Сосуд с водой движется по наклонной плоскости
- Главная
- Вопросы & Ответы
- Вопрос 6806192
более месяца назад
Просмотров : 6
Ответов : 1
Лучший ответ:
comment
более месяца назад
Ваш ответ:
Комментарий должен быть минимум 20 символов
Чтобы получить баллы за ответ войди на сайт
Лучшее из галереи за : неделю месяц все время
Другие вопросы:
Изменяемыми частями аминокислоты являются Изменяемыми частями аминокислоты являются
более месяца назад
Смотреть ответ
Просмотров : 13
Ответов : 1
Мономерами ДНК и РНК являются Мономерами ДНК и РНК являются
более месяца назад
Смотреть ответ
Просмотров : 16
Ответов : 1
К полимерам относятся К полимерам относятся
более месяца назад
Смотреть ответ
Просмотров : 15
Ответов : 1
К моносахаридам относятся К моносахаридам относятся
более месяца назад
Смотреть ответ
Просмотров : 12
Ответов : 2
Соединение двух цепей ДНК в спираль осуществляют связи: Соединение двух цепей ДНК в спираль осуществляют связи:
более месяца назад
Смотреть ответ
Просмотров : 26
Ответов : 1
Источник
В зависимости от характера действующих массовых сил поверхность равного давления в жидкости, как и свободная поверхность, может принимать
различную форму. Ниже рассматриваются некоторые случаи равновесия жидкости в движущихся сосудах.
1. Жидкость находится в сосуде, который движется в горизонтальном направлении с постоянным ускорением ±а (знак плюс соответствует ускорению сосуда, знак минус – замедлению ) (см. рисунок).
В данном случае жидкость подвержена воздействию не только поверхностных сил, но также массовых сил тяжести и инерции.
Поверхность равного давления является наклонной плоскостью. Давление в любой точке жидкости определяется по формуле
p = p0 + ρ·(g·z ± a·x),
Для свободной поверхности жидкости, когда р=p0, уравнение принимает вид:
g·z = ± a·x
или
z/x = tg α = ± a/g,
где α – угол наклона свободной поверхности жидкости к горизонту.
Последнее приведенное выше выражение позволяет определять (при условии, чтобы жидкость не переливалась через задний борт сосуда длиной l)
высоту борта h при заданном значении а или предельное ускорение а при заданном значении h.
Если сосуд движется равномерно (а = 0), уравнение приводим к виду:
p = p0 + ρ·g·z = p0·γ
В этом случае поверхность равного давления представляет горизонтальную плоскость.
2. Жидкость находится в открытом цилиндрическом сосуде, который вращается вокруг вертикальной оси с постоянной угловой скоростью ω.
В данном случае жидкость подвержена воздействию не только поверхностных сил, но также массовых сил тяжести и центробежной.
Поверхность равного давления представляет параболоид вращения. Распределение давления в жидкости по глубине определяется выражением:
p = p0 + γ·((ω2·r2)/(2·g) – z)
Для любой точки свободной поверхности жидкости, когда p = p0, уравнение принимает вид:
z = (ω2·r2)/(2·g) = u2/(2·g),
где окружная скорость u = ω·r (r — радиус вращения точки).
Высота параболоида вращения:
h = ω2·r20/(2·g),
где r0 – радиус цилиндрического сосуда.
Сила давления жидкости на дно сосуда:
P = γ·π·r20·h0 = γ·π·r20·(h1 + h/2),
где h0 – начальная глубина жидкости в сосуде до момента его вращения.
Давление на боковую стенку сосуда изменяется по линейному закону. Эпюра давления представляет прямоугольный треугольник ACD с высотой h1 + h и основанием γ·(h1 + h).
3. Жидкость находится в цилиндрическом сосуде, который вращается вокруг горизонтальной оси с постоянной угловой скоростью ω.
В данном случае жидкость также подвержена воздействию массовых сил тяжести и центробежной.
Поверхности равного давления представляют концентрически расположенные боковые поверхности цилиндров, оси которых горизонтальны и смещены относительно оси оу на величину эксцентриситета e = g/ω2 (см. рисунок а).
При большом числе оборотов сосуда влияние силы тяжести по сравнению с влиянием центробежной силы становится незначительным, и, следовательно, величиной эксцентриситета е можно пренебречь. Тогда поверхности равного давления становятся концентрическими цилиндрами, оси которых совпадают с осью сосуда (см. рисунок б).
Распределение давления по глубине жидкости определяется выражением:
p = p0 + γ·ω2·(r2 – r20)/(2·g)
где p и p0 – соответственно давления в точках цилиндрических поверхностей с радиусами r и r0.
Данное уравнение справедливо и тогда, когда сосуд радиусом r лишь частично заполнен жидкостью. Свободная поверхность жидкости в этом случае также будет цилиндрической с радиусом r0 и давлением во всех ее точках р0.
Как видно из последнего уравнения, закон распределения давления по радиусу является параболическим. Эпюра давления представленная на рисунке в.
Такие приближенные решения могут применяться при любом положении оси вращения сосуда, однако при условии большого числа его оборотов.
Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.
Источник
Пусть сосуд с жидкостью движется ускоренно. Будем рассматривать движение жидкости относительно сосуда как неинерциальной системы отсчета и введем силы инерции. Жидкость будет находиться в равновесии под действием всех сил, приложенных к ней, включая и силы инерции.
Рассмотрим сначала случай поступательно движущейся неинерциальной системы отсчета. Пусть, например, железнодорожная цистерна с жидкостью движется с ускорением по горизонтальному прямолинейному участку пути. В системе отсчета, связанной с цистерной, на каждую частицу жидкости будет действовать сила тяжести
(где
— масса частицы), направленная вертикально вниз, и сила инерции —
, направленная горизонтально в сторону, противоположную ускорению цистерны (рис. 315). Сумма этих сил
отклонена от вертикали в сторону, обратную ускорению. Но мы знаем (§ 138), что свободная поверхность жидкости всегда располагается перпендикулярно к силе, действующей на частицы жидкости. Значит, поверхность жидкости наклонится по отношению к горизонту (рис. 316): в состоянии равновесия относительно поступательно движущейся неинерциальной системы отсчета свободная поверхность жидкости оказывается наклоненной к горизонту. Это легко проверить, например, быстро приводя в движение стакан с водой или быстро останавливая его. Если ускорение достаточно велико, вода выплескивается: нести полный доверху стакан «осторожно» — значит нести его с малым ускорением.
Рис. 315. Сумма
сил
и —
отклонена в сторону, обратную ускорению
Рис. 316. Свободная поверхность жидкости в ускоренно движущейся цистерне отклонена в сторону, обратную ускорению
Если ускорение направлено не по горизонтали, а по вертикали, то действие сил инерции сводится к тому, что вес жидкости увеличивается (если ускорение направлено вверх, как при взлете ракеты) или уменьшается (если ускорение направлено вниз). Соответственно увеличивается или уменьшается давление жидкости на дно сосуда. Например, при взлете ракеты или при выводе самолета из пикирования давление горючего на дно баков возрастает (перегрузка). Возрастает и вес крови в сосудах летчика или космонавта: если тело летчика расположено вертикально, это вызовет отлив крови от головы и может привести к обмороку. Поэтому сидения летчиков устраивают так, чтобы ускорение было направлено от спины к груди, а не от ног к голове. Напротив, в условиях невесомости (§ 133) вес жидкости исчезает; жидкость не вытекает из наклоненного или опрокинутого сосуда, выталкивающая сила исчезает: тяжелый предмет в воде не тонет, а легкий не всплывает. О других особенностях в поведении газов и жидкостей в условиях невесомости см. в §§ 212 и 249.
Теперь рассмотрим случай жидкости, покоящейся относительно вращающейся системы отсчета. Подвесим ведерко на длинной нити и, закрутив нить, дадим ей раскручиваться. Стенки вращающегося ведерка увлекут за собой жидкость, и она будет вращаться вместе с ведерком, т. е. окажется в покое относительно ведерка. В этом случае возникает центробежная сила инерции (§ 119), которая растет при удалении от оси вращения. Значит, результирующая силы тяжести и центробежной силы инерции будет все более отклоняться от вертикали при удалении от оси вращения. В результате свободная поверхность жидкости не только отклонится от горизонтали, но и искривится: наклон к горизонтали будет увеличиваться от оси к стенке ведерка (рис. 317). Свободная поверхность жидкости в сечении вертикальной плоскостью оказывается параболой.
Рис. 317. Свободная поверхность воды, покоящейся относительно вращающегося ведерка, и схема сил, действующих на частицы жидкости при разных расстояниях от оси вращения
183.1.
Покажите, что тангенс угла наклона жидкости к горизонту в цистерне, движущейся ускоренно по горизонтальному прямолинейному участку пути, равен отношению ускорения цистерны к ускорению свободного падения.
183.2.
Как расположится свободная поверхность воды: а) в цистерне, свободно скатывающейся по наклонному пути; б) при равномерном движении цистерны по наклонному пути?
183.3.
Поезд идет по закруглению радиуса 1 км со скоростью 72 км/ч. Под каким углом к горизонту расположена свободная поверхность воды в сосуде, стоящем в вагоне?
Источник
В работе рассмотрены некоторые задачи на
движение центра масс, рассматриваемые на
школьном факультативе по физике в Лицее
научно-инженерного профиля города Королева.
Представляется, что данная статья может быть
полезной как для учителей физики школ с
углубленным изучением предмета, так и для
абитуриентов.
Теоретический материал.
Импульс или количество движения
материальной точки есть вектор, равный
произведению массы этой точки m на вектор ее
скорости v: .
Импульс силы – это вектор, равный
произведению силы на время ее действия: . Если сила не
является постоянным вектором, то под F
следует понимать среднее значение вектора силы
за рассматриваемый интервал времени.
Теорема об изменении импульса материальной
точки. Пусть на материальную точку m
действует постоянная сила F. Тогда
, или . Таким образом изменение
импульса материальной точки равно импульсу силы,
действующей на нее.
Импульс системы материальных точек равен
по определению сумме импульсов всех N точек
системы:
Изменение импульса системы материальных точек
равно импульсу равнодействующей внешних сил,
действующих на систему.
Изолированная (замкнутая) система – это
такая система материальных точек, на которую не
действуют внешние силы или их равнодействующая
равна нулю.
Закон сохранения импульса: импульс изолированной
системы материальных точек сохраняется, каково
бы ни было взаимодействие между ними:
Если внешние силы, действующие на систему не
равны нулю, но существует такое неизменное
направление (например, ось OX), что сумма проекций
внешних сил на это направление равна нулю, то
проекция импульса системы на это направление
сохраняется.
Центр масс системы материальных точек.
Центром масс N материальных точек m1,
m2,…, mN, положения которых
заданы радиус-векторами , называют воображаемую точку,
радиус-вектор которой определяется формулой:
.
Тогда координаты центра масс равны:
,
,
.
Скоростью центра масс является вектор
,
где –
скорость i-й точки.
Ускорением центра масс является вектор
где –
ускорение i-й точки.
Теорема об ускорении центра масс системы
материальных точек. Произведение суммы масс
точек системы на ускорение центра масс равно
сумме внешних сил, действующих на точки системы.
Если на систему материальных точек не
действуют внешние силы, то скорость центра масс
относительно любой инерциальной системы отсчета
сохраняется, каково бы ни было
взаимодействие внутри системы.
Если при этом скорость центра масс
относительно некоторой инерциальной системы
была равна нулю, то сохраняется и положение
центра масс.
Два этих утверждения являются прямыми
следствиями закона сохранения импульса.
Примеры задач.
Задача 1. Частица массы m движется со
скоростью v, а частица массы 2m движется со
скоростью 2v в направлении, перпендикулярном
направлению движения первой частицы. На каждую
частицу начинают действовать одинаковые силы.
После прекращения действия сил первая частица
движется со скоростью 2v направлении,
обратном первоначальному. Определите скорость
второй частицы. [1]
Решение.
Изменение импульса частицы массой m
вследствие действия импульса силы равно 3mv,
следовательно вторая частица приобретает точно
такой же импульс перпендикулярно направлению ее
движения. Полный импульс второй частицы
находится векторным сложением его составляющих
по двум перпендикулярным направлениям и равен 5mv.
Скорость второй частицы тогда равна 5v/2.
Задача 2. Ящик с песком массы М лежит на
горизонтальной плоскости, коэффициент трения с
которой равен µ. Под углом ? к вертикали в ящик со
скоростью v влетает пуля массы m и почти
мгновенно застревает в песке. Через какое время
после попадания пули в ящик, начав двигаться,
остановится? При каком значении ? он вообще не
сдвинется? [1]
Решение. Изменение импульса системы
материальных точек равно импульсу
равнодействующей внешних сил, действующих на
систему. По горизонтальной и вертикальной оси:
где u – скорость ящика сразу после того, как
пуля в нем застрянет, N – реакция опоры, – время, за
которое пуля застревает в песке. Из этих
уравнений следует
Так как пуля застревает почти мгновенно
последним членом в правой части можно
пренебречь. После того, как пуля застрянет, ящик
тормозит под действие силы трения с ускорением . Ящик
останавливается за время . Ящик не сдвинется, если .
Задача 3. По наклонной плоскости,
составляющей угол а с горизонтом, с
постоянной скоростью v съезжает ящик с песком
массой M. В него попадает летящая
горизонтально пуля массой m, и ящик при этом
останавливается. С какой скоростью u летела
пуля?
Решение. Вдоль наклонной плоскости изменение
импульса системы
Поперек наклонной плоскости
Тогда
и с учетом того, что (ящик съезжает с постоянной скоростью)
Задача 4. Обезьяна массы m
уравновешена противовесом на блоке А. Блок А
уравновешен грузом массы 2m на блоке В.
Система неподвижна. Как будет двигаться груз,
если обезьяна начнет равномерно выбирать
веревку со скоростью u относительно себя? Массой
блоков и трением пренебречь. [1]
Решение. Обезьяна получает импульс силы и начинает
двигаться со скоростью v к потолку. Точно
такой же импульс силы получает груз m и тоже
движется со скоростью v к потолку. Груз массой
2m получает импульс силы и тоже движется со скоростью v
к потолку. Блок А опускается вниз со скоростью v.
груз m движется относительно блока А
вверх со скоростью 2v. Веревка справа от блока
А движется от потолка со скоростью 3v.
относительно обезьяны веревка движется вниз со
скоростью 4v. Отсюда .
Задача 5. Из однородной круглой пластины
радиусом R вырезали круг вдвое меньшего
радиуса, касающийся края пластины. Найти центр
тяжести полученной пластины.
Решение. Пусть масса пластины до вырезания
равна M. Тогда масса вырезанной части равна M/4.
Предположим, что имеется в наличии вещество с
отрицательной массой, Тогда вырез можно получить
наложением на пластину пластинки с
отрицательной массой –M/4. Тогда, поместив
начало координат в центр круга и направив ось X
направо, положение центра масс получаем из
формулы для координаты центра масс:
.
Задача 6. На гладком полу стоит сосуд,
заполненный водой плотности p0; объем
воды V0. Оказавшийся на дне сосуда жук
объема V и плотности p через некоторое
время начинает ползти по дну сосуда со скоростью u
относительно него. С какой скоростью станет
двигаться сосуд по полу? Массой сосуда пренебречь,
уровень воды все время остается горизонтальным.
[1]
Решение. Пусть скорость сосуда v, тогда
скорость жука относительно пола u+v.
Импульс системы по горизонтальной оси
сохраняется и равен нулю. Удобно рассматривать
жука как совокупность воды массой и сублимированного
вещества жука массой , которое перемещается относительно
всей воды. Тогда импульс системы
и
Задача 7. На дне маленькой запаянной
пробирки, подвешенной над столом на нити, сидит
муха, масса которой равна массе пробирки, а
расстояние от поверхности стола равно длине
пробирки l. Нить пережигают, и за время
падения пробирки муха перелетает со дна в
верхний конец пробирки. Определить время, за
которое пробирка достигнет стола.
Решение. Ускорение центра масс системы
определяется силами тяжести, действующими на
пробирку и муху, и равно g. За время падения
центр масс системы переместился на l/2. Отсюда
время падения .
Задача 8. На нити, перекинутой через блок,
подвешены два груза неравной массы (m2
> m1). Определить ускорение центра масс
этой системы. Массой блока и нити пренебречь. [2]
Решение. Ускорение тяжелого груза направлено
вниз и, как известно, равно . Ускорение легкого груза такое
же по модулю, но направлено вверх. Ускорение
центра масс находим по формуле из теоретического
раздела
Задача 9. В сосуде, наполненном водой
плотности p, с ускорением а всплывает
пузырек воздуха, объем которого V. Найдите
силу давления со стороны сосуда на опору. Масса
сосуда вместе с водой равна m. [1]
Решение. Будем рассматривать системы как
совокупность сосуда с водой массой и шарика с отрицательной
массой ,
который поднимается вверх с ускорением a.
Тогда ускорение центра масс системы
и
направлено вниз. Из теоремы об ускорении центра
масс
, и отсюда
сила давления на опору, численно равная реакции
опоры N,
Задачи для самостоятельного решения.
Задача 10. С горы с уклоном a () съезжают с
постоянной скоростью сани с седоком общей массой
M. Навстречу саням бежит и запрыгивает в них
собака массой m, имеющая при прыжке в момент
отрыва от поверхности горы скорость v,
направленную под углом () к
горизонту. В результате этого сани продолжают
двигаться по горе вниз со скоростью u. Найти
скорость саней до прыжка собаки. (Билет 3, 1991, МФТИ)
[3]
Ответ:
Задача 11. Человек, находящийся в лодке,
переходит с носа на корму. На какое расстояние S
переместится лодка длиной L, если масса
человека m, а масса лодки M? Сопротивлением
воды пренебречь.
Ответ:
Задача 12. На поверхности воды находится в
покое лодка. Человек, находящийся в ней,
переходит с кормы на нос. Как будет двигаться
лодка, если сила сопротивления движению
пропорциональна скорости лодки?
Ответ: Лодка сместится, а затем вернется в
исходное положение.
Задача 13. На первоначально неподвижной
тележке установлены два вертикальных
цилиндрических сосуда, соединенных тонкой
трубкой. Площадь сечения каждого сосуда S,
расстояние между их осями l. Один из сосудов
заполнен жидкостью плотности p. Кран на
соединительной трубке открывают. Найдите
скорость тележки в момент времени, когда
скорость уровней жидкости равна v. Полная
масса всей системы m. [1]
Ответ:
Задача 14. На тележке установлен
цилиндрический сосуд с площадью сечения S,
наполненный жидкостью плотности p. От сосуда
параллельно полу отходит длинная и тонкая
горизонтальная трубка, небольшой отрезок
которой вблизи конца загнут по вертикали вниз.
Расстояние от оси сосуда до отверстия трубки
равно L. Уровень жидкости в сосуде опускается
с ускорением а. Какой горизонтальной силой
можно удержать тележку на месте? [1]
Ответ:
Литература.
1. Задачи по физике: Учеб. пособие/ И.И. Воробьев,
П.И. Зубков, Г.А. Кутузова и др.; Под ред. О.Я.
Савченко. ? 2-е изд., перераб. М.: Наука. Гл. ред.
физ.-мат. лит. 1988. – 416 с.
2. Дмитриев С.Н., Васюков В.И., Струков Ю.А. Физика:
Сборник задач для поступающих в вузы. Изд. 7-е, доп.
М: Ориентир. 2005. – 312 с.
3. Методическое пособие для поступающих в вузы /
Под. ред. Чешева Ю.В. М.: Физматкнига, 2006. – 288 с.
Источник