Сосуд с постоянным сечением

Можаев В. Задачи с жидкостями //Квант. — 2006. — № 1. — С. 40-43.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

В этой статье будут рассмотрены задачи, в которых жидкость, с одной стороны, является средой, где находятся твердые тела, а с другой стороны, она, как жидкий элемент, участвует в движении, подобно твердому телу. Наиболее сложными являются комбинированные задачи, в которых жидкость движется вместе с находящимся в ней твердым телом (например, разобранная ниже задача 6).

Перейдем к обсуждению конкретных задач.

Задача 1. В цилиндрический сосуд с водой опустили кусок льда, в который вморожен осколок стекла. При этом уровень воды в сосуде поднялся на h = 11 мм, а лед остался на плаву, целиком погрузившись в воду. На сколько опустится уровень воды в сосуде после того, как весь лед растает? Плотность воды ρв = 1 г/см3, плотность льда ρл = 0,9 г/см3, стекла ρст = 2,0 г/см3

Обозначим первоначальный объем льда через Vл, а объем стекла — через Vст. Когда кусок льда полностью погрузился в воду, он вытеснил объем воды, равный

Очевидно, что этот же объем равен

где S — площадь поперечного сечения сосуда.

Теперь запишем условие плавания куска льда с вмороженным осколком стекла — суммарная сила тяжести льда и стекла равна выталкивающей силе:

Из совместного решения полученных уравнений найдем объемы льда и стекла:

Из растаявшего льда образовалась вода объемом

Поскольку кусок стекла остается в воде, понижение уровня воды в сосуде за время таяния льда будет равно

Задача 2. В вертикально расположенной трубке — с открытым верхним концом, с постоянным внутренним сечением и длиной 3L = 1080 мм — столбиком ртути длиной L заперт слой воздуха такой же длины. Какой длины столб ртути останется в трубке, если ее перевернуть открытым концом вниз? Внешнее давление p0 = 774 мм рт. ст.

Обозначим давление воздуха под ртутным столбиком в исходном положении трубки через p1. Тогда условие равновесия столбика ртути длиной L запишется в виде

где ρ – плотность ртути. Предположим, что после переворота трубки и установления первоначальной температуры часть ртути выльется. Обозначим через h длину столбика оставшейся в трубке ртути. Новое условие равновесия будет иметь вид

где p2 – новое давление воздуха над ртутным столбиком.

Условие сохранения количества изолированного воздуха позволяет записать

Подставляя сюда p1 из первого равенства, а p2 – из второго, получим уравнение относительно h:

или, если записать атмосферное давление в виде , где H0 = 774 мм:

Для данных численных значений L и H0 (в мм) получается, что

h = 270 мм.

Задача 3. U–образная трубка расположена вертикально и заполнена жидкостью. Один конец трубки открыт в атмосферу, а другой конец соединен с сосудом объемом V0 = 0,1 л, заполненным гелием (рис. 1). Объем всей трубки равен объему этого сосуда. В некоторый момент гелий начинают медленно нагревать. Какое минимальное количество теплоты необходимо подвести к гелию, чтобы вся жидкость вылилась из трубки? Атмосферное давление p0 = 105 Па; длины трех колен трубки одинаковы; давление, создаваемое столбом жидкости в вертикальном колене, равно p0/8.

Рис. 1

Обозначим полную длину трубки через 3L, а площадь внутреннего поперечного сечения трубки – S. Поскольку объем трубки V0, то длина каждого колена

Весь процесс нагрева гелия можно разбить на три участка. Первый участок — это когда жидкость еще находится в левом вертикальном колене. Рассмотрим момент времени, когда уровень жидкости в левом колене переместился на величину z, . Из условия равновесия жидкости в трубке найдем давление гелия:

где ρж – плотность жидкости. На втором участке, для которого , давление гелия

а на третьем участке, для

На рисунке 2 изображен график зависимости давления гелия от его объема V, который связан со смещением z простым соотношением:

На первых двух участках тепло необходимо подводить к гелию — это однозначно: здесь газ, расширяясь, совершает работу и одновременно нагревается. А вот третий участок неоднозначен: здесь газ также совершает работу, но при этом он может и охлаждаться. Убедимся, что и на этом участке тепло тоже подводится.

Учитывая, что , запишем уравнение процесса для третьего участка в виде

Сосуд с постоянным сечением

Рис. 2.

Рассмотрим малое изменение объема ΔV. Тогда работа, совершенная гелием, равна

Запишем уравнение состояния гелия как идеального газа:

где ν – количество вещества, Т – температура газа. Подставим в это уравнение выражение для давления на третьем участке процесса и получим

Продифференцируем обе части этого уравнения:

Теперь найдем изменение внутренней энергии гелия при изменении объема на ΔV:

Согласно первому началу термодинамики, подведенное количество теплоты равно сумме изменения внутренней энергии газа и совершенной им работы:

Легко убедиться, что при  и

Итак, на всех участках тепло подводится, поэтому полное подведенное к гелию количество теплоты Q найдем как сумму полного изменения внутренней энергии и полной работы, которую совершил гелий:

Поскольку начальная и конечная температуры равны, соответственно,

то изменение внутренней энергии равно

Полную работу найдем как площадь под кривой на рисунке 2:

Тогда окончательно

Задача 4. «Тройник» с двумя открытыми в атмосферу вертикальными трубками и одной закрытой (горизонтальная трубка) полностью заполнен водой (рис. 3). После того, как тройник начали двигать по горизонтали в плоскости рисунка влево с некоторым постоянным ускорением, из него вылилась 1/16 массы всей воды. Чему при этом стало равно давление в жидкости у закрытого конца – в точке А? Трубки имеют одинаковые внутренние сечения. Длину L считать заданной. Диаметр трубок мал по сравнению с длиной L.

Сосуд с постоянным сечением

Рис. 3.

Читайте также:  Каковы причины обеспечивающие непрерывный ток крови по сосудам

При движении тройника влево с ускорением а гидростатические давления в точках А, В и С (см. рис. 3) связаны между собой уравнением движения воды в горизонтальной трубке:

где ρ – плотность воды. Давление в точке С больше давления в точке В, поэтому вода будет выливаться из правой вертикальной трубки. Из условия неразрывности струи жидкость при этом будет отсасываться из левой вертикальной трубки. В установившемся режиме правая трубка будет полностью заполнена водой, а левая – частично. Поскольку вылилась 1/16 массы всей воды, что соответствует массе воды в части трубки длиной L/4, то в левой трубке останется столбик воды высотой 3/4L. Поэтому давления в точках В и С будут равны

где p0 – атмосферное давление.

Исключая из всех уравнений рB и рС, получим систему двух уравнений относительно рА и а:

Решая эту систему относительно рА, найдем

Задача 5. Тонкая, запаянная с одного конца и изогнутая под прямым углом трубка заполнена ртутью и закреплена на горизонтальной платформе, которая вращается с угловой скоростью ω вокруг вертикальной оси (рис. 4). При вращении платформы ртуть не выливается и полностью заполняет горизонтальное колено. Открытое колено трубки вертикально. Геометрические размеры установки указаны на рисунке; атмосферное давление р0; плотность ртути ρ. Найдите давление ртути у запаянного конца трубки.

Сосуд с постоянным сечением

Рис. 4.

Выделим в горизонтальной части трубки небольшой элемент ртути длиной dr, расположенный на произвольном расстоянии r от оси вращения (рис. 5).

Сосуд с постоянным сечением

Рис. 5.

Этот элемент вращается в горизонтальной плоскости с угловой скоростью ω. Запишем уравнение движения выделенного элемента:

где S – площадь поперечного сечения трубки, dp – разность давлений между левым концом элемента ртути и правым. После сокращения на S получим связь между малыми приращениями dp и dr:

Проинтегрируем обе части этого уравнения и получим

Константу определим из условия, что при r = 3R (точка А) давление равно

и получим зависимость p(r)

Отсюда найдем давление ртути у запаянного конца трубки (r = R):

Задача 6. Стеклянный шар объемом V и плотностью ρ находится в сосуде с водой (рис. 6). Угол между стенкой сосуда и горизонтальным дном α, внутренняя поверхность сосуда гладкая, плотность воды ρ0. Найдите силу давления шара на дно сосуда в двух случаях: 1) сосуд неподвижен; 2) сосуд движется с постоянным горизонтальным ускорением а.

Сосуд с постоянным сечением

Рис. 6.

Сначала рассмотрим движущийся по горизонтали с постоянным ускорением а сосуд с водой. Введем систему координат XY, связанную с сосудом, как это изображено на рисунке 7.

Сосуд с постоянным сечением

Рис. 7.

Наша задача – найти уравнение свободной поверхности жидкости  в сосуде, который движется с горизонтальным ускорением а. Для этого выделим маленький элемент жидкости на оси Х, длина которого dx, а площадь поперечного сечения равна единице. С левого торца этого элемента давление равно

а с правого торца оно равно

где у – высота столба жидкости в точке х, а  – аналогичная высота в точке . Так как наш элемент жидкости движется с ускорением а, его уравнение движения имеет вид

Отсюда получаем

или в интегральном виде —

Поскольку при х = 0 у = 0, константа тоже равна нулю, а уравнение свободной поверхности жидкости выглядит так:

Линии, параллельные свободной поверхности, внутри жидкости являются линиями постоянного давления. Таким образом, жидкость, движущаяся с горизонтальным ускорением а, эквивалентна неподвижной жидкости, находящейся в новом поле тяжести с эффективным «ускорением свободного падения», равным  и направленным под углом  к вертикали (рис. 8). Вертикальная составляющая этого эффективного ускорения равна обычному ускорению свободного падения g, а горизонтальная составляющая численно равна ускорению сосуда и направлена в противоположную сторону.

Сосуд с постоянным сечением

Рис. 8.

В том случае, когда сосуд неподвижен (а = 0), эффективное ускорение равно g и направлено по вертикали. Силы, действующие на стеклянный шар в этом случае, показаны на рисунке 9.

Сосуд с постоянным сечением

Рис. 9.

Здесь  – вес (точнее – сила тяжести) шара,  – выталкивающая сила, а N1 – сила реакции дна сосуда на шар. Из условия равновесия шара найдем, что

Очевидно, что сила давления шара на дно численно равна силе реакции дна и направлена в противоположную сторону.

В случае движущейся с горизонтальным ускорением a жидкости или неподвижной жидкости, но находящейся в поле с новым «ускорением свободного падения» gЭ, на шар будут действовать следующие силы (рис.10): вертикальная составляющая нового веса шара , горизонтальная составляющая этого веса , вертикальная составляющая выталкивающей силы , ее горизонтальная составляющая , реакция опоры Т со стороны боковой стенки и, наконец, сила N2 – сила реакции на шар со стороны дна сосуда. Запишем условие равновесия шара, т.е. равенство нулю всех сил, действующих на шар по вертикали:

и по горизонтали:

Сосуд с постоянным сечением

Рис. 10.

Исключая из этих уравнений Т, найдем искомую силу N2:

Разумеется, и в этом случае сила давления шара на дно сосуда численно равна силе реакции дна, но направлена в противоположную сторону.

Упражнения.

1. В цилиндрическом сосуде с водой плавает деревянная дощечка. Если на нее сверху положить стеклянную пластинку, то дощечка с пластинкой останутся на плаву, а уровень воды в сосуде повысится на Δh1. На сколько изменится уровень воды в сосуде с плавающей дощечкой, если ту же стеклянную пластинку бросить на дно сосуда? Плотность стекла ρст, плотность воды ρв.

2. U–образная трубка состоит из трех одинаковых колен, расположена вертикально и заполнена жидкостью (см. рис. 1). Один конец трубки соединен с баллоном, заполненным водородом, другой конец открыт в атмосферу. Водород в баллоне медленно нагревают, и он постепенно вытесняет жидкость из трубки. К моменту, когда из трубки вылилось 2/3 всей массы жидкости, водород получил количество теплоты Q = 30 Дж. Найдите объем баллона. Известно, что объем всей трубки равен объему баллона; атмосферное давление p0 = 105 Па; давление, создаваемое столбом жидкости в вертикальном колене трубки, равно p0/9.

Читайте также:  Заменить гидравлическое испытание сосуда пневматическим

3. «Тройник» из трех вертикальных открытых в атмосферу трубок полностью заполнен водой (рис. 11). После того, как тройник начали двигать в горизонтальном направлении в плоскости рисунка с некоторым ускорением, из него вылилось 9/32 всей массы воды. Чему равно ускорение тройника? Внутренние сечения трубок одинаковы, длина каждой трубки L.

Сосуд с постоянным сечением

Рис. 11

4. Тонкая, запаянная с одного конца и изогнутая под прямым углом трубка заполнена жидкостью и закреплена на горизонтальной платформе, вращающейся с угловой скоростью ω вокруг вертикальной оси (рис. 12). Открытое колено трубки вертикально. Геометрические размеры установки указаны на рисунке; атмосферное давление p0; плотность жидкости ρ. Найдите давление жидкости у запаянного конца трубки.

Сосуд с постоянным сечением

Рис. 12

Ответы.

1.

2.

3. .

4.

Источник

ЛЕКЦИЯ 7 УРАВНЕНИЕ БЕРНУЛЛИ И ЕГО СЛЕДСТВИЯ

1. Линии тока и трубка тока. Условие неразрывности струи.

2. Уравнение Бернулли.

3. Следствия уравнения Бернулли.

4. Принцип работы инжектора, ингалятора.

5. Основные понятия и формулы.

6. Задачи.

7.1. Линии тока и трубка тока. Условие неразрывности струи

Течение жидкости изображается линиями тока
линиями, касательные к которым в каждой точке совпадают с направлением
вектора скорости частиц. Течение жидкости называется установившимся, стационарным, если
скорости частиц в каждой точке потока со временем не изменяются (при
этом условии линии тока совпадают с траекториями частиц жидкости).

При стационарном течении линии тока остаются неизменными. Часть потока жидкости, ограниченная линиями тока, образует трубку тока. Частицы
жидкости не выходят за пределы трубки тока, поэтому через любое ее
сечение проходит одно и то же количество жидкости. Объем Q жидкости,
протекающей за единицу времени через любое сечение S, перпендикулярное
оси трубки тока, определяется формулой

где v – скорость движения частиц жидкости в данном сечении.

Для
идеальной жидкости, не подверженной действию сил трения, скорости
движения частиц во всех точках одного и того же поперечного сечения
трубы одинаковы. Эта общая скорость и входит в уравнение (7.1).

На частицы реальной жидкости действуют силы трения со стороны стенок трубы и со стороны соседних частиц. Поэтому скорость

частиц
жидкости в поперечном сечении трубы различна: она максимальна в центре
трубы и уменьшается до нуля у ее стенок. В этом случае в формуле (7.1) v – это средняя скорость течения жидкости в данном сечении.

Условие неразрывности струи: при
стационарном течении несжимаемой жидкости через любые сечения трубки
тока каждую секунду протекают одинаковые объемы жидкости, равные
произведению площади сечения на среднюю скорость движения ее частиц.

Уравнение (7.1) выражает условие неразрывности струи. Оно устанавливает соотношение между скоростями течения жидкости в различных сечениях трубки тока:

Если
жидкость движется по трубе переменного сечения, то скорость ее движения
обратно пропорциональна площади сечения трубок (рис. 7.1).

Рис. 7.1. Движение жидкости в трубе с разными сечениями. Длина стрелок изображает среднюю скорость течения жидкости

Площадь сечения пропорциональна квадрату диаметра трубки (S = πd2/4), поэтому если диаметр трубки в сечении С вдвое меньше,
чем в сечении А, то площадь поперечного сечения С в четыре раза меньше,
чем площадь сечения А. Следовательно, и скорость потока в сечении С
будет в четыре раза больше, чем в сечении А.

Уравнение неразрывности струи при протекании крови в сосудах

Кровеносная
система человека – это сложная замкнутая система эластичных трубок
разного диаметра. В нее входят: аорта, артерии, артериолы, капилляры,
венулы, вены. Из сердца кровь поступает в аорту, а оттуда распределяется
по главным артериям, затем по

более мелким и в конце
концов расходится по миллионам мелких капилляров. По венам кровь
возвращается в сердце. (Один цикл движения крови длится в среднем 20 с.
За сутки сердце перегоняет по всем сосудам до 10 000 л крови!) Скорость
кровотока в разных сосудах различна. Ориентировочные значения этой
скорости представлены в табл. 7.1.

Таблица 7.1. Скорость и давление крови в различных сосудах

На
первый взгляд кажется, что приведенные значения противоречат уравнению
неразрывности – в тонких капиллярах скорость кровотока примерно в 1000
меньше, чем в артериях. Однако это несоответствие кажущееся. Дело в том,
что в табл. 7.1 приведен диаметр одного сосуда. Эта величина
действительно уменьшается по мере разветвления. Однако суммарная площадь
разветвления возрастает. Так, суммарная площадь всех капилляров (около
2000 см2) в сотни раз превышает площадь аорты – этим и
объясняется такая малая скорость крови в капиллярах. Малая скорость
кровотока в капиллярах необходима для обеспечения эффективного обмена
между кровью и тканями.

7.2. Уравнение Бернулли

Для
идеальной жидкости (сила трения полностью отсутствует) справедливо
уравнение, которое было получено швейцарским математиком и физиком
Даниилом Бернулли (1700-1782). Рассмотрим тонкую трубку тока и выделим в
ней два произвольных сечения (рис. 7.2).

Рис. 7.2. Параметры сечений в трубке тока

В общем случае эти сечения находятся на различных высотах (h1 и h2), а их площади различны (S1 и S2). Вследствие уравнения неразрывности различны будут и скорости течения жидкости в этих сечениях (v1и v2). Обозначим давления жидкости в этих сечениях Р1 и Р2 соответственно.

Используя закон сохранения механической энергии, можно доказать, что для этих сечений выполняется следующее соотношение:

Давление Р называют статическим. Это
давление, которое оказывают друг на друга соседние слои жидкости. Его
можно измерить манометром, который движется вместе с жидкостью. Величину
ρv2/2 называют динамическим давлением. Оно обусловлено движением жидкости. Гидростатическое давление ρgh – это давление, создаваемое весом вертикального столба жидкости высотой h.

Читайте также:  Сосуды для чая мате

Уравнение Бернулли формулируется следующим образом:

При
стационарном течении идеальной жидкости полное давление, равное сумме
статического, динамического и гидростатического давлений, одинаково во
всех поперечных сечениях трубки тока.

7.3. Следствия уравнения Бернулли

Горизонтальная трубка тока переменного сечения

При этом h1 = h2 и уравнение (7.3.) принимает вид

Отсюда
следует, что статическое давление идеальной жидкости при течении по
горизонтальной трубке возрастает там, где скорость ее уменьшается, и
наоборот. Это можно продемонстрировать с помощью манометрических трубок,
уровень поднятия жидкости в которых пропорционален статическому
давлению (рис. 7.3). Видно, что в широком сечении (а), где скорость
течения меньше, статическое давление больше, чем в узком сечении (б).

Наклонная трубка тока постоянного сечения

В такой трубке скорость жидкости везде одинакова (v = const), и уравнение (7.3) принимает вид

Следовательно,
скорость истечения струи равна скорости тела при свободном падении с
высоты h. Соотношение (7.9) – это формула Торричелли.

Рис. 7.3. Горизонтальная трубка переменного сечения

Рис. 7.4. Наклонная труба постоянного сечения

Рис. 7.5. Линия тока при истечении жидкости из небольшого отверстия широкого сосуда

Измерение скорости жидкости

Установим
в разных местах горизонтальной цилиндрической трубы (струи жидкости)
одного сечения две трубки: 1) манометрическую трубку, плоскость
отверстия которой расположена параллельно движению жидкости; 2) трубку,
изогнутую под прямым углом навстречу движению жидкости (трубку Пито)
(рис. 7.6).

В движущемся потоке жидкость в трубках
поднимается на разную высоту. Давление под манометрической трубкой равно
статическому давлению Р. Оно уравновешивается давлением атмосферы Ра и давлением столба жидкости h2:

Имея систему двух таких трубок, вычисляют скорость потока жидкости по формуле (7.10).

Рис. 7.6. Измерение скорости жидкости

7.4. Принцип работы инжектора, ингалятора

В
медицине широкое применение находят приборы, действие которых основано
на использовании законов гидродинамики. Рассмотрим два таких прибора.

Инжектор

Этот
прибор используют для дозированной подачи пациенту газообразного
препарата. Например, закиси азота или кислорода. Препарат из баллона
поступает в смесительную камеру через узкое сопло (рис. 7.7).

При
этом скорость движения препарата возрастает, а его давление, в
соответствии с уравнением Бернулли, падает. В смесительной камере
возникает разрежение, и в нее засасывается атмосферный воздух.
Всасывание происходит через одно из отверстий поворотного диска.
Отверстия имеют различные диаметры. Выбирая соответствующее отверстие,
регулируют состав смеси, подаваемой пациенту.

Рис. 7.7. Подача кислорода при кислородной терапии

Ингалятор

Этот прибор используют для введения в область носоглотки лекарственных средств в распыленном виде (рис. 7.8).

Рис. 7.8. Схема ингалятора

Он состоит из двух трубок, расположенных под прямым углом.

Горизонтально
расположенная трубка (1) имеет на конце сужение. Чуть ниже этого конца
располагается верхний конец вертикальной трубки (2), нижний конец
которой опущен в сосуд с жидким препаратом. В горизонтальную трубку
подается пар (3). При прохождении суженного конца скорость пара
возрастает, а давление падает. В область пониженного давления
засасывается препарат, который распыляется струей пара. В результате
образуется смесь пара, воздуха и капелек препарата, которая через
патрубок (4) поступает к пациенту.

7.5. Основные понятия и формулы

Продолжение таблицы

7.6. Задачи

2. Кровь
течет по горизонтальному участку артерии, имеющему сужение. Где
давление крови на стенки сосуда будет больше – на суженном или широком
участке? Динамическим или статическим давлением обусловлено
фонтанирование крови при надрезе артерии?

Решение

Фонтанирование крови при надрезе артерии обусловлено разностью между статическим давлением в артерии и давлением атмосферы.

При
прохождении места сужения скорость кровотока возрастает (7.2), а
статическое давление, которое и воздействует на стенки сосуда,
уменьшается (7.5). Отметим, что вклад динамического давления в полное
давление ничтожен. Действительно, принимая v = 0,5 м/с, ρ = 103 кг/м3, найдем:

Ответ: давление
на стенки незначительно уменьшается на участке сужения артерии.
Фонтанирование крови при надрезе артерии обусловлено статическим
давлением.

3. Скорость потока крови в капиллярах равна примерно v1= 30 мм/мин, а скорость потока крови в аорте v2= 45 см/с. Определить, во сколько раз площадь сечения всех капилляров больше сечения аорты.

4. Лекарственный раствор вводят в мышцу животного с помощью шприца, внутренний диаметр которого d1 = 10 мм, а диаметр иглы d2 = 0,5 мм. Определить скорость истечения раствора из иглы, если скорость перемещения поршня шприца равна v1 = 2,3 см/с.

7. Наблюдая под микроскопом эритроциты в капилляре, можно измерить скорость течения крови: v1= 0,5 мм/с. Средняя скорость тока крови в аорте составляет v2=
40 см/с. На основании этих данных определить, во сколько раз суммарная
площадь поперечных сечений функционирующих капилляров больше площади
сечения аорты.

Решение

Условие
неразрывности струи было получено для трубки тока переменного сечения.
Очевидно, что оно применимо и к разветвлению труб. В задаче такое
разветвление начинается с аорты (площадь поперечного сечения S2) и заканчивается капиллярами (общая площадь сечения S1). Исходя из этого запишем уравнение неразрывности струи (7.2): S1/S2 = v2/v1= 800.

Ответ: 800.

8. При
всасывании человек может понизить давление в легких на 80 мм рт.ст.
ниже атмосферного. Определить, на какую высоту ему удастся втянуть воду
по трубочке.

10. Во время бури или смерча с домов иногда срывает крыши. Используя уравнение Бернулли, объяснить, почему это происходит. Решение

Давление в потоке ветра уменьшается. Поэтому давление на чердаке превышает внешнее давление на величину ΔΡ = pv2/2. При этом на кровлю действует направленная наружу сила F = Spv2/2. При скорости v = 35 м/с (ураган), ρ = 1,3 кг/м3 и S = 100 м2 величина силы составляет F = 61 000 Н (6 т), что существенно превышает вес кровли.

Источник