Сосуд разделен перегородкой на две части объемом
Автор
Тема: Теплоизолированный сосуд разделён пористой перегородкой на две части (Прочитано 32599 раз)
0 Пользователей и 1 Гость просматривают эту тему.
Помогите, пожалуйста, решить две задачи:
1. Теплоизолированный сосуд объёмом 2 куб.м разделён пористой перегородкой на две равные части. Атомы гелия могут свободно проникать через поры в перегородке, а атомы аргона – нет. В начальный момент в одной части сосуда находится 1 кг гелия, а в другой – 1 кг аргона, а средняя квадратичная скорость атомов аргона равна скорости атомов гелия и составляет 500 м/с. Определите внутреннюю энергию гелий-аргоновой смеси после установления равновесия в системе.
2. Теплоизолированный сосуд объёмом 2 куб.м разделён пористой перегородкой на две равные части. Атомы гелия могут свободно проникать через поры в перегородке, а атомы аргона – нет. В начальный момент в одной части сосуда находится гелий массой 1 кг, а в другой – аргон массой 1 кг. Средняя квадратичная скорость атомов аргона равна скорости атомов гелия и составляет 500 м/с. Определите внутреннюю энергию газа, оставшегося в той части сосуда, где первоначально находился гелий, после установления равновесия в системе.
И ещё вопрос по форуму: многие решённые задачи содержат ссылки на рисунки, которых нигде нет. Как их найти?
« Последнее редактирование: 18 Марта 2012, 18:23 от alsak »
Записан
И ещё вопрос по форуму: многие решённые задачи содержат ссылки на рисунки, которых нигде нет. Как их найти?
Их искать не надо. Зайдите на форум под своим именем (ником) и все увидите.
Записан
Решение: наиболее рациональный способ решения задачи – энергетический. Для начала определим количество вещества в сосуде:
ν = νHe + νAr = m/MHe + m/MAr.
Здесь: молярная масса гелия: MHe = 4г/моль, молярная масса аргона: MAr = 40 г/моль. После установления равновесия в системе гелий равномерно распределится по всему объёму сосуда. В результате в той части сосуда, где первоначально находился аргон, окажется смесь гелия и аргона, количество молей вещества в получившейся смеси будет равно:
ν1 = νHe /2 + νAr = m/2MHe + m/MAr,
В другой части сосуда останется только гелий, и число молей будет:
ν2 = νHe /2 = m/2MHe,
Аргон и гелий будем считать идеальными газами. Внутренняя энергия идеального газа, это суммарная средняя кинетическая энергия движения всех его молекул.
[ U={{E}_{He}}+{{E}_{Ar}}=2cdot frac{mcdot {{upsilon }^{2}}}{2}=mcdot {{upsilon }^{2}}, ]
Здесь: E – средняя кинетическая энергия движения всех молекул газа, m =1 кг – масса газа, υ = 500 м/с – средняя квадратичная скорость молекул. После установления равновесия, согласно закона сохранения энергии, суммарная энергия системы не изменится (система замкнута, т.к. сосуд теплоизолирован). При этом внутренняя энергия пропорциональна количеству молекул (количеству вещества) в каждой из частей сосуда. Другими словами – полная энергия системы Uразделится пропорционально количеству вещества в каждой из частей сосуда. Для первой части, содержащей смесь гелия и аргона, получим:
[ {{U}_{1}}=frac{{{nu }_{1}}}{nu }cdot U, ]
Для второй части сосуда, содержащей только гелий:
[ {{U}_{2}}=frac{{{nu }_{2}}}{nu }cdot U, ]
После подстановки определённых ранее количеств вещества и преобразований, получим:
[ {{U}_{1}}=frac{left( 2{{M}_{He}}+{{M}_{Ar}} right)}{2left( {{M}_{He}}+{{M}_{Ar}} right)}cdot m{{upsilon }^{2}}, ]
[ {{U}_{2}}=frac{{{M}_{Ar}}}{2left( {{M}_{He}}+{{M}_{Ar}} right)}cdot m{{upsilon }^{2}}. ]
Ответ: U1 = 1,36∙105 Дж, U2 = 1,14∙105 Дж.
Записан
Записан
Посидел, поразмышлял и, сложилось, впечатление, что представленное Вами решение первой из указанных задач не совсем верно. Мне кажется, что без сложных вычислений можно получить следующее:
Известно, что скорости всех частиц газов были равны 500 м/с, а общая масса газов равна 2 кг, следовательно, внутренняя энергия, которая является суммой кинетических энергий молекул газа, будет равна U=[2 кг*(500 м/с) в квадрате]/2=2,5*10 в 5-ой степени Дж.
Или я не прав?
Записан
Известно, что скорости всех частиц газов были равны 500 м/с, а общая масса газов равна 2 кг, следовательно, внутренняя энергия, которая является суммой кинетических энергий молекул газа, будет равна U=[2 кг*(500 м/с) в квадрате]/2=2,5*10 в 5-ой степени Дж.
Или я не прав?
Это полная энергия системы (в этом смысле Вы правы), но…
по условию тебовалось найти внутренюю энергию газа в 1-й части сосуда и во 2-й части.
Полная энергия и разделится пропорционально количеству вещества.
Записан
Так в первой задаче и требуется найти полную энергию…
Записан
Читайте внимательно решение. Перегородка пропускает только гелий!
После установления равновесия в системе гелий равномерно распределится по всему объёму сосуда. В результате в той части сосуда, где первоначально находился аргон, окажется смесь гелия и аргона,
В другой части сосуда останется только гелий
Записан
Источник
2017-05-27
Теплоизолированный сосуд, разделенный на две неравные части ($V_{1} = 2 л, V_{2} = 3 л$), наполнен идеальным газом. В первой части газ находится под давлением $p_{1} = 10^{5} Па$ при температуре $t_{1} = 27^{ circ} С$, во второй части — под давлением $p_{2} = 5 cdot 10^{5} Па$ и той же температуре (рис.). Найти изменение энтропии всей системы после удаления перегородки и установления равновесного состояния. Изменится ли ответ, если в объемах $V_{1}$ и $V_{2}$ находятся разные газы?
Решение:
Рассматриваемая система изолирована — теплообмен не происходит, внешние силы не действуют. После удаления перегородки начнется заведомо необратимый самопроизвольный процесс, в результате которого во всем сосуде будет находиться однородный газ под некоторым давлением $p_{0}$, причем $p_{1}
Энтропия системы в результате этого необратимого процесса увеличивается. Изменение ее определяется только начальным и конечным состояниями системы. Чтобы найти это изменение, надо представить себе любой обратимый процесс, переводящий данную систему из начального состояния в конечное.
Представим себе, что сосуды разделены поршнем, который перемещается до тех пор, пока давление с обеих его сторон не станет одинаковым и равным $p_{0}$ (газ в левой части сосуда сжимается, в правой расширяется). Чтобы процесс был изотермическим и обратимым, во-первых, должна быть нарушена теплоизоляция сосуда: газ в левой части сосуда должен отдавать теплоту, в правой — получать. Во-вторых, Рис. 63 поршень должен двигаться медленно, следовательно, на него должна действовать внешняя сила, компенсирующая результирующую силу давления газов.
После выравнивания давлений обе части газа окажутся в одинаковых равновесных состояниях; поэтому если убрать перегородку (поршень), то энтропия системы не изменится. Следовательно, искомое изменение энтропии системы равно сумме изменений энтропии каждой части газа в отдельности при описанном изотермическом перемещении поршня:
$Delta S = Delta S_{1} + Delta S_{2} = int_{p_{1}}^{ p_{0}} frac{ delta Q}{T} + int_{p_{2}}^{p_{0}} frac{ delta Q}{T}$. (1)
При изотермическом процессе
$delta Q_{T} = delta A_{T} = pdV = – V dp$.
[Последнее из равенств следует из того, что $d(pV) = 0$ при $pV = const$.] Тогда из уравнения (1)
$Delta S = frac{1}{T_{1}} left ( int_{p_{0}}^{p_{1}} Vdp + int_{p_{0}}^{p_{2}} Vdp right )$.
Выражая в интегралах текущий объем $V$ из уравнений изотермических процессов, записанных для начального и текущего состояний, получим
$Delta S = frac{1}{T_{1}} left ( int_{p_{0}}^{p_{1}} frac{p_{1}V_{1}}{p} dp + int_{p_{0}}^{p_{2}} frac{p_{2}V_{2}}{p} dp right ) = frac{1}{T_{1}} left ( p_{1}V_{1} ln frac{p_{1}}{p_{0}} + p_{2}V_{2} ln frac{p_{2}}{p_{0}} right )$. (2)
Давление $p_{0}$ может быть найдено из уравнений изотермических процессов для каждой части газа:
$p_{1}V_{1} = p_{0}V_{1}^{ prime}, p_{2}V_{2} = p_{0}V_{2}^{ prime}$, (3)
где $V_{1}^{ prime}$ и $V_{2}^{ prime}$ — объемы каждой части газа после выравнивания давлений, причем $V_{1}^{ prime} + V_{2}^{ prime} = V_{1} + V_{2}$. Тогда почленное сложение уравнений (3) дает
$p_{1}V_{1} + p_{2}V_{2} = p_{0}(V_{1} + V_{2})$,
откуда
$p_{0} = frac{p_{1}V_{1} + p_{2}V_{2}}{V_{1} + V_{2}}$. (4)
Подставив выражение (4) в (2), находим
$Delta = frac{1}{T_{1}} left [ p_{1}V_{1} ln frac{p_{1}(V_{1} + V_{2})}{p_{1}V_{1} + p_{2}V_{2}} + p_{2}V_{2} ln frac{p_{2}(V_{1} + V_{2})}{p_{1}V_{1} + p_{2}V_{2}} right ]= 1,1 Дж/К$.
Если бы в объемах $V_{1}$ и $V_{2}$ находились разные газы, то после удаления перегородки, даже при условии, что по обе ее стороны газы находятся под одинаковым давлением $p_{0}$, начнется необратимый самопроизвольный процесс диффузии, который приведет к выравниванию концентраций каждого из газов во всем объеме сосуда. Очевидно, что в процессе диффузии энтропия будет возрастать. Следовательно, в этом случае полное изменение энтропии системы больше значения, найденного ранее.
Чтобы рассчитать изменение энтропии в процессе диффузии, надо заменить реальный необратимый процесс таким воображаемым обратимым процессом, который приведет систему в то же самое конечное состояние. Такой процесс может быть осуществлен только с помощью полупроницаемых перегородок, т. е. перегородок, проницаемых для молекул одного газа и непроницаемых для молекул другого газа.
Источник
Презентация на тему: ” Анализ и решение задачи по теме: «Явление осмоса в газах». Сосуд вместимостью 100л разделен полупроницаемой перегородкой на две равные части. В одной половине.” — Транскрипт:
1
Анализ и решение задачи по теме: «Явление осмоса в газах». Сосуд вместимостью 100л разделен полупроницаемой перегородкой на две равные части. В одной половине сосуда находиться водород массой 2г, в другой азот в количестве 1 моль. Определить давление по обе стороны от перегородки, если она может пропускать только водород. Температура в обоих половинах одинакова и равна 127ºС. Температура не меняется.
2
«Явление осмоса в газах» P 1 -? P 2 -? V=100·10 -3 м 3 m 1 = 2·10 -3 кг = 1моль T=( )K M 1 =2·10 -3 кг/моль T=( )K Подсказка 1 Подсказка2 Решение
3
«Явление осмоса в газах» Закон Дальтона Если в сосуде находится смесь газов, то каждый из них вносит свой вклад в общее давление. Парциальным давлением называют давление одного из газов при условии, что все остальные удалены из сосуда. Экспериментально установленный закон Дальтона утверждает : давление в смеси химически невзаимодействующих газов равно сумме их парциальных давлений P=P 1 +P 2 +…+P n При этом парциальное давление каждого из газов подчиняется в случае достаточно разреженных газов уравнению состояния идеального газа: где V – объем смеси, T – абсолютная температура, m 1 и m 2 – массы различных газов в смеси, а M 1 и M 2 – их молярные массы. Примером газовой смеси является воздух, состоящий из азота, кислорода, углекислого газа и других газов. Начало
4
«Явление осмоса в газах» Полупроницаемая мембрана Иллюстрацией закона Дальтона может служить процесс диффузии газа через полупроницаемую перегородку (мембрану). Пусть в начальный момент два разных газа занимают две половины сосуда, разделенные полупроницаемой мембраной. Температуры обоих газов и их начальные давления одинаковы. Мембрана полностью непроницаема для одного из газов и частично прозрачна для другого. В процессе диффузии газа через полупроницаемую перегородку давление в одной половине сосуда возрастает в соответствии с законом Дальтона, а в другой – падает. Это явление носит название осмоса. Начало
5
«Явление осмоса в газах» В начальный момент времени газы оказывают давление на стенки сосудов в соответствии с формулами: P 1 -? P 2 -? V=100·10 -3 м 3 m 1 = 2·10 -3 кг = 1моль T=( )K M 1 =2·10 -3 кг/моль
6
«Явление осмоса в газах» P 1 -? P 2 -? V=100·10 -3 м 3 m 1 = 2·10 -3 кг = 1моль T=( )K M 1 =2·10 -3 кг/моль После проникновения молекул водорода через мембрану и равномерное их распределение по всему объему давление в левом сосуде равно: Давление азота в правом сосуде:
7
«Явление осмоса в газах» P 1 -? P 2 -? V=100·10 -3 м 3 m 1 = 2·10 -3 кг = 1моль T=( )K M 1 =2·10 -3 кг/моль Таким образом в левом сосуде давление водорода равно: А в правом сосуде давление равно сумме парциальных давлений азота и водорода
Источник