Сосуд разделен пополам полупроницаемой перегородкой

Сосуд разделен пополам полупроницаемой перегородкой thumbnail

Учебник по физике
10 класс

   
   

Задачи на применение газовых законов очень разнообразны. Для их решения нельзя указать какой-либо один определенный прием. Полезными могут оказаться следующие советы.

  1. Если согласно условию задачи один из трех параметров (р, V или Т) постоянный, то при Т = const надо применять закон Бойля—Мариотта (3.5.2), при р = const — закон Гей-Люссака (3.7.7), а при V = const — закон Шарля (3.10.2) или (3.10.3).
  1. Если изменяются все три параметра, то следует воспользоваться уравнением состояния в форме (3.9.9) или (3.9.5).

    Уравнение состояния (3.9.9) применяется в тех случаях, когда известна масса газа и часть макроскопических параметров в определенном состоянии газа и надо найти неизвестные величины.

  2. Для определения давления смеси газов, не вступающих в химические реакции, используют закон Дальтона (3.8.2).
  3. Во многих задачах требуется построение графиков, изображающих разного рода процессы. Для этого нужно знать зависимость параметров друг от друга, которая в общем случае дается уравнением состояния, а в частных — газовыми законами.
  4. При решении большинства задач надо четко представлять себе, каково начальное состояние системы и какой процесс переводит его в конечное состояние.

Задача 1

Как измерить медицинским термометром температуру тела человека, если температура окружающего воздуха +42 °С?

Решение. Можно предварительно охладить термометр в холодильнике. Если холодильника нет, то нужно подержать термометр 5—8 мин под мышкой, извлечь его и сразу же стряхнуть. Термометр покажет температуру тела, так как ртуть в термометре сожмется при контакте с телом до объема, соответствующего температуре тела.

Задача 2

Газ в цилиндрическом сосуде разделен на две равные части подвижным поршнем, имеющим массу m и площадь сечения S. При горизонтальном положении цилиндра давление газа в каждой половине сосуда равно р. Определите давление р1 газа над поршнем при вертикальном положении цилиндра. Температуру газа считать постоянной.

Решение. При горизонтальном положении цилиндра объем каждой его части обозначим через V (эти объемы равны). При вертикальном положении цилиндра объем верхней части станет равным V + ΔV, а нижней V – ΔV. Давление в нижней части цилиндра станет равным Сосуд разделен пополам полупроницаемой перегородкой. Согласно закону Бойля— Мариотта

Сосуд разделен пополам полупроницаемой перегородкой

Исключив из этих равенств Сосуд разделен пополам полупроницаемой перегородкой, получим квадратное уравнение для p1:

Сосуд разделен пополам полупроницаемой перегородкой

Отсюда

Сосуд разделен пополам полупроницаемой перегородкой

Второй корень квадратного уравнения отрицателен и потому лишен физического смысла.

Задача 3

Поршневой насос при каждом качании захватывает воздух объемом V0. При откачке этим насосом воздуха из сосуда объемом V насос совершил п качаний. Затем другой насос с тем же рабочим объемом V0 начал нагнетать воздух из атмосферы в тот же сосуд, совершив также п качаний. Какое давление установится в сосуде? Температуру воздуха во время работы насоса считать постоянной.

Решение. Согласно закону Бойля—Мариотта при откачке воздуха из сосуда после первого качания давление в сосуде станет равным Сосуд разделен пополам полупроницаемой перегородкой, где p0— атмосферное давление.

После второго качания будет выполняться равенство p1V = p2(V + V0) и, следовательно, Сосуд разделен пополам полупроницаемой перегородкой и т.д. После n качаний в сосуде установится давление Сосуд разделен пополам полупроницаемой перегородкой

При нагнетании воздуха в сосуд после n качаний давление станет равным

Сосуд разделен пополам полупроницаемой перегородкой

При любом n р > р0, так как во время нагнетания воздуха при каждом качании насос захватывает воздух, имеющий атмосферное давление р0, а при откачке при каждом качании удаляется воздух при давлении, меньшем р0.

Задача 4

В запаянной с обоих концов цилиндрической трубке находится воздух при нормальных условиях. Трубка разделена подвижным поршнем на две части, объемы которых V1 и V2 относятся как 1 : 2. До какой температуры t1 следует нагреть воздух в меньшей части трубки и до какой t2 охладить в большей, чтобы поршень делил трубку на две равные части, если нагревание и охлаждение в обеих частях трубки производятся при условии Сосуд разделен пополам полупроницаемой перегородкой = const?

Решение. Условие Сосуд разделен пополам полупроницаемой перегородкой = const означает, что процессы нагревания и охлаждения происходят изобарно. При отношении начальных объемов Сосуд разделен пополам полупроницаемой перегородкой эти объемы составляют Сосуд разделен пополам полупроницаемой перегородкой и Сосуд разделен пополам полупроницаемой перегородкой, где V0 — объем всей трубки. Конечные объемы обеих частей одинаковы и равны Сосуд разделен пополам полупроницаемой перегородкой.

Согласно закону Гей-Люссака для воздуха в меньшей части трубки выполняется соотношение

Сосуд разделен пополам полупроницаемой перегородкой

а для воздуха в большей части

Сосуд разделен пополам полупроницаемой перегородкой

где Т0 = 273 К — температура, соответствующая начальным условиям. Отсюда

Сосуд разделен пополам полупроницаемой перегородкой

Задача 5

В цилиндре под поршнем находится воздух при давлении p1 = 2 • 105 Па и температуре t1 = 27 °С. Определите массу m груза, который нужно положить на поршень после нагревания воздуха до температуры t2 = 50 °С, чтобы объем воздуха в цилиндре стал равен первоначальному. Площадь поршня S = 30 см2.

Решение. Так как в процессе нагревания объем воздуха в цилиндре не изменяется, то согласно закону Шарля имеем

Сосуд разделен пополам полупроницаемой перегородкой

где

Сосуд разделен пополам полупроницаемой перегородкой

Подставляя в (3.12.1) выражение для р2, получим

Сосуд разделен пополам полупроницаемой перегородкой

Отсюда

Сосуд разделен пополам полупроницаемой перегородкой

Задача 6

Найдите среднюю (эффективную) молярную массу сухого атмосферного воздуха, предполагая известный процентный состав воздуха по массе: азот — n1 = 75,52%, кислород — n2 = 23,15%, аргон — n3 = 1,28% и углекислый газ — n4 = 0,05%.

Решение. Для каждого газа можно записать уравнение состояния:

Сосуд разделен пополам полупроницаемой перегородкой

Здесь M1, M2, M3 и M4 — молярные массы соответственно азота, кислорода, аргона и углекислого газа.

Складывая правые и левые части этих уравнений, получим

Сосуд разделен пополам полупроницаемой перегородкой

Для смеси газов выполняется соотношение

Сосуд разделен пополам полупроницаемой перегородкой

где m = m1 + m2 + m3 + m4 — масса воздуха с объемом V, а М — искомая эффективная молярная масса. Согласно закону Дальтона

p = p1 + p2 + p3 + p4.

Сравнивая уравнения состояния (3.12.2) и (3.12.3), получим

Сосуд разделен пополам полупроницаемой перегородкой

Разделив числитель и знаменатель на m и умножив на 100%, получим выражение для М через процентный состав воздуха по массе

Сосуд разделен пополам полупроницаемой перегородкой

Задача 7

Закрытый с обоих концов цилиндр наполнен газом при давлении p = 100 кПа и температуре t = 30 °С и разделен подвижным теплонепроницаемым поршнем на две равные части длиной L по 50 см. На какую величину ΔT нужно повысить температуру газа в одной половине цилиндра, чтобы поршень сместился на расстояние l = 20 см, если во второй половине цилиндра температура не изменяется? Определите давление газа после смещения поршня.

Решение. Для газа в части цилиндра с постоянной температурой применим закон Бойля—Мариотта:

Сосуд разделен пополам полупроницаемой перегородкой

где S — площадь основания цилиндра. Для нагреваемой части цилиндра запишем уравнение Клапейрона:

Читайте также:  Чем лечить бляшки на сосудах народные средства

Сосуд разделен пополам полупроницаемой перегородкой

В уравнениях (3.12.4) и (3.12.5) р1 — давление газа после смещения поршня, одинаковое в обеих частях цилиндра вследствие равновесия поршня, а Т + ΔT в уравнении (3.12.5) — температура газа в нагретой части цилиндра.

Разделив почленно уравнение (3.12.4) на уравнение (3.12.5), получим

Сосуд разделен пополам полупроницаемой перегородкой

Отсюда

Сосуд разделен пополам полупроницаемой перегородкой

Из уравнения (3.12.4) находим p1:

Сосуд разделен пополам полупроницаемой перегородкой

Задача 8

Сосуд объемом V = 100 л разделен пополам полупроницаемой перегородкой. В начальный момент времени в одной половине сосуда находился водород, масса которого m1 = 2 г, а во второй — 1 моль азота. Определите давления, установившиеся по обе стороны перегородки, если она может пропускать только водород. Температура в обеих половинах одинакова и постоянна: t = 127 °С.

Решение. Так как водород свободно проходит через перегородку, то он распространяется по всему сосуду. Запишем уравнение Менделеева—Клапейрона для водорода после установления состояния равновесия:

Сосуд разделен пополам полупроницаемой перегородкой

где М1 = 2 • 10-3 кг/моль — молярная масса водорода.

В той части сосуда, в которой вначале был только водород, он и в дальнейшем останется в чистом виде, так что давление в этой части сосуда станет равным

Сосуд разделен пополам полупроницаемой перегородкой

Для азота уравнение Менделеева—Клапейрона имеет вид

Сосуд разделен пополам полупроницаемой перегородкой

где р2 — давление азота.

Так как в этой половине находятся водород и азот, то полное давление р согласно закону Дальтона складывается из парциальных давлений р1 и р2, т. е.

Сосуд разделен пополам полупроницаемой перегородкой

Задача 9

Гелий массой 20 г, заключенный в теплоизолированном цилиндре под поршнем, медленно переводится из состояния 1 с объемом V1 = 32 л и давлением р1 = 4,1 атм в состояние 2 с объемом V2 = 9 л и давлением р2 = 15,5 атм. Какой наибольшей температуры достигнет газ при этом процессе, если на графике зависимости давления газа от объема процесс изображается прямой линией (рис. 3.18)?

Сосуд разделен пополам полупроницаемой перегородкой

Рис. 3.18

Решение. Как следует из рисунка 3.18, давление и объем газа связаны линейной зависимостью: р = aV + b, где а и b — постоянные коэффициенты. Из условий задачи получаем систему уравнений

Сосуд разделен пополам полупроницаемой перегородкой

Решив эту систему относительно а и b, найдем

Сосуд разделен пополам полупроницаемой перегородкой

Подставив в уравнение Менделеева—Клапейрона вместо р выражение aV + b, получим

Сосуд разделен пополам полупроницаемой перегородкой

График зависимости Т от V представляет собой параболу (рис. 3.19).

Сосуд разделен пополам полупроницаемой перегородкой

Рис. 3.19

Кривая достигает максимума при Vmax = Сосуд разделен пополам полупроницаемой перегородкой = 20 л, когда корни квадратного уравнения (3.12.6) совпадают. При этом

Сосуд разделен пополам полупроницаемой перегородкой

Следовательно,

Сосуд разделен пополам полупроницаемой перегородкой

Задача 10

На рисунке 3.20 изображен график изменения состояния идеального газа в координатах р, V. Начертите графики этого процесса в координатах V, Т и р, Т.

Сосуд разделен пополам полупроницаемой перегородкой

Рис. 3.20

Решение. Из рисунка 3.20 следует, что давление газа р и его объем V находятся в прямой пропорциональной зависимости

Сосуд разделен пополам полупроницаемой перегородкой

где k — постоянный коэффициент. Подставив значение давления (3.12.7) в уравнение Менделеева— Клапейрона, получим

Сосуд разделен пополам полупроницаемой перегородкой

или

Сосуд разделен пополам полупроницаемой перегородкой

Уравнение (3.12.8) — это уравнение параболы, ось симметрии которой совпадает с осью Т. Следовательно, в координатах V, Т искомый график имеет вид, показанный на рисунке 3.21, а. Аналогично получим график этого процесса в координатах p, T (рис. 3.21, б).

Сосуд разделен пополам полупроницаемой перегородкой

Рис. 3.21

Упражнение 2

  1. Вы надули щеки. При этом и давление, и объем воздуха во рту увеличиваются. Как это согласуется с законом Бойля— Мариотта?
  2. Чтобы измерить температуру человеческого тела, приходится держать термометр под мышкой в течение 5—8 мин. В то же время стряхнуть его можно практически сразу после измерения температуры. Почему?
  3. Узкая вертикальная трубка длиной L, закрытая с одного конца, содержит воздух, отделенный от наружного воздуха столбиком ртути длиной h. Плотность ртути равна ρ. Трубка расположена открытым концом вверх. Какова была длина l столбика воздуха в трубке, если при перевертывании трубки открытым концом вниз из трубки вылилась половина ртути? Атмосферное давление равно р0.
  4. В ртутный барометр попал пузырек воздуха, вследствие чего барометр показывает давление меньше истинного. При давлении р1 = 768 мм рт. ст. уровень ртути расположен на высоте h1 = 748 мм, причем длина пустой части трубки l = 80 мм. Каково атмосферное давление р2, если ртуть стоит на высоте h2 = 734 мм? Плотность ртути ρ = 1,36 • 104 кг/м3.
  5. Площадь сечения цилиндра автомобильного насоса S = 10 см2. Определите длину l цилиндра, если известно, что для накачки шины объемом V = 0,02 м3 от давления р0 = 1 • 105 Па до давления р = 3 • 105 Па требуется совершить n = 100 качаний. Утечкой и нагреванием воздуха пренебречь.
  6. В цилиндре под поршнем находится воздух. Поршень имеет форму, показанную на рисунке 3.22. Масса поршня m = 6 кг, площадь сечения цилиндра S = 20 см2. Атмосферное давление р0 = 105 Па. Найдите массу m1 груза, который надо положить на поршень, чтобы объем V1 воздуха в цилиндре уменьшился в 2 раза. Трение не учитывать. Температура постоянна.

    Сосуд разделен пополам полупроницаемой перегородкой

    Рис. 3.22

  7. Газ нагрет от температуры t1 = 27 °С до температуры t2 = 39 °С. На сколько процентов увеличился его объем, если давление осталось неизменным?
  8. Вертикальный цилиндр, закрытый подвижным поршнем, содержит газ массой m — 0,012 кг. При температуре t1 = = 177 °С объем газа равен V1 = 4 л. При какой температуре t2 плотность этого газа будет равна ρ2 = 5,3 кг/м3?
  9. Открытую стеклянную колбу, имеющую форму шара радиусом r = 2 см с горлышком длиной l = 10 см и диаметром d = 1 см, нагрели до температуры t1, а затем погрузили целиком в воду горлышком вниз. При охлаждении колбы вода вошла в горлышко. Когда температура колбы стала равной t2 = 13 °С, ее начали приподнимать из воды, не переворачивая, так чтобы шарообразная часть оказалась над водой, а горлышко — частично погруженным в воду. При этом, когда уровень воды в горлышке и в сосуде совпал, под водой осталась половина горлышка. Какова была температура t1, до которой нагрели колбу?
  10. Манометр на баллоне с газом в помещении с температурой t1 = 17 °С показывает давление р = 240 кПа. На улице показание манометра уменьшилось на Δр = 40 кПа. Найдите температуру наружного воздуха, если атмосферное давление р0 = 100 кПа.
  11. Два сосуда одинаковой вместимости содержат воздух, один при температуре Т1 и давлении р1, другой при температуре T2 и давлении р2. Сосуды соединили тонкой трубкой и после выравнивания давлений и температур воздух нагрели до температуры Т. Какое давление установится после нагревания?
  12. Шар-зонд заполнен газом при температуре t1 = 27 °С до давления р1 = 105 кПа. После подъема шара на высоту, где давление р0 = 80 кПа, объем шара увеличился на n = 5% и давление в нем стало отличаться от внешнего на Δр = 5 кПа. Определите температуру воздуха на этой высоте, предполагая, что газ в шаре приобрел температуру окружающего воздуха.
  13. Из баллона со сжатым углекислым газом из-за неисправности вентиля вытекает газ. Вместимость баллона V = 10 л. При температуре Т1 = 263 К манометр показывал давление р1 = 9,3 атм, а через некоторое время при температуре Т2 = 295 К манометр показывал давление р2 = = 9,4 атм. Чему равна масса m газа, вытекшего из баллона за это время?
  14. Газ последовательно переводится из состояния 1 с температурой T1 в состояние 2 с температурой Т2, а затем в состояние 3 с температурой T3 и возвращается в состояние 1. Определите температуру T3, если процессы изменения состояния происходили так, как это показано на графике (рис. 3.23), а температуры Т1 и Т2 известны.

    Сосуд разделен пополам полупроницаемой перегородкой

    Рис. 3.23

  15. В баллоне вместимостью V — 10 л содержится водород при температуре t = 20 °С под давлением р = 107 Па. Какая масса водорода была выпущена из баллона, если при полном сгорании оставшегося газа образовалось m = 50 г воды?
  16. В баллоне вместимостью V = 10 л находился гелий под давлением р1 = 10 атм при температуре t1 = 27 °С. После того как из баллона был выпущен газ массой m = 10 г, температура в баллоне была понижена до t2 = 17 °С. Определите давление гелия, оставшегося в баллоне.
  17. Молекулярный водород некоторой массы занимает объем V1 = 1 м3 при температуре Т1 = 250 К и давлении р1 = 2 • 105Па. Какое давление водород будет создавать при температуре T2 = 5000 К и объеме V2 = 10 м3, если при столь высокой температуре молекулы водорода полностью диссоциируют на атомы?
  1. Два сосуда объемом V1 = 200 см3 и V2 = 100 см3, наполненные кислородом при температуре t = 27 °С под давлением p0 = 760 мм рт. ст., соединены трубкой, внутри которой находится теплоизолирующая пористая перегородка, обеспечивающая одинаковость давлений в сосудах. Затем первый сосуд нагрели до температуры t1 = 100 °С, а второй охладили до температуры t2 — 0 °С. Определите установившееся в системе давление.
  2. Изобразите на графиках в координатах р, V; р, Т и V, Т изотермический процесс для одного моля газа при Т = Т1 и Т = 2Т1.
  3. Изобразите на графиках в координатах р, V; р, Т и V, T изобарный процесс: 1) для р =р1 и p = 2p1, если v = 1 моль; 2) для р = р1, если v = 3 моль.
  4. На рисунке 3.24 показан график изменения состояния идеального газа в координатах р, V. Представьте этот процесс на графиках в координатах V, Ти р, Т.

    Сосуд разделен пополам полупроницаемой перегородкой

    Рис. 3.24

Читайте также:  В сосуде под поршнем находится газ

Сосуд разделен пополам полупроницаемой перегородкой

Источник

В данной работе предлагается определенный подход к классификации и способам решения задач на газовые законы. Такой подход позволит быстро сориентироваться в большом количестве задач на свойства газов и применить к ним те или иные приемы решения.

Основные теоретические сведения

Состояние газа характеризуется совокупностью трех физических величин или термодинамических параметров:объемом газа V, давлением Р и температурой Т. Состояние газа, при котором эти параметры остаются постоянными считают равновесным состоянием.В этом состоянии параметры газа связаны между собой уравнением состояния. Самый простой вид уравнение состояния имеет для идеального газа. Идеальным газом называют газ, молекулы которого не имеют размеров (материальные точки) и взаимодействуют друг с другом лишь при  абсолютно упругих соударениях (отсутствует межмолекулярное притяжение и отталкивание). Реальные газы тем точнее подчиняются законам идеальных газов, чем меньше размеры их молекул (т.е. газ одноатомный),  и чем больше он разряжен.

Уравнение состояния идеального газа или уравнение Менделеева-Клапейрона имеет вид:         
– универсальная газовая постоянная

Из этого закона вытекает, что для двух произвольных состояний газа справедливо равенство, называемое уравнением Клапейрона:

Так же для идеальных газов имеют место следующие экспериментальные законы:

Закон Бойля — Мариотта:

Закон Гей-Люссака:
Закон Шарля:
Если в сосуде находится смесь нескольких газов, не вступающих друг с другом в химические реакции, то результирующее давление определяется по закону Дальтона: давление смеси равно сумме давлений, производимых каждым газом в отдельности, как если бы он один занимал весь сосуд.

Р = Р1 + Р2 +… + РN

Задачи, решение которых основывается на данных уравнениях, можно разделить на две группы:

§ задачи на применение уравнения Менделеева-Клапейрона.

  • задачи на газовые законы.

ЗАДАЧИ НА ПРИМЕНЕНИЕ УРАВНЕНИЯ МЕНДЕЛЕЕВА-КЛАПЕЙРОНА.

Уравнение Менделеева-Клапейрона применяют тогда, когда

I. дано только одно состояние газа изадана масса газа (или вместо массы используют количество вещества или плотность газа).

II. масса газа не задана, но она меняется, то есть утечка газа или накачка.

При решении задач на применение равнения состояния идеального газа надо помнить:

1.если дана смесь газов, то уравнение Менделеева-Клапейрона записывают для каждого компонента в отдельности.Связь между парциальными давлениями газов, входящих в смесь и результирующим давлением смеси, устанавливается законом Дальтона.

2.если газ меняет свои термодинамические параметры или массу, уравнение Менделеева-Клапейрона записывают для каждого состояния газа в отдельности и полученную систему уравнений решают относительно искомой величины.

P.S.

§ Необходимо пользоваться только абсолютной температурой и сразу же переводить значения температуры по шкале Цельсия в значения по шкале Кельвина.

§ В задачах, где рассматривается движение сосуда с газом (пузырька воздуха, воздушного шара) к уравнению газового состояния добавляют уравнения механики.

§ если между газами происходит реакция, то надо составить уравнение реакции и определить продукты реакции

ПЕРВЫЙ ТИП ЗАДАЧ: НЕТ ИЗМЕНЕНИЯ МАССЫ

Определить давление кислорода в баллоне объемом V = 1 м3  при температуре t=27 °С. Масса кислорода m = 0,2 кг.

V = 1 м3
μ = 0,032кг/моль
m = 0,2 кг
t=27 °С

Т=300К

Записываем уравнение Менделеева-Клапейрона и находим из него давление, производимое газом:

Р-?
Читайте также:  Народные средства чистки сосудов

Баллон емкостью V= 12 л содержит углекислый газ. Давление газа Р = 1 МПа, температура Т = 300 К. Определить массу газа.

V = 12 л
μ =0,044кг/моль
Т=300К
Р =1 МПа

0,012м3

1∙106Па

Записываем уравнение Менделеева-Клапейрона и находим массу газа

m -?

При температуре Т = 309 К и давлении Р = 0,7 МПа плотность газа ρ = 12 кг/м3. Определить молярную массу газа.

V = 12 л
Т=309К
Р =0,7 МПа
ρ = 12 кг/м3

0,012м3

0,7∙106Па

Записываем уравнение Менделеева-Клапейрона

Так как масса газа может быть определена через плотность газа и его объем имеем:

μ -?

Отсюда находим молярную массу газа:

Какова плотность водорода при нормальном атмосферном давлении и температуре 20°С.

V = 12 л
t=20°C
Р =105 Па
μ =0,002кг/моль

0,012м3

T=293К

Нормальное атмосферное давление – это давление, равное 105 Па. И эту информацию запишем как данные задачи. Записываем уравнение Менделеева-Клапейрона

ρ -?

Так как масса газа может быть определена через плотность газа и его объем имеем:

Отсюда находим плотность газа:

До какой температуры Т1 надо нагреть кислород, чтобы его плотность стала равна плотности водорода при том же давлении ,но при температуре Т2 = 200 К?

Т2=200К
ρ1 = ρ2
μ1 =0,032кг/моль
μ2 =0,002кг/моль

Записываем уравнение Менделеева-Клапейрона для кислорода и для водорода через плотности газов:

Так как по условию давление у двух газов одинаковое, то можно приравнять правые части данных уравнений:

Сократим на R и на плотность ρ (по условию плотности газов равны) и найдем Т1

Т1 -?            
 

В сосуде объемом 4·10-3 м3 находится 0,012 кг газа при температуре 177°С. При какой температуре плотность этого газа будет равна 6·10-6 кг /см3, если давление газа остается неизменным.

Смесь газов

В баллоне объемом 25 литров находится 20г азота и 2 г гелия при 301К. Найдите давление в баллоне.

Определить плотность смеси, состоящей из 4 граммов водорода и 32 граммов кислорода при давлении 7°С и давлении 93кПа?

Сосуд емкостью 2V разделен пополам полупроницаемой перегородкой. В одной половине находится водород массой mВ  и азот массой mА. В другой половине вакуум. Во время процесса поддерживается постоянная температура Т. Через перегородку может диффундировать только водород. Какое давление установиться в обеих частях сосуда?

μа
m1 = m2 = m3 = m
μв
μк
Т

отсек №1   отсек №2 отсек №3

Диффундирует только водород. Следовательно, после завершения установочных процессов, в отсеке I будет водород, массой на

РI-?
РII-?

половину меньшей, чем была, и весь азот. А во втором отсеке только половина массы водорода. Тогда для первого отсека установившееся давление равно:

Для отсека II можно так же определить установившееся давление:

Вакуумированный сосуд разделен перегородками на три равных отсека, каждый объемом V. В средний отсек ввели одинаковые массы кислорода, азота и водорода. В результате чего давление в этом отсеке стало равно Р. Перегородка I проницаема только для молекул водорода, перегородка II проницаема для молекул всех газов. Найти давления Р1 Р2 и Р3, установившиеся в каждом отсеке, если температура газа поддерживается постоянной и равной Т.

μа
m1 = m2 = m3 = m
μв
μк
Р

отсек №1  отсек №2 отсек №3

После диффундирования газов через перегородки в первом отсеке окажется треть массы водорода. Во втором и в третьем отсеках будет треть водорода, половина массы кислорода и половина всей массы азота. Тогда для первого отсека установившееся давление равно:

Р1-?
Р2-?
Р3-?

Если до диффундирования первоначальное давление во втором отсеке было Р, то можно записать:

Отсюда можно найти

Находим выражение для давления во втором и в третьем отсеках

И тогда давление в первом отсеке равно:

С химическими реакциями

В сосуде находится смесь азота и водорода. При температуре Т, когда азот полностью диссоциирован на атомы, давление равно Р (диссоциацией водорода можно пренебречь). При температуре 2Т, когда оба газа полностью диссоциированы, давление в сосуде 3Р. Каково отношение масс азота и водорода в смеси?

μа
μв
Т1 =Т
Т2 =2Т
Р1=Р
Р2=3Р

mв μвmа
Т             Т
Рв                Ра
 

При температуре Т параметры газов в сосуде следующие:

И результирующее давление в сосуде по закону Дальтона равно:

2Т             2Т
Р’в                Р’а
 

При температуре 2Т параметры газов в сосуде следующие:

И результирующее давление в сосуде по закону Дальтона равно:

В герметично закрытом сосуде находится 1 моль неона и 2 моля водорода. При температуре Т1=300К, когда весь водород молекулярный, атмосферное давление в сосуде Р1=105 Па. При температуре Т2=3000К давление возросло до Р2=1,5∙105 Па. Какая часть молекул водорода диссоциировала на атомы?

ν1=1 моль
ν2=2 моль
Т1 =300К
Т2 =3000К
Р1=105 Па
Р2=1,5∙105 Па

При температуре Т1 давление газа в сосуде складывается из парциальных давлений двух газов и равно:

При температуре Т2 давление газа равно:

Из уравнения (1):

Из первого находим объем V:

В закрытом баллоне находится смесь из m1= 0,50 г водорода и m2 = 8,0 г кислорода при давлении Р1= 2,35∙105 Па. Между газами происходит реакция с образованием водяного пара. Какое давление Р установится в баллоне после охлаждения до первоначальной температуры? Конденсации пара не происходит.

V = 25 л
μ1 = 2г/моль
m1 = 0,5 г
μ2 = 32г/моль
m2 = 8 г
В сосуде будет происходить реакция водорода с кислородом с образованием воды:

 

Р-? Из уравнения реакции видно, что если в реакцию вступит весь водород, то кислорода только половина

В результате образуется ν3=0,25 молей водяного пара и останется ν4= 0,125молей кислорода.

По закону Дальтона результирующее давление в сосуде равно сумме парциальных давлений

Так как известно, что до реакции давление в сосуде было Р1, то для этого момента можно так же применить закон Дальтона:

Решаем полученные уравнение в системе относительно неизвестного:

Дата добавления: 2018-04-04; просмотров: 3410;

Источник