответ: V = 542,3мл.

Задача 38.
При взаимодействии 1,28г металла с водой выделилось 380 мл водорода, измеренного при 21°С и давлении 104,5кПа (784мм рт. ст.). Найти эквивалентную массу металла.
Решение:
Находим объём выделившегося водорода при нормальных условиях, используя уравнение:

где Р и V — давление и объём газа при температуре Т = 294К (273 +21 = 294); Р = 101,325кПа; Т = 273К; Р = 104,5кПа. Подставляя данные задачи в уравнение,

Согласно закону эквивалентов, массы (объёмы) реагирующих друг с другом веществ m1 и m2 пропорциональны их эквивалентным массам (объёмам):

Мольный объём любого газа при н.у. равен 22,4л. Отсюда эквивалентный объём водорода равен 22,4 : 2 = 11,2л или 11200 мл. Тогда, используя формулу закона эквивалентов, рассчитаем эквивалентную массу металла:

Ответ: mЭ(Ме) = 39,4г/моль.

Задача 39.
Как следует изменить условия, чтобы увеличение массы данного газа не привело к возрастанию его объема: а) понизить температуру; б) увеличить давление; в) нельзя подобрать условий?
Решение:
Для характеристики газа количеством вещества (n, моль) применяется уравнение РV = nRT, или — это уравнение Клапейрона-Менделеева. Оно связывает массу (m, кг); температуру (Т, К); давление (Р, Па) и объём (V, м 3 ) газа с молярной массой (М, кг/моль).

Тогда из уравнения Клапейрона-Менделеева объём газа можно рассчитать по выражению:

Отсюда следует, что V = const, если при увеличении массы (m) газа на некоторую величину будет соответственно уменьшена температура (T) системы на некоторое необходимое значение. Объём системы также не изменится при постоянной температуре, если при увеличении массы (m) газа на некоторую величину будет соответственно увеличено давление (P) системы на необходимую величину.

Читайте также:  Измерение уровня в сосудах под давлением датчики

Таким образом, при увеличении массы газа объём системы не изменится, если понизить температуру системы или же увеличить давление в ней на некоторую величину.

Ответ: а); б).

Задача 40.
Какие значения температуры и давления соответствуют нормальным условиям для газов: а) t = 25 °С, Р = 760 мм. рт. ст.; б) t = 0 °С, Р = 1,013 • 10 5 Па; в) t = 0°С, Р = 760 мм. рт. ст.?
Решение:
Состояние газа характеризуется температурой, давлением и объёмом. Если температура газа равна 0 °С (273К), а давление составляет 101325 Па (1,013 • 10 5 ) или 760 мм. рт. ст., то условия, при которых находится газ, принято считать нормальными.

Источник

Energy
education

сайт для тех, кто хочет изучать энергетику

Термодинамика и тепломассообмен

Основные законы термодинамики

Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике.

Примеры решения задач по теме «Процессы изменения состояния идеальных газов»

1. В закрытом сосуде емкостью $V = 300$ л содержится $3$ кг газа при давлении $p_1 = 8$ ат и температуре $t_1 = 20$ °C. Определить давление (ат) и удельный объем после охлаждения воздуха до $0$ °C.

2. В закрытом сосуде заключен газ при разрежении $p_1 = 6.7$ кПа и температуре $t_1 = 70$ °C. Показания барометра – $742$ мм.рт.ст. До какой температуры нужно охладить газ при том же атмосферном давлении, чтобы разрежение стало $p_2 = 13.3$ кПа?

3. В закрытом сосуде емкостью $V = 0.6$ м 3 содержится азот при давлении (абсолютном) $p_1 = 0.5$ МПа и температуре $t_1 = 20$ °C. В результате охлаждения сосуда азот, содержащийся в нем, теряет $105$ кДж. Определить, какие давление и температура устанавливаются в сосуде после охлаждения.

4. Сосуд емкостью $90$ л содержит углекислый газ при абсолютном давлении $0.8$ МПа и температуре $30$ °C. Определить количество теплоты, которое необходимо сообщить газу при $v = const$, чтобы давление поднялось до $1.6$ МПа.

5. Какое количество теплоты необходимо затратить, чтобы нагреть $2$ м 3 воздуха при постоянном избыточном давлении $p = 2$ ат от $t_1 = 120$ °C до $t_2 = 450$ °C? Какую работу при этом совершит воздух? Атмосферное давление принять равным $750$ мм.рт.ст., учесть зависимость теплоемкости от температуры.

6. В установке воздушного отопления внешний воздух при $t_1 = – 15$ °C нагревается в калорифере при $p = const$ до $60$ °C. Какое количество теплоты надо затратить для нагревания $1000$ м 3 наружного воздуха? Давление воздуха считать равным $755$ мм.рт.ст.

7. Уходящие газы котельной установки проходят через воздухоподогреватель. Начальная температура газов $t_ = 300$ °C, конечная $t_ = 160$ °C; расход газов равен $900$ кг/ч. Начальная температура воздуха составляет $t_ = 15$ °C, а расход его равен $800$ кг/ч. Определить температуру нагретого воздуха $t_$, если потери тепла в воздухоподогревателе составляет $4$ %. Средние теплоемкости для газов и воздуха принять соответственно равными $1.0467$ и $1.0048$ кДж/(кгּ К).

8. При сжигании в топке парового котла каменного угля объем продуктов сгорания составляет $V_н = 11.025$ м 3 /кг (объем при нормальных условиях, приходящийся на 1 кг топлива). Анализ продуктов сгорания показывает следующий их объемный состав: $CO = 10$ %; $O2 = 8$ %; $H2O = 10$ %; $N2 = 72$ %. Определить количество теплоты, теряемой с уходящими газами (в расчете на $1$ кг топлива), если на выходе из котла температура газов равна $180$ °C, а температура окружающей среды $20$ °C. Давление продуктов сгорания принять равным атмосферному. Учесть зависимость теплоемкости от температуры.

9. Воздух в количестве $1$ кг при температуре $t = 30$ °C и начальном давлении $p_1 = 0.1$ МПа изотермически сжимается до конечного давления $p_2 = 1$ МПа. Определить конечный объем, затрачиваемую работу изменения объема и количество теплоты, отводимой от газа.

10. Воздух в количестве $12$ кг при температуре $t = 27$ °C изотермически сжимается до тех пор, пока давление не становится равным $4$ МПа. На сжатие затрачивается работа $L = –6$ МДж. Найти начальные давление и объем, конечный объем и теплоту, отведенную от воздуха.

11. Воздух в количестве $0.5$ кг изотермически расширяется от давления $p_1 = 100$ ат до $p_2$. Определить давление $p_2$ в ат, работу изменения объема $L_$ и отведенную теплоту $Q_$, если $frac= 5$ и $t_1 = 30$ °C.

12. В идеально охлаждаемом компрессоре происходит изотермическое сжатие углекислого газа. В компрессор поступает $700$ м 3 /ч газа (приведенного к нормальным условиям) при $p_1 = 0.095$ МПа и $t_1 = 47$ °C. Давление за компрессором $p_2 = 0.8$ МПа. Найти теоретическую мощность приводного двигателя $N_0$ (кВт) и теоретический расход $M_в$ охлаждающей компрессор воды (в кг/ч), если она нагревается в системе охлаждения на $Δt = 15$ °C.

13. Воздух при температуре $t_1 = 20$ °C должен быть охлажден посредством адиабатного расширения до температуры $t_2 = –30$ °C. Конечное давление воздуха при этом должно составлять $0.1$ МПа. Определить начальное давление воздуха $p_1$ и работу расширения $1$ кг воздуха.

14. Воздух при температуре $120$ °C изотермически сжимается так, что его объем становится равным $0.25$ начального, а затем расширяется по адиабате до начального давления. Определить температуру воздуха в конце адиабатного расширения. Представить процессы расширения и сжатия в диаграммах pv и Ts.

15. При адиабатном расширении $1$ кг воздуха $K = 1.40 = сonst$ температура его падает на $100$ K. Какова полученная в процессе расширения работа и сколько теплоты следовало бы подвести к воздуху, чтобы ту же работу получить в изотермическом процессе?

16. Воздух в количестве $1$ кг политропно расширяется от $12$ до $2$ ат, причем объем его увеличился в $4$ раза; начальная температура воздуха равна $120$ °C. Определить показатель политропы, начальный и конечный объемы, конечную температуру и работу расширения.

17. При политропном сжатии $1$ кг воздуха до объема $v_2 = 0.1ּ v_1$ температура поднялась с $10$ до $90$ °C. Начальное давление равно $0.8$ бар; $R = 287$ Дж/(кгּ K). Определить показатель политропы, конечные параметры газа, работу сжатия и количество отведенной наружу теплоты.

18. Воздух в компрессоре сжимается по политропе $n = 1.25$ от $1$ до $8$ бар; начальная температура воздуха $5$ °C. После сжатия воздух проходит через холодильник, охлаждаемый холодной водой, начальная температура которой $t_1 = 10$ °C, а конечная равна $t_2 = 18$ °C. Определить часовой расход охлаждающей воды, если производительность компрессора $1000$ мн 3 /ч при нормальных физических условиях, а воздух в холодильнике изобарно охлаждается до $30$ °C.

Читайте также:  Если болят ноги как почистить сосуды

19. В воздушном двигателе воздух в количестве $1$ кг расширяется от $p_1 = 10$ ат до $p_2 = 1$ ат. Расширение может произойти изотермически, адиабатно и политропно с показателем политропы $n = 1.2$. Сравнить работы расширения и определить конечные параметры воздуха по этим трем процессам; начальная температура воздуха $t_1 = 227$ °C. Представить процессы на диаграмме pv.

20. В процессе политропного расширения воздуху сообщается $70$ кДж теплоты. Найти изменение внутренней энергии воздуха и произведенную работу, если объем воздуха увеличился в $8$ раз, а давление его уменьшилось в $10$ раз.

Администратор сайта: Колосов Михаил
email:
Copyright © 2011-2020. All rights reserved.

Источник

Источник

Пример 1.
Определите число молекул, содержащихся в 2 мм³ воды при 4°С.

Дано

Решение

V = 2·10-9 м³

T = 277 К

______________

N = ?

Число молекул определим, используя выражение

,
(1)

где ν – количество вещества, NA–число
Авогадро.

Учитывая, что ν=m/μ, где μ-молярная масса,
использовав (1), получим:

. (2)

Массу воды определим через плотность и объем : m=ρV.
Тогда формула (2) примет вид:

. (3)

Молярную массу молекулы H2O воды вычислим:

(2·1+1·16)·10-3
кг/моль=18·10-3 кг/моль.

Окончательно, из формулы (3) получаем N≈6,68·1019
.

Пример 2. Поршневой насос, объем
цилиндра которого равен 0,5л, соединен с баллоном емкостью 3л, содержащим
воздух при нормальном атмосферном давлении. Определите давление воздуха в
баллоне после 5 рабочих ходов поршня, если насос работает в режиме: а) нагнетательном,
б) разрежающем. Считать процесс изотермическим.

Дано

Решение

V1=5·10-4 м³

V2=3·10-3 м³

p0=1,013·10-3 Па

n=5

______________

pн, pр –?

а) Поршневой насос после n-рабочих
ходов в нагнетательном режиме заберет из атмосферы объем воздуха Vn=nV1
при давлении p0. Этот воздух, попадая в баллон, создает там
парциальное давление pn. Тогда, согласно закону
Бойля-Мариотта (по условию Т=const),

, отсюда . Искомое
давление воздуха в баллоне:

(1)

б) По условию задачи воздух в баллоне занимает объем V2 при давлении р0. К концу первого
хода в разрежающем режиме та же масса воздуха займет объем V2+V1 при давлении p1.
Тогда по закону Бойля-Мариотта

, отсюда

В начале второго хода поршня объем и давление газа в баллоне
соответственно равны V2 и p1, а в конце хода – (V2+V1)
и p2, тогда

,

Следовательно, к концу n-го рабочего хода:

(2)

Подставляя числовые значения в выражения (1) и (2), получим

pн=1,86·105 Па; pр=0,48·105
Па.

Пример 3. Идеальный газ находится
под давлением 250 кПа и занимает объем 2,5л при температуре 200К. Сначала газ
изохорно нагревают до температуры 400К. Затем, изотермически расширяя, газ
доводят до первоначального давления. После этого газ возвращают в начальное
состояние путем изобарного сжатия. Изобразите процесс графически на
рV-диаграмме. Определите давление p2 и объем V3.

Дано

Решение

p1=2,5·103 Па

V1=2,5·10-3 м³

Т1=200К,

Т2=400К

______________

p2 – ? V3-?

Построим график цикла:

Сосуд объемом 2 л с давлением воздуха в нем 300 кпа

При переходе газа из состояния 1 в состояние 2 осуществляется
изохорный процесс. Следовательно, по закону Шарля имеем p1/Т1=p2/Т2,
откуда

(1)

При переходе газа из состояния 3 в состояние 1 осуществляется
изобарный процесс. Тогда, согласно закону Гей-Люссака , отсюда .

Учитывая, что Т3=Т2 (точки 2 и 3
принадлежат одной изотерме), получим

. (2)

Произведем вычисления по формулам (1) и (2): p2=5·105
Па; V3= 5·10-3 м³.

Пример 4. Идеальный газ находится в
баллоне при 27°С и давлении 3·106 Па. Какой станет температура,
если из баллона будет выпущено 0,3 массы газа, а его давление понизится до
2·106 Па?

Дано

Решение

Т1=300К

p1=3·106 Па

p2=2·106 Па

k=0,3

____________________

Т2-?

Рассмотрим два состояния идеального газа. В первом состоянии
газ имеет массу m и характеризуется параметрами p1, V и T, во
втором состоянии он имеет массу и характеризуется параметрами p2,
V и Т2.

Параметры каждого из этих состояний связаны уравнением
Менделеева-Клапейрона:

,(1)

. (2)

Разделив почленно уравнение (1) на уравнение (2), имеем:

, откуда .

Произведем вычисления, получим Т2=286К

Пример 5. В закрытом сосуде объемом
2м³ находится 2г водорода и 32г кислорода при температуре 500К.
Определите: а) давление в сосуде, б) молярную массу смеси, в) плотность
смеси.

Дано

Решение

V= 2м³

Т= 500К

m1=0,002 кг

m2=0,032 кг

µ1=2·10-3кг/моль

µ2=32·10-3кг/моль

R=8,31Дж/моль·К

_______________

p-? µсм-? ρсм-?

Давление смеси определим по закону Дальтона

, (1)

где p1- давление водорода, p2-
давление кислорода.

Из уравнения Менделеева-Клапейрона:

, .(2)

С учетом (2) преобразуем выражение (1):

.(3)

Для определения молярной массы смеси используем (3) в виде

(4)

Обозначив через µсм молярную массу смеси,
запишем уравнение Менделеева-Клапейрона для смеси в виде

. (5)

Из выражений (4) и (5) получим

. (6)

Плотность смеси газов определим из:

, (7)

где m=m1+m2 – масса смеси газов. Объем смеси газов из(4):

.(8)

Решая совместно уравнения (7) и (8), получим:

.(9)

Произведем вычисления по формулам (3), (6) и (9):

р=4,2 кПа, µсм=17·10-3 кг/моль,
ρсм= 0,017кг/м³.

Пример 6. Чтобы не стать помехой
движению самолетов, олимпийский аэростат «Миша», наполненный гелием при p1=105Па
и температуре T0=300К, должен был подняться над Лужниками на высоту
h=1,5км, где плотность воздуха на 20% меньше, чем у поверхности Земли. Какова
масса M оболочки аэростата, если его объем V=500м3 (оболочку
считать герметичной и нерастяжимой).

Дано

Решение

V=500м3

p0=105Па

T0=300K

h=1.5×103м

mв=29×10-3кг/моль

mг=4×10-3кг/моль

_____________________

Mобл=?

Анализ

Предполагаем, что T =const, а V =const из условия. Условия
равновесия аэростатавыполняются на высоте h =1500м. Тогда, из закона
Архимеда:

,

где mв – масса вытесненного воздуха, mг-масса
гелия.

Решив это уравнение, ответим на вопрос задачи

Выразим mв и mг mв=rвV, где rв = 0,8rвп,
где rвп – плотность
воздуха у поверхности земли.

Тогда

, а .

Следовательно

.

Аналогично .

Тогда

.

Произведем вычисление: M=380кг.

Пример 7. Спутник погрузился в тень
Земли. При этом температура внутри спутника, равная вначале T1=300K,
упала на 1%, вследствие чего давление воздуха изменилось на величину Dp=10,5×102Па.
Определите массу воздуха в спутнике, если его объем V=10м3.

Дано

Решение

T1=300K

DT=0.01

T=3K

Dp=10,5×102Па

V=10м3

m=29×10-3кг/моль

________________

m=?

Считаем, что газ (воздух) внутри спутника является идеальным.
Запишем уравнение Менделеева – Клайперона для каждого состояния:

,(1)

,(2)

(3)

Объем V, масса m, молярная масса m газа являются постоянными. В системе трех уравнений не
известны три величины: m, p1 и р2. Следовательно,
система разрешима.

Так как температура упала, то T1=T2+DT. Вычитая из уравнения (1) уравнение (2),
получаем

.

Но p1–p2=Dp, а T1–T2=DT. Тогда приходим к уравнению:

.

Отсюда: .

Произведем вычисления: m=12кг.

Пример 8. Идеальный газ, масса
которого равна 6,1кг, занимает объем 5м3 при давлении 2∙105Па.
Определите среднюю квадратичную скорость движения молекул газа.

Дано

Решение

m=6,1кг

V=5м3

р=2∙105Па

_____________

<кв>-?

Средняя квадратичная скорость молекулы: . Из уравнения
Менделеева – Клапейрона: найдем: . Тогда .

Произведя вычисления, получим: <кв> = 700м/с

Пример 9. В баллоне находится азот
массой 4г при 300К. Определите среднюю энергию поступательного движения
молекул, находящихся в баллоне.

Читайте также:  Скипидарные ванны для сосудов

Дано

Решение

m=4г= 4•10-3кг

Т=300К

μ = 28•10-3кг/моль

________________

<Wn> – ?

Средняя энергия поступательного движения всех молекул определяется
выражением:

; (1)

где <εn> – средняя энергия поступательного
движения одной молекулы; N – число молекул, находящихся в баллоне. Известно,
что ,(2)

где k=1,38•10-23Дж/К – постоянная Больцмана, Т
– термодинамическая температура. Число N молекул найдем по формуле:

, (3)

где n- количество
вещества, NА =6,02•1023моль-1 – постоянная
Авогадро.

Известно, что

,(4)

где m – масса азота, μ = 28•10-3кг/моль –
молярная масса азота.

Выражение (1) с учетом (2), (3) и (4) примет вид:

. (5)

Произведем вычисления по формуле (5), получим:
<Wn>≈534 Дж.

Пример 10. Смесь водорода и гелия
при температуре 27˚C находится под давлением 2∙102Па.
Масса водорода составляет 60% от общей массы смеси. Определите концентрацию
молекул каждого газа.

Дано

Решение

Т=300К

р=2•102Па

k=1,38•10-23Дж/К

τ1=0,6

τ2=0,4

_______________

n1, n2 – ?

Масса каждого из газов определяется из соотношений

, , (1)

где m – масса смеси, τ1 и τ2
– массовые доли соответственно водорода и гелия.

С другой стороны, масса каждого из газов:

, .
(2)

Сравнив (1) и (2), получим:

,

, откуда

. (3)

Для смеси газов

. (4)

Из выражения (3) и (4) получим:

,. (5)

При заданном давлении водород и гелий можно считать идеальными
газами, подчиняющимися уравнению , отсюда (6). С учетом
(6) преобразуем соотношения (5):

, . (7)

Произведем вычисления: n1 ≈ 0,36•1023,
n2 ≈ 0,12•1023.

Пример 11. Определите полную энергию
и количество молекул воздуха между рамами окна, если площадь окна S=2м2,
расстояние между рамами ℓ=0,2м. Давление воздуха между рамами
атмосферное, а температура его линейно изменяется вдоль ℓ от t1=
-10˚C (t1 – температура наружного стекла) до t2=20˚C
(t2–температура внутреннего стекла).

Дано

Решение

S=2м2

ℓ=0,2м

Т1=263K

Т2=293K

________________

W-?

N-?

По условию задачи, воздух между рамами находится в неравновесном
состоянии, так как температура изменяется вдоль оси Оx (Рис.2), ее
распределение в объеме воздуха не изменяется со временем. В пределах
достаточно тонкого слоя толщиной dx, температуру можно считать постоянной и
равной Т. Тогда энергия

.(1)

Концентрации молекул в пределах этого слоя определив из
уравнения состояния:

.(2)

Тогда число dN молекул в объеме слоя:

,(3)

а их энергия

.(4)

По условию задачи температура между рамами изменяется
линейно:

,
(5)

где α – постоянная.

Решая совместно уравнения (2), (3), (5), получим:

.

Тогда

(6)

Постоянные α и Т0 найдем из граничных условий: при
х=0 Т=Т1, следовательно, Т0=Т1; при
х=ℓ, Т= Т2, следовательно,

,

отсюда

.

Тогда

.(7)

Полная энергия dW всех молекул в слое dx:

.

Тогда

.(8)

Произведем вычисления по формулам (7) и (8), учитывая, что
i=5, р=1,01•105Па, N = 1,06•1025, W = 1•105Дж.

Пример 12. Определите среднюю
кинетическую энергию, среднюю энергию вращательного и среднюю энергию
поступательного движения одной молекулы аммиака NH3 при 27˚C.

Дано

Решение

Т=300К

________________

<ε>-?

<εn>-?

<εвр>-?

Средняя полная энергия молекулы:

,(1)

где i – число степеней свободы, k =1,38•10-23Дж/К
– постоянная Больцмана, Т – термодинамическая температура.

Средняя энергия поступательного движения молекулы:

, (2)

где число 3 означает число степеней поступательного движения
молекул. Средняя энергия поступательного движения молекул:

.

Учтя, что молекула аммиака является четырехатомной, т.е.
ее число степеней свободы равно 6, получим:

,

откуда

. (3)

Произведем вычисления по формулам (1) и (3):

<ε>=1,24•10-20Дж; =6,2•10-21Дж.

Пример 13. Определите среднюю
арифметическую скорость молекул идеального газа, плотность которого при
давлении 35кПа составляет 0,3кг/м3.

Дано

Решение

р=35×103Па

ρ=0,3кг/м3

_______________

<υ>-?

Согласно уравнению молекулярно – кинетической теории
идеальных газов

,(1)

где n – концентрация молекул, m0–масса одной
молекулы, <υкв> – средняя квадратичная скорость
молекул.

Учитывая, что , а , получаем:

.(2)

Так как плотность газа , где m – масса газа, V
– его объем, N – число всех молекул газа, то уравнение (1) можно записать в
виде:

или .

Подставляя это выражение в формулу (2), находим искомую
среднюю арифметическую скорость:

.

Вычисляя, получаем: <υ> = 545 м/с.

Пример 14. Используя функцию
распределения молекул идеального газа по относительным скоростям , где , определите число
молекул, скорости которых меньше 0,002 наиболее вероятной скорости, если в
объеме газа содержится N=1,67×1024
молекул.

Дано

Решение

υmax =0,002 υв

N=1,67×1024

_______________

DN-?

Число dN(u) молекул, относительные скорости которых заключены
в пределах от u до u+du

,(1)

где N – число молекул в объеме газа.

По условию задачи, υmax=0,002υв,
то umax= υmax/υв=0,002.

Так как u<1, то e-u² ≈ 1-u2. Пренебрегая
u2<1, выражение (1) можно записать в виде:

.(2)

Проинтегрировав выражение (2) по u в пределах от 0 до umax,
найдем

.

Вычисляя, получаем ∆N=1016 молекул.

Пример 15. Средняя длина
<ℓ> свободного пробега молекулы углекислого газа при нормальных
атмосферных условиях равна 40 нм. Определите среднюю арифметическую скорость
<υ> молекул и среднее число <z> соударений, которые испытывает
молекула в 1 секунду.

Дано

Решение

<ℓ> = 40×10-9м

_______________

<υ>-?, <z>-?

Средняя арифметическая скорость молекул определяется по
формуле:

,(1)

где μ- молярная масса вещества.

Среднее число соударений молекулы в 1 секунду равно отношению
средней скорости <υ> молекулы к средней длине <ℓ> ее
свободного пробега:

.(2)

Произведем вычисления по формулам (1) и (2):
<υ>=362м/с, <z>=9,05·109с-1.

Пример 16. Барометр в кабине
летящего самолета все время показывает одинаковое давление р=79кПа, благодаря
чему летчик считает высоту h1 полета неизменной. Однако температура
воздуха за бортом изменилась с t=5˚C до t=1˚C. Какую ошибку
∆h в определении высоты допустил летчик? Давление р0 у
поверхности Земли считать нормальным.

Дано

Решение

р=79 ×103Па

t1=5˚C,

Т1=278К

t2=1˚C,

Т2=274К

_____________

∆h – ?

Для решения задачи воспользуемся барометрической формулой:

.

Барометр может показывать одинаковое давление р при изменении
температуры за бортом от Т1 до Т2 только в том случае,
если самолет изменяет высоту полета от h1 (которую летчик считает
неизменной), до некоторой другой h2. Запишем барометрическую формулу
для этих двух случаев:

Найдем отношение р0/р и обе части полученного
равенства прологарифмируем:

;

.

Из полученных соотношений выразим высоты h2 и h1
и найдем их разность:

.(1)

Подставим в выражение (1) значения величин (давления в отношении
р0/р можно выразить в килопаскалях, это не повлияет на окончательный
результат): ∆h=-28,5 м. Знак “–“ означает, что h2<h1
и, следовательно, самолет спустился на 28,5 метров по сравнению с предполагаемой высотой.

Пример 17. Определите, во сколько
раз отличаются коэффициенты диффузии азота (μ1=28·10-3кг/моль)
и углекислого газа (μ2=44·10-3кг/моль), если оба
газа находятся при одинаковых температуре и давлении. Эффективные диаметры
молекул этих газов считать одинаковыми.

Дано

Решение

μ1=28·10-3кг/моль

μ2=44·10-3кг/моль

________________

D1/D2-?

Коэффициент диффузии газа

,(1)

где – средняя арифметическая
скорость его молекул, – средняя длина свободного
пробега молекул. Поскольку p=nkT,
из условия задачи (p1=p2, Т1=Т2)
следует, что n1=n2. Подставив значения
<υ>,<ℓ> в формулу (1) и учитывая условие задачи,
найдем Вычисляя, получим D1/D2=1,25.

Источник