Сосуд погруженный в жидкость отверстие

4. Статика и механические колебания

1. Вспоминай формулы по каждой теме

2. Решай новые задачи каждый день

3. Вдумчиво разбирай решения

Закон Архимеда

На погружённое в жидкость или газ тело действует выталкивающая сила, и равная весу среды, объём которой равен объёму тела.

Выталкивающая сила (сила Архимеда) равна

[F_A=rho_text{ж} g V_text{пчт}] где (displaystyle V_text{пчт}) — объём погружённой части тела, (displaystyle rho_text{ж}) — плотность жидкости.

Плавание тел

Рассмотрим тело плотности (rho) и жидкость плотности (rho_0). Допустим, тело полностью погрузили в жидкость и отпустили. Сразу после отпускания на тело действуют лишь сила тяжести (mg) и архимедова сила (F_A). Если объём тела равен V, то

[mg=rho g V,] [F_A=rho_0 g V]

Имеются три возможности дальнейшего движения тела.

Сила тяжести больше архимедовой силы: (displaystyle mg > F_A), или (displaystyle rho>rho_0). В этом случае тело тонет.

Сила тяжести равна архимедовой силе: (displaystyle mg = F_A), или (displaystyle rho=rho_0). В этом случае тело остаётся неподвижным в состоянии безразличного равновесия.

Сила тяжести меньше архимедовой силы: (displaystyle mg < F_A), или (displaystyle rho<rho_0). В этом случае тело всплывает, достигая поверхности жидкости.

Таким образом, условие плавания тела можно записать в виде неравенства (displaystyle rholeq rho_0).

Два жестко связанные друг с другом одинаковых бруска, имеющие толщину (h=5) см, плавают в воде так, что уровень воды приходится на границу между ними (см. рисунок). Насколько изменится глубина погружения, если на два бруска положить ещё пять таких же? (Ответ дайте в сантиметрах.) Сосуд погруженный в жидкость отверстие

Два одинаковых связанных бруска погрузились наполовину в воду (из условия). Пусть
(displaystylerho_1) – плотность материала, из которого изготовлены бруски, а (displaystyle V) – объем двух брусков. Тогда масса этих брусков будет равна [displaystyle m=rho_1V] Сила, с которой льдинки действуют на воду, равна силе тяжести [displaystyle F=mg=rho_1Vg] Сила, с которой бруски выталкиваются из воды, равна силе Архимеда [F_text{Арх}=rho gfrac{V}2,] где (displaystyle rho) – плотность воды, (displaystyle frac{V}2) – объем погруженного в воду тела (бруски погружены только
наполовину). Так как они плавают на поверхности воды, то эти силы уравновешивают друг друга, значит, имеем: [rho_1Vg=rho gfrac{V}2,] откуда (displaystyle rho_1=dfrac{rho}2,) то есть плотность материала, из которого сделаны бруски в 2 раза меньше плотности воды. Это говорит о том, что если взять семь брусков, то они также будут погружены наполовину, то есть на величину [frac72h=3,5cdot5text{ см}=17,5 text{ см}.] Глубина увеличится на (displaystyle 17,5 -5=12,5) см.

Ответ: 12,5

Подвешенный на нити алюминиевый кубик целиком погружен в воду и не касается дна сосуда. Плотность алюминия равна (displaystyle rho_text{ ал}=2700 text{ кг}/text{м}^3. ) Какова длина ребра куба, если выталкивающая сила равна (displaystyle F_text{Арх}=33,75text{ Н}?) (Ответ дайте в сантиметрах.)

Выталкивающая сила равна по определению [F_text{Арх}=rho_text{в} gV,] где (displaystyle rho_text{в}) – плотность жидкости, в которую погружен кубик, (displaystyle V) – объем погруженной части тела. Так как куб погружен целиком, то (displaystyle V=a^3), получим: [F_text{Арх}=rho_text{в} ga^3] Выразив из этой формулы сторону (displaystyle a), получаем [a=sqrt[3]{frac{F_text{Арх}}{rho_text{в}g }}] Подставив значения в формулу, получим: [a=sqrt[3]{frac{33,75text{ Н}}{10text{ м}/{c^2}cdot1000text{ кг}/text{м}^3}}=0,15text{ м}=15text{ cм }]

Ответ: 15

Однородный цилиндр, изготовленный из материала плотностью (displaystyle rho=600) кг/м(^3), с радиусом основания (displaystyle R=25) см и высотой (displaystyle H=20) см привязан нитью ко дну сосуда, наполненного водой. Найдите силу натяжения нити. (Ответ дайте в ньютонах.)

Сосуд погруженный в жидкость отверстие

Сосуд погруженный в жидкость отверстие
Сделаем рисунок с указанием сил, действующих в системе. Можем записать II закон Ньютона в векторной форме: [vec T+vec F_text{Арх}+mvec g=mvec a,] так как цилиндр покоится, то ускорение равно нулю, в проекции на ось, направленную вертикально вниз, 2 закон Ньютона можно записать следующим образом: [T- F_text{Арх}+mg=0, quad(1)] массу цилиндра можно рассчитать, исходя из формулы (displaystyle rho=frac {m}{V} Rightarrow m=rho V,) где V – объем цилиндра, который можно вычислить по формуле [V=pi R^2 H] Из формулы (1) выразим силу натяжения нити T:[T=F_text{Арх}-mg=rho_text{в}gV-rho gV=Vg(rho_text{в}-rho)=pi R^2 Hg(rho_text{в}-rho),] где (displaystyle rho_text{в}) – плотность воды, подставим в получившееся выражение численные значения:[T=3,14cdot0,25^2text{ м}cdot0,2text{ м}cdot 10text{ м}/text{с}^2 cdot (1000text{ кг}/text{м}^3-600text{ кг}/text{м}^3)=157text{ Н }]

Читайте также:  Укрепление сосудов носа бокс

Ответ: 157

Однородный кубический предмет с ребром (displaystyle a=18) см опускают в эфир. На сколько сантиметров длина части стороны, находящейся под жидкостью отличается от длины части над эфиром? Плотность вещества, из которого изготовлен куб равна (displaystyle rho_text{др}=340) кг/м(^3), плотность эфира (displaystyle rho_text{э}=720) кг/м(^3). (Ответ дайте в сантиметрах.)

Запишем условие равновесия кубика на поверхности эфира: [F_text{ Арх}=mg, quad(1)] где (F_text{ Арх}) – выталкивающая сила, действующая на брусок, (displaystyle m) – масса кубика, которую можно рассчитать, исходя из формулы (displaystyle rho_text{др}=frac {m}{V} Rightarrow m=rho_text{др} V,) где V – объем кубика, который можно вычислить по формуле [V=a^3.] Выталкивающая сила равна: [F_text{ Арх}=rho_text{э}gV_text{пчт},] где (displaystyle V_text{пчт}) – объем погруженной части кубика,[V_text{пчт}=xa^2,] где (displaystyle x) – длина части стороны, находящейся под эфиром, значит, выражение (1) можно записать в следующем виде: [rho_text{э}gxa^2=rho_text{др}a^3] [rho_text{э}x=rho_text{др}a, text{ выразим } x=frac{rho_text{др}a}{rho_text{э}}.] Пусть (displaystyle y) – длина части стороны, находящейся над эфиром, можем записать: [y=a-x,] искомая разница длин (displaystyle delta=y-x=a-2x=a-2cdot dfrac{rho_text{др}a}{rho_text{э}}=a(1-2cdot dfrac{rho_text{др}}{rho_text{э}})) подставим в получившееся выражение численные значения: [displaystyle delta=0,18text{ м}(1-2cdot dfrac{340text{ кг}/text{м}^3}{720text{ кг}/text{м}^3})=0,01text{ м}=1text{ см}]

Ответ: 1

В некий резервуар было налито 1000 литров жидкости плотностью (displaystyle rho_1=1500) кг/м(^3). В этой жидкости в равновесии плавает кубик, погруженный в воду на (displaystyle x=130) см. Длина стороны кубика равна (displaystyle a=200) см. В сосуд доливают ещё 1000 литров жидкости плотностью (displaystyle rho_2=1100) кг/м(^3) и перемешивают. Чему после этого будет равна длина погруженной части кубика при плавании в равновесии? Обе жидкости хорошо смешиваются, и при смешивании суммарный объём сохраняется. (Ответ дайте в метрах.)

В условии сказано, что жидкости хорошо перемешиваются. Из этого следует, что при смешивании получается новая жидкость, плотность которой является средним арифметическим изначальных, так как взятые объемы одинаковы. [rho_text{нов}=dfrac{rho_1+rho_2}{2}] Так как кубик плавает на поверхности, то можно записать: [mg=F_text{Арх},] сила тяжести, действующая на тело не изменяется, значит, выталкивающая сила тоже остается постоянной. Сначала сила Архимеда равна:[F_text{Арх1}=rho_1 g V_text{пчт1},] где (displaystyle V_text{пчт1}=a^2x) – объем погруженной части куба до смешивания. После смешения жидкостей в сосуде: [F_text{Арх2}=rho_text{нов} g V_text{пчт2}=dfrac{rho_1+rho_2}{2}g V_text{пчт2},]где (displaystyle V_text{пчт2}=a^2y) – объем погруженной части куба до смешивания, (displaystyle y) – длина погруженной части стороны куба после смешивания жидкостей. Можем приравнять получившиеся выражения, получим [rho_1 g a^2x=dfrac{rho_1+rho_2}{2} g a^2y] [rho_1x=dfrac{rho_1+rho_2}{2}y,] выразим отсюда y: [y=frac{2rho_1 x}{rho_1+rho_2},] подставим в получившееся выражение численные значения: [y=frac{2cdot1500text{ кг}/text{м}^3 cdot1,3text{ м}}{1500text{ кг}/text{м}^3+1100text{ кг}/text{м}^3}=1,5text{ м}]

Ответ: 1,5

Стеклянный шарик опускается в воде с ускорением (displaystyle a=6) м/с(^2). Найти плотность стекла. Плотность воды (displaystyle rho_text{в}=1000) кг/м(^3). Силами вязкого трения пренебречь. (Ответ дайте в кг/м(^3).)

Сосуд погруженный в жидкость отверстие
При движении шарика в воде на него действует сила тяжести (displaystyle mvec g) и сила Архимеда (displaystyle F_text{Арх}). Сделаем рисунок с указанием сил, действующих в системе. Можем записать 2 закон Ньютона в векторной форме: [vec F_text{Арх}+mvec g=mvec a,] в проекции на ось, направленную вертикально вниз, 2 закон Ньютона можно записать следующим образом: [mg- F_text{Арх}=ma,] Отсюда с учетом выражения для силы Архимеда (displaystyle F_text{Арх}=rho_text{в} g V), где V – объем шарика, а
(displaystyle rho_text{в}) – плотность воды, получим: [mg- rho_text{в} g V=ma,] Выразим массу шарика:[m=frac{rho_text{в} g V}{g-a}.] Исходя из формулы, плотность стекла равна [displaystyle rho_text{ст}=frac {m}{V}=frac{rho_text{в} g V}{(g-a)V}=frac{rho_text{в} g }{g-a},] подставим в получившееся выражение численные значения: [rho_text{ст}=frac{1000 text{ кг}/text{м}^3cdot 10text{ м}/text{с}^2 }{10text{ м}/text{с}^2-6text{ м}/text{с}^2}=2500text{ кг}/text{м}^3]

Читайте также:  Что значит гипоплазия сосудов

Ответ: 2500

Однородный шарик, изготовленный из материала плотностью (displaystyle rho=2000) кг/м(^3) погружен в воду. Чему равен радиус шара, если выталкивающая сила равна
(displaystyle F_text{Арх}=100) Н? (Ответ дайте в сантиметрах и округлите до целых.)

Выталкивающая сила равна по определению [F_text{Арх}=rho_text{в} gV_text{пчт},] где (displaystyle rho_text{в}) – плотность воды, (displaystyle V_text{пчт}) – объем погруженной части тела. Так как шар полностью опущен в воду, то [V_text{пчт}=frac43pi R^3,] где (displaystyle R) – радиус шара, получим: [F_text{Арх}=rho_text{в} gfrac43pi R^3, (1)] выразим из формулы R: [R=sqrt[3]{frac{3F_text{Арх}}{4rho_text{в}gpi}}] Подставив значения в формулу, получим: [R=sqrt[3]{frac{3 cdot100text{ Н}} {4 cdot1000 text{ кг}/text{м}^3cdot10text{ м}/{c^2}cdot3,14}} approx0,13text{ м}=13text{ см }]

Ответ: 13

Источник

На поверхность твердого тела, погруженного в жидкость, действуют, как мы знаем, силы давления. Так как давление увеличивается с глубиной погружения, то силы давления, действующие на нижнюю часть тела и направленные вверх, больше, чем силы, действующие на верхнюю его часть и направленные вниз, и мы можем ожидать, что равнодействующая сил давления будет направлена вверх. Опыт подтверждает это предположение.

Сосуд погруженный в жидкость отверстие


Рис. 258. Если груз погружен в воду, показание динамометра уменьшается

Сосуд погруженный в жидкость отверстие


Рис. 259. Пробка, погруженная в воду, натягивает нитку

Если, например, гирю, подвешенную к крючку динамометра, опустить в воду, то показание динамометра уменьшится (рис. 258).

Равнодействующая сил давления на тело, погруженное в жидкость, называется выталкивающей силой. Выталкивающая сила может быть больше силы тяжести, действующей на тело; например, кусок пробки, привязанный к дну сосуда, наполненного водой, стремясь всплыть, натягивает нитку (рис. 259). Выталкивающая сила возникает и в случае частичного погружения тела. Кусок дерева, плавающий на поверхности воды, не тонет именно благодаря наличию выталкивающей силы, направленной вверх.

Если тело, погруженное в жидкость, предоставить самому себе, то оно тонет, остается в равновесии или всплывает на поверхность жидкости в зависимости от того, меньше ли выталкивающая сила силы тяжести, действующей на тело, равна ей или больше ее. Выталкивающая сила зависит от рода жидкости, в которую, погружено тело. Например, кусок железа тонет в воде, но плавает в ртути; значит, в воде выталкивающая сила, действующая на этот кусок меньше, а в ртути — больше силы тяжести.

Найдем выталкивающую силу, действующую на твердое тело, погруженное в жидкость.

Сосуд погруженный в жидкость отверстие


Рис. 260. а) Тело находится в жидкости, б) Тело заменено жидкостью

Выталкивающая сила, действующая на тело (рис. 260 а), есть равнодействующая сил давления жидкости на его поверхность. Представим себе, что тело удалено и его место занято той же жидкостью (рис. 260, б). Давление на поверхность такого мысленно выделенного объёма будет таким же, каким было давление на поверхность самого тела. Значит, и равнодействующая сила давления на тело (выталкивающая сила) равна равнодействующей сил давления на выделенный объем жидкости. Но выделенный объем жидкости находится в равновесии. Силы, действующие на него, — это сила тяжести

 и выталкивающая сила

 (рис. 261, а). Значит, выталкивающая сила равна по модулю силе тяжести, действующей на выделенный объем жидкости, и направлена вверх. Точкой приложения этой силы должен быть центр тяжести выделенного объема. В противном случае равновесие нарушилось бы, так как сила тяжести и выталкивающая сила образовали бы пару сил (рис. 261, б). Но, как уже сказано, выталкивающая сила для выделенного объема совпадает с выталкивающей силой тела. Мы приходим, таким образом, к закону Архимеда:

Выталкивающая сила, действующая на тело, погруженное в жидкость, равна по модулю силе тяжести, действующей на жидкость в объеме, занимаемом телом (вытесненный объем), направлена вертикально вверх и приложена в центре тяжести этого объема. Центр тяжести вытесненного объема называют центром давления.

Сосуд погруженный в жидкость отверстие


Рис. 261. а) Равнодействующая сил давления на поверхность погруженного тела равна силе тяжести, действующей на жидкость, объем которой равен объему тела, б) Если бы точка приложения равнодействующей силы не совпадала с центром тяжести вытесненного объема жидкости, то получилась бы пара сил и равновесие этого объема было бы невозможным

Для тела, имеющего простую форму, можно вычислить выталкивающую силу, рассмотрев силы давления на его поверхность. Пусть, например, тело, погруженное в жидкость, имеет форму прямого параллелепипеда и расположено так, что две его противолежащие грани горизонтальны (рис. 262). Площадь его основания обозначим через

Читайте также:  Пучок света идущий в стеклянном сосуде

, высоту — через

, а расстояние от поверхности до верхней грани — через

.

Равнодействующая сил давления жидкости составляется из сил давления на боковую поверхность параллелепипеда и на его основания. Силы действующие на боковые грани, взаимно уничтожаются, так как для противолежащих граней силы давления равны по модулю и противоположны по направлению. Давление на верхнее основание равно

, на нижнее основание равно

. Следовательно, силы давления на верхнее и на нижнее основания равны соответственно

,

причем сила

 направлена вниз, а сила

 — вверх. Таким образом, равнодействующая

 всех сил давления на поверхность параллелепипеда (выталкивающая сила) равна разности модулей сил

 и

:

,

и направлена вертикально вверх. Но

 — это объем параллелепипеда, а

 — масса вытесненной телом жидкости. Значит, выталкивающая сила действительно равна по модулю силе тяжести, действующей на вытесненный объем жидкости.

Сосуд погруженный в жидкость отверстие


Рис. 262. К вычислению выталкивающей силы

Сосуд погруженный в жидкость отверстие


Рис. 263. Опытная проверка закона Архимеда при помощи «ведерка Архимеда»

Если тело, подвешенное к чашке весов, погрузить в жидкость, то весы показывают разность между весом тела и выталкивающей силой, т. е. весом вытесненной жидкости. Поэтому закону Архимеда придают иногда следующую формулировку: тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость.

Для иллюстрации справедливости этого вывода сделаем следующий опыт (рис. 263): пустое ведерко

 («ведерко Архимеда») и сплошной цилиндр

, имеющий объем, в точности равный вместимости ведерка, подвесим к динамометру. Затем, подставив сосуд с водой, погрузим цилиндр в воду; равновесие нарушится, и растяжение динамометра уменьшится. Если теперь наполнить ведерко водой, то динамометр снова растянется до прежней длины. Потеря в весе цилиндра как раз равна весу воды в объеме цилиндра.

По закону равенства действия и противодействия выталкивающей силе, с которой жидкость действует на погруженное тело, соответствует сила, с которой тело действует на жидкость. Эта сила направлена вертикально вниз и равна весу жидкости, вытесненной телом. Следующий опыт демонстрирует сказанное (рис. 264). Неполный стакан с водой уравновешивают на весах. Затем в стакан погружают тело, подвешенное на штативе; при этом чашка со стаканом опускается, и для восстановления равновесия приходится добавить на другую чашку гирю, вес которой равен весу воды, вытесненной телом.

Сосуд погруженный в жидкость отверстие


Рис. 264. Вес гири, которую нужно положить на левую чашку весов, равен весу воды, вытесненной телом

160.1.
Найдите выталкивающую силу, действующую на погруженный в воду камень массы 3 кг, если его плотность равна

.

160.2.
Куб с ребром 100 мм погружен в сосуд, наполненный водой, поверх которой налит керосин так, что линия раздела обеих жидкостей проходит посередине ребра куба. Найдите выталкивающую силу, действующую на куб. Плотность керосина равна

.

160.3
. Кусок пробки массы 10 г, обмотанный медной проволокой с поперечным сечением

, остается в равновесии в воде, не погружаясь и не всплывая (табл. 1). Найдите длину проволоки.

160.4.
Что произойдет с весами, находящимися в равновесии, если в стакане с водой, стоящий на чашке весов, погрузить палец, не прикасаясь пальцем ни к дну, ни к стенкам стакана?

160.5.
К чашкам весов подвешены на нитках кусок меди и кусок железа массы 500 г каждый (табл. 1). Нарушится ли равновесие, если медь погрузить в воду, а железо — в керосин плотности

. Гирю какой массы и на какую чашку весов нужно поставить, чтобы восстановить равновесие?

Источник