Сосуд с соком в растении

Сосуд с соком в растении thumbnail

    Сосуды (у растений)

    Сосуды (трахеи) у растений, проводящие элементы ксилемы (или древесины), представляющие собой длинные полые трубки, образованные одним рядом клеток (члеников) со сквозными отверстиями (перфорациями) на поперечных стенках. Характерны для покрытосеменных, кроме некоторых многоплодниковых (троходендрон, дримис) и лилейных (ландыш, драцена, агава), встречаются у папоротников (орляк), селагинелл, хвощей, оболочкосеменных (эфедра, гнетум, вельвичия). По строению боковых стенок различают кольчатые, спиральные, лестничные и пористые С. У первых двух вторичная оболочка имеет вид колец или спирально закрученных лент. Они возникают на ранних этапах развития органов растения и способны растягиваться. Остальные типы С. с более мощными отложениями вторичной оболочки и окаймленными порами в стенках формируются у органов, закончивших рост в длину. После одревеснения оболочек протопласты клеток отмирают, полость С. заполняется водой. Для примитивных С. характерны большая длина (до 1,3 мм), малый диаметр, угловатое поперечное сечение члеников с лестничными перфорациями на скошенных поперечных стенках, лестничная поровость боковых стенок (тюльпанное дерево). Высокоспециализированные С. сложены короткими, в сечении округлыми широкопросветными (до 0,5 мм в диаметре) члениками с простыми перфорациями на поперечных стенках и мелкими очередными порами на боковых стенках (ясень, дуб), О С. у животных и человека см. в статьях Артерии, Вены, Кровеносная система, Лимфатическая система. см. также Пучок проводящий.

    Л. И. Лотова.

    Большая советская энциклопедия. — М.: Советская энциклопедия.
    1969—1978.

    Смотреть что такое “Сосуды (у растений)” в других словарях:

    • СОСУДЫ У РАСТЕНИЙ — сложное образование, представляющее ряд сотен и тысяч члеников, соединенных между собой перфорациями. У наземных растений сосуды возникли в разных гр. независимо друг от друга; служат для проведения воды, могут нести на стенках поровость… …   Геологическая энциклопедия

    • СОСУДЫ — (анатомическое), 1) у человека и животных полые трубки, по которым движется кровь (кровеносные сосуды) и лимфа (лимфатические сосуды). 2) Сосуды у растений проводящие элементы ксилемы в виде длинных полых трубок, образованных одним рядом клеток… …   Современная энциклопедия

    • Сосуды — (анатомическое), 1) у человека и животных полые трубки, по которым движется кровь (кровеносные сосуды) и лимфа (лимфатические сосуды). 2) Сосуды у растений проводящие элементы ксилемы в виде длинных полых трубок, образованных одним рядом клеток… …   Иллюстрированный энциклопедический словарь

    • Сосуды — Сосуды: В Викисловаре есть статья «сосуд» Сосуд (ёмкость) вместилище для жидких или сыпучих тел, например, бутылка, баклага и т. д. Сосуды (биология) трубчатый орган у животных и растений, по которому движется жидкая среда. Например: кровеносные… …   Википедия

    • СОСУДЫ — в анатомии,1) у человека и животных полые трубки, по которым движется кровь (кровеносные сосуды) и лимфа (лимфатические сосуды).2) Сосуды (трахеи) у растений проводящие элементы ксилемы в виде длинных полых трубок, образованных одним рядом клеток …   Большой Энциклопедический словарь

    • СОСУДЫ — (лат. vasa), у животных и человека полые трубки, по к рым движется кровь (кровеносные сосуды) и лимфа (лимфатич. сосуды). О С. растений (см. ПРОВОДЯЩИЕ ТКАНИ). .(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол …   Биологический энциклопедический словарь

    • сосуды — (анат.), 1) у человека и животных полые трубки, по которым движется кровь (кровеносные сосуды) и лимфа (лимфатические сосуды). 2) Сосуды (трахеи) у растений  проводящие элементы ксилемы в виде длинных полых трубок, образованных одним рядом клеток …   Энциклопедический словарь

    • Сосуды (ботаника) — У этого термина существуют и другие значения, см. Сосуд. Сосуды (ботаника)  проводящие элементы ксилемы, представляющие собой длинные полые трубки, образованные одним рядом клеток (члеников) со сквозными отверстиями (перфорациями) на… …   Википедия

    • сосуды — Синонимы: трахеи наиболее совершенные многоклеточные проводящие элементы ксилемы. Представляют собой вертикальный ряд клеток (члеников) с отмершими протопластами и перфорациями в смежных стенках; проводят воду с растворенными в ней веществами от… …   Анатомия и морфология растений

    • Сосуды — I Сосуды (трахеи)         у растений, проводящие элементы ксилемы (См. Ксилема) (или древесины), представляющие собой длинные полые трубки, образованные одним рядом клеток (члеников) со сквозными отверстиями (перфорациями (См. Перфорации)) на… …   Большая советская энциклопедия

    Книги

    • 1000 домашних настоек, бальзамов, мазей, компрессов, ингаляций от всех болезней, . 1000 рецептов натуральных средств от всех болезней: настойки, мази, компрессы, бальзамы, отвары, примочки, ванночки из лекарственных растений. Природа щедро делится с нами своей силой и… Подробнее  Купить за 474 руб
    • 1000 домашних настоек, бальзамов, мазей, компресс, . 1000 рецептов натуральных средств от всех болезней: настойки, мази, компрессы, бальзамы, отвары, примочки, ванночки из лекарственных растений. Природа щедро делится с нами своей силой и… Подробнее  Купить за 291 руб
    • Лечим сердце и сосуды, Сергеева Галина Константиновна. Все наши читатели знают об эффективности санаторно-курортного лечения, в том числе при заболеваниях крови, сердца и сосудов. Это обусловлено тем, что в санаториях применяются в комплексе… Подробнее  Купить за 134 руб

    Другие книги по запросу «Сосуды (у растений)» >>

    Источник

    Флоэма и ксилема являются сосудистыми тканями трахеофитных растений, то есть в них расположены сосуды растений, которые осуществляют транспортировку сока в растительных организмах: папоротникообразных, голосеменных и покрытосеменных, сообщая корневую систему с лиственными структурами посредством стебля. Обе являются переносчиками сока.

    Сосуд с соком в растении

    Ксилема транспортирует необработанный «сырой» сок (сырье или неорганический сок, поскольку он состоит из питательных веществ, поглощенных из почвы растением, воды и минеральных солей) и расположена в самом внутреннем слое стебля. Она транспортирует сок от корней к листьям, где будет проходить фотосинтез. Ксилема образована мертвыми клетками, которые имеют функцию предотвращения деформации, вызванной давлением сока.

    Флоэма транспортирует переработанный сок (или органический сок, продукт фотосинтеза, где питательные вещества превращаются в глюкозу) и находится в самом внешнем слое стебля. Она транспортирует переработанный сок из хлорофильных частей (мест, где происходит фотосинтез) к живыми частями растения — областям, где глюкоза будет превращаться в энергию. Флоэма образована живыми клетками, вытянутыми и без ядра.

    Читайте также:  Красный сосуд на коже

    Сосуд с соком в растении

    Транспортировка необработанного сока, образованного водой и минеральными солями, осуществляемая ксилемой, происходит из способности поглощения корней и распределения в основной пункт назначения к листьям. Ее основной состав включает сосуды, трахеи, трахеиды, волокна и паренхимные клетки.

    Транспортировка переработанного сока, образованного органическими веществами, полученными при фотосинтезе, осуществляется через флоэму, начиная от листьев в направлении остальных органов, главным образом, энергетического резерва (корней и стеблей). Она состоит из ситовидных элементов, сопровождающих клеток, волокон и паренхимных клеток.

    Растения как автотрофные организмы

    У растений автотрофное питание, другими словами, они могут производить органические молекулы (главным образом глюкозу) из простых неорганических веществ с помощью внешнего источника энергии, энергии света.

    Итак, питательные вещества, которые требуются растению, очень просты: вода, минеральные соли и углекислый газ (мы не называем солнечную энергию, потому что это не вещество, а тип энергии). Растения в процессе фотосинтеза, происходящего в хлоропластах клеток, продуцируют глюкозу, которая является органической молекулой, служащей источником химической энергии (а также для создания других малых и больших структурных молекул, например, целлюлозы).

    В связи с этим растение испытывает следующие трудности:

    1. Фотосинтез происходит главным образом в клетках листьев на определенной высоте над землей (иногда несколько метров), но воду и минеральные соли следует добывать из почвы, корнями. Поэтому растение должно транспортировать эти простые вещества вверх, преодолевая силу тяжести.
    2. Не все клетки растения выполняют фотосинтез (например, клетки корней нет). Поэтому, как только глюкоза вырабатывается в клетках листьев, часть ее должна транспортироваться в другие места для снабжения всех клеток.

    Растение должно поглощать воду и минеральные соли через корни. Для этого клетки самого поверхностного слоя корня имеют очень тонкие расширения в виде нитей, которые выступают наружу, называемые абсорбирующими или корневыми волосками. Таким образом, контактная поверхность корня с внешней средой значительно увеличивается.

    Клетки, которые составляют абсорбирующие волоски, имеют важную способность: они способны переносить минеральные соли из внешней среды во внутреннюю часть клетки, даже если концентрация солей внутри клетки больше, чем снаружи (затратив некоторую энергию, конечно). Таким образом, концентрация солей становится больше внутри клеток по отношению к внешней стороне.

    Существуют две альтернативы для проникновения воды в корень: вода может проходить через клетки, переходя из одной в другую через небольшие отверстия, называемые плазмодесмами (внутриклеточный или упрощенный транспорт) или проходить через пространства клеточных стенок, которые отделяют одну клетку от другой (внеклеточный или апопластический транспорт).

    Как только вода была поглощена, достигнута первая цель: вода и минеральные соли находятся внутри корневых клеток… но все еще далеки от их цели, которая является листьями.

    Транспортировка необработанного сока через ксилему

    Сосуд с соком в растении

    Для доставки воды, минеральных солей и других веществ, производимых корневыми клетками, к листьям у растений есть гениальная система проводимости, образованная очень специализированными клетками, которые в совокупности называются ксилемой.

    Ксилема — очень своеобразная ткань, потому что многие из ее клеток «жертвуют» собой, чтобы выполнить свою функцию! Хотя это звучит немного противоречиво, клетки ксилемы более эффективны мертвыми, чем живыми. По мере их роста они утолщают клеточные стенки, образуя спиральные или кольцевые структуры. Кроме того, они соединяются друг с другом для образования различных типов трубок. Наконец, они умирают, клетка исчезает, но ее клеточная стенка остается, что будет способствовать образованию удлиненных каналов, наподобие трубок, которые проходят по всему стеблю от корней до листьев.

    Существует два основных типа проводящих трубок. Первый тип — трахеиды, представляющие собой очень узкие и удлиненные клетки, в которых прохождение веществ из одной клетки в другую осуществляется через окаймленные поры в клеточных стенках, расположенные на большой части этих стенок. Другим типом являются сосуды или трахеи с несколько большим диаметром и с законченными отверстиями (перфорациями) в зонах стенок, отделяющих от других клеток.

    Вы, вероятно, задаетесь вопросом: «Если клетки трубок ксилемы мертвы, как им удается транспортировать сок?»

    Хитрость заключается в использовании физических механизмов, которые не требуют вмешательства биологических процессов. Вода поднимается через трубки ксилемы благодаря нескольким физическим процессам, которые вместе образуют механизм, часто называемый натяжение-адгезия(прилипание)-когезия(сцепление). Основные идеи этого механизма были предложены более века тому назад Генри Диксоном. Механизм натяжение-адгезия-когезия основан на следующих явлениях или процессах.

    Капиллярность

    Капилярность — это любопытное явление, которое заставляет некоторые жидкости подниматься против гравитации спонтанно, внутри очень тонких протоков. Чем меньше диаметр канала, тем выше высота восходящего столба жидкости. Это движение, вызванное силой, возникшей в результате конфликта между двумя другими: поверхностное натяжение воды и адгезия воды к твердым поверхностям некоторых веществ:

    Сосуд с соком в растении

    1. Когезия и поверхностное натяжение:

    Молекулы воды, благодаря своей полярности, устанавливают между собой союзы, которые отвечают за сильное сцепление (объединение), существующее между ними.

    Внутри массы воды каждая молекула одинаково привлекается в равной мере своими соседями, но только на поверхности жидкости, контактирующей с воздухом, все меняется: сплоченность молекул воды «вытягивает» молекулы воды внутрь жидкости, а также в направлении, параллельном поверхности жидкости.

    Таким образом, сцепление заставляет слой молекул, контактирующих с воздухом, иметь натяжение, которое заставляет их вести себя как эластичная пленка.

    Поверхность воды оказывает сопротивление деформации, поскольку ситуация максимального баланса будет такова, в которой поверхность контакта вода-воздух минимальна. Сила поверхностного натяжения отвечает за форму, которую принимают капли воды, а также за то, что легкие насекомые способны ходить по поверхности воды без погружения.

    1. Поверхностное натяжение и адгезия:

    Между молекулами воды и твердыми поверхностями многих веществ также может быть установлена притягивающая сила, которая заставляет воду прилипать к этим поверхностям. Если адгезия к твердой поверхности сильнее когезии между молекулами воды, на краю жидкости, контактирующей с твердым материалом будет образовываться вогнутая кривизна поверхности.

    Однако, поверхностное натяжение воды создает силу, которая тянет молекулы, образующие нижнюю часть кривой, чтобы попытаться уменьшить контактную поверхность воздух-вода, создавая плоскую пленку.

    Читайте также:  Ущемление сосудов в шейном отделе позвоночника

    В результате создается возрастающая результирующая сила, которая приводит к небольшому подъему водного столба. Конечным результатом является то, что вода может буквально подняться по каналу, преодолевая силу тяжести.

    Эвапотранспирация и натяжение

    Капиллярность очень хорошо дает понять, как сырой сок может спонтанно подниматься через очень тонкие трубки ксилемы, но как только столб воды или сырой сок достигает конца трубки, капиллярности недостаточно, чтобы объяснить, как этот сок может продолжать подниматься из корня.

    Механизм, который нам не ясен, связан с испарением воды, которая вырабатывается в листьях, и расходами этой воды при фотосинтезе.

    Когда молекулы воды удаляются с конца трубки ксилемы из-за транспирации листьев, отверстие, как правило, немедленно заполняется другими молекулами, которые ниже. Это создает натяжение или отрицательное давление, которое буквально тянет столб воды вверх.

    Сильное сцепление между молекулами воды предотвращает разрыв столбика сока внутри трубки, так что весь сок внутри трубки поднимается как единое целое. Естественно, из корней должна быть постоянная подача воды. В противном случае, как и в ситуациях засухи, столбик сока может быть прерван, что вызовет проблемы для растения.

    Следующий рисунок объясняет явление натяжения, вызванного эвапотранспирацией:

    Сосуд с соком в растении

    Транспортировка переработанного сока через флоэму

    К настоящему моменту мы не решили и более половины проблемы, потому что, как только фотосинтетические клетки образуют углеводы, необходимо распределить эти молекулы и их производные во многие другие отдаленные клетки, которые не способны их произвести.

    Для этого распределения растения имеют другую ткань, называемую флоэмой, которая также образует каналы, проходящие через растение, но с некоторыми важными отличиями по сравнению с ксилемой.

    Сосуд с соком в растении

    Во-первых, проводящие клетки флоэмы живые, хотя они теряют свое ядро и довольно много органелл. В целом, они имеют меньший диаметр, чем проводники ксилемы.

    Как и в ксилеме, клетки флоэмы выстраиваются рядами и соединяют свои стенки. В зонах соединения образуются структуры, называемые ситовидными пластинками. В этих областях имеются небольшие отверстия диаметром до 15 мкм (не такие большие, как перфорации ксилемы), которые позволяют передавать переработанный сок из одной ячейки в другую. Каналы, образованные объединением множества этих клеток, называются ситовидными трубками.

    В течение некоторого времени считалось, что переработанные вещества могут транспортироваться путем диффузии через трубки флоэмы, но когда были сделаны расчеты, чтобы узнать скорость транспортировки через флоэму, стало ясно, что необходим другой механизм.

    В настоящее время считается, что механизмом движения переработанного сока через флоэму является механизм, который предложил немецкий ученый Эрнст Мюнх в 1926 году. Этот механизм называется потоком под давлением и состоит в следующем.

    Как только фотосинтетические клетки образуют органические молекулы, благодаря фотосинтезу, особенно глюкозу и фруктозу, большая часть этих молекул связывается с образованием сахарозы, которая является предпочтительной органической молекулой для переноса углеводов через растение.

    Сахароза транспортируется во флоэму, из-за этого переработанный сок содержит высокую концентрацию этого вещества (сахароза составляет 90% веществ, присутствующих в переработанном соке, конечно, без учета воды). Поскольку концентрация сахарозы внутри флоэмы намного выше, чем снаружи, создается осмотическое давление, которое заставляет воду поступать во флоэму, тем самым увеличивая ее давление. Это давление подталкивает переработанный сок вдоль протоков флоэмы.

    Как только они достигают места назначения, которое является конечным пунктом протоков флоэмы, большое количество сахарозы извлекается из флоэмы, «вытаскивая» с ней определенное количество воды. Это способствует циркуляции переработанного сока, вызывая падение давления в конечном пункте. Сахароза, поступив к месту назначения, может использоваться для разных целей.

    Резюме

    Подводя итоги, можно отметить, что корни поглощают минеральные соли посредством активного транспорта, что генерирует осмотическое давление, вызывающее поглощение воды.

    Эти вещества достигают проводников ксилемы, которые отвечают за транспортировку сырого сока от корней к фотосинтетическим структурам за счет механизма когезия-адгезия-натяжение.

    После того как вырабатываются органические вещества, проводники флоэмы отвечают за транспортировку переработанного сока, богатого органическими молекулами, из листьев в другие области растения посредством механизма потока под давлением, основанного на механизмах осмотического давления.

    Инга Костенко, Mivena Украина

    Анна Устименко, Клуб Sirius Agro Plant

    Источник

    Подъем воды по ксилеме растений.

    Ксилема цветковых растений содержит два типа проводящих воду структур — трахеиды и сосуды. В статье мы уже говорили о том, как выглядят эти структуры в световом микроскопе, а также на микрофотографиях, полученных с помощью сканирующего электронного микроскопа. Строение вторичной ксилемы (древесины) рассматривается в статье. Ксилема и флоэма образуют проводящую ткань высших, или сосудистых, растений. Эта ткань состоит из так называемых проводящих пучков, строение и распределение которых в стеблях двудольных растений с первичным строением показано на рисунке.

    То, что вода поднимается именно по ксилеме, нетрудно продемонстрировать, погрузив побег срезанным концом в разбавленный водный раствор красителя, например эозина. Подкрашенная жидкость, распространившись вверх по стеблю, заполнит сеть пронизывающих листья жилок. Если затем сделать тонкие срезы и рассмотреть их в световом микроскопе, то окажется, что краситель находится в ксилеме.

    Более эффектное доказательство подъема воды по ксилеме дают опыты с «кольцеванием». Такие опыты проводили задолго до того, как стали применяться радиоактивные изотопы, позволяющие очень легко проследить путь веществ в живом организме. В одном из вариантов опыта с одревесневшего стебля снимают узкое кольцо коры вместе с лубом, т. е. флоэмой. Довольно долго после этого находящиеся выше вырезанного кольца побеги продолжают расти нормально: следовательно, такое кольцевание не влияет на подъем воды по стеблю. Однако, если, приподняв лоскут коры, вырезать из-под него сегмент древесины, т. е. ксилемы, то растение быстро завянет. Таким образом, вода движется в побеги из почвы именно по этой проводящей ткани.

    Любая теория, объясняющая транспорт воды по ксилеме, не может не учитывать следующие наблюдения.

    подъем воды у растений

    1. Анатомические элементы ксилемы — тонкие мертвые трубки, диаметр которых варьирует от 0,01 мм в «летней» древесине до 0,2 мм в «весенней» древесине.

    2. Большие количества воды движутся по ксилеме с относительно высокой скоростью: у высоких деревьев она составляет до 8 м/ч, а у других растений — около 1 м/ч.

    3. Для подъема воды по таким трубкам к вершине высокого дерева необходимо давление порядка 4000 кПа. Самые высокие деревья — секвойи в Калифорнии и эвкалипты в Австралии — достигают в высоту более 100 м. Вода способна подниматься по тонким смачивающимся трубкам благодаря своему высокому поверхностному натяжению (это явление называется капиллярностью), однако только за счет этих сил даже по самым тончайшим сосудам ксилемы вода не поднимается выше 3 м.

    Удовлетворительное объяснение этим фактам дает теория сцепления (когезии), или теория натяжения. Согласно этой теории, подъем воды от корней обусловлен ее испарением клетками листа. Как мы уже говорили в статье, испарение снижает водный потенциал клеток мезофилла, прилежащих к ксилеме, и вода поступает в эти клетки из ксилемного сока, водный потенциал которого выше; при этом она проходит через влажные клеточные стенки у концов жилок, как показано на рисунке.

    Ксилемные сосуды заполняет сплошной столб воды; по мере того как вода выходит из сосудов, в этом столбе создается натяжение; оно передается вниз по стеблю до самого корня благодаря сцеплению (когезии) молекул воды. Эти молекулы стремятся «прилипнуть» друг к другу, потому что они полярны и притягиваются друг к другу электрическими силами, а затем удерживаются вместе водородными связями. Кроме того, они притягиваются к стенкам ксилемных сосудов, т. е. происходит их адгезия (прилипание) к ним. Сильная когезия молекул воды означает, что ее столб трудно разорвать — у него высокий предел прочности при растяжении. Растягивающее напряжение в клетках ксилемы приводит к генерированию силы, способной сдвигать весь водяной столб вверх по механизму объемного потока. Снизу вода поступает в ксилему из соседних клеток корня. При этом очень важно, что стенки ксилемных элементов жесткие и не спадаются при падении давления внутри, как это бывает, когда сосешь коктейль через мягкую соломинку. Жесткость стенок обеспечивается лигнином. Доказательством того, что жидкость внутри ксилемных сосудов сильно напряжена (растянута), служат суточные колебания диаметра древесных стволов, измеряемые инструментом под названием дендрограф.

    Минимальный диаметр отмечен днем, когда интенсивность транспирации наивысшая. Натяжение столба воды в ксилемном сосуде немного втягивает внутрь его стенки (из-за адгезии), и сочетание этих микроскопических сжатий дает фиксируемую прибором общую «усадку» ствола.

    Оценки прочности на разрыв столба ксилемного сока варьировали от 3000 доЗО 000 к Па, причем более низкие значения получены позднее. В листьях зарегистрирован водный потенциал порядка —4000 кПа, и прочность столба ксилемного сока, вероятно, достаточна, чтобы выдержать создающееся натяжение. Не исключено, конечно, что столб воды может иногда разрываться, особенно в сосудах большого диаметра.

    Критики изложенной теории подчеркивают, что любое нарушение непрерывности столба сока должно немедленно останавливать весь поток, так как сосуд заполнится воздухом и паром (явление кавитации). Кавитацию может вызвать сильное сотрясение, изгибание ствола, а также дефицит воды. Хорошо известно, что на протяжении лета содержание воды в стволе дерева постепенно снижается, древесина заполняется воздухом. Этим пользуются лесозаготовители, потому что такие деревья легче сплавлять. Однако разрыв водного столба в части сосудов слабо влияет на общую скорость объемного потока. Возможно, дело в том, что вода перетекает в параллельно проходящие сосуды или же обходит воздушную пробку, продвигаясь по соседним паренхимным клеткам и по стенкам. Кроме того, согласно расчетам, для поддержания наблюдаемой скорости потока вполне достаточно, чтобы в каждый момент времени функционировала хотя бы небольшая доля ксилемных элементов. У некоторых деревьев и кустарников вода перемещается лишь по более молодой наружной древесине, называемой заболонью. У дуба и ясеня, например, проводящую функцию выполняют в основном сосуды текущего года, а остальная часть заболони играет роль водного резерва. Новые ксилемные сосуды образуются на протяжении всего вегетационного периода, но главным образом в его начале, когда скорость водного потока максимальна.

    Вторая сила, обеспечивающая движение воды по ксилеме, — корневое давление. Его можно обнаружить и измерить в тот момент, когда срезают крону, а штамб с корнями некоторое время продолжает выделять сок из сосудов ксилемы. Этот процесс подавляется ингибиторами дыхания, например цианидом, и прекращается при недостатке кислорода и понижении температуры. Работа такого механизма, по-видимому, обусловлена активной секрецией солей и других водорастворимых веществ в ксилемный сок. В результате его водный потенциал падает, и вода поступает в ксилему из соседних клеток корня путем осмоса.

    Этот механизм создает гидростатическое давление порядка 100-200 кПа (в исключительных случаях 800 кПа); одного его для подъема воды по ксилеме обычно недостаточно, однако у многих растений оно, несомненно, способствует поддержанию ксилемного тока. У медленно транспирирующих травянистых форм этого давления вполне хватает, чтобы вызвать у них мутацию. Так называется выделение воды на поверхности растения1 в виде капель жидкости, а не пара. Все условия, тормозящие транспира-цию, например слабая освещенность и высокая влажность, способствуют гуттации. Она обычна у многих видов дождевых тропических лесов и часто наблюдается на кончиках листьев у всходов трав.

    – Также рекомендуем “Поглощение воды корнями. Апопластный транспорт в корне.”

    Оглавление темы “Транспорт у растений.”:

    1. Подъем воды по ксилеме растений.

    2. Поглощение воды корнями. Апопластный транспорт в корне.

    3. Поглощение минеральных солей и их транспорт в корне растений.

    4. Транспорт минеральных солей по растению. Транслокация органических веществ по флоэме.

    5. Особенности транслокации по флоэме растения. Строение ситовидных трубок растения.

    6. Данные свидетельствующие о передвижении веществ по флоэме растения.

    7. Механизм транслокации веществ по флоэме. Гипотезы объемного потока Мюнха и тока под давлением.

    8. Загрузка ситовидных трубок растения.

    9. Критическая оценка гипотезы тока под давлением. Механизмы первой помощи растениям.

    10. Транспорт у растений. Общие особенности кровеносной системы.

    Источник

    Читайте также:  Особенности сосудов у детей по сравнению со взрослыми