Сосуд с жидкостью сообщающиеся сосуды задачи
Из-за перепадов высот реки имеют разные глубины, что затрудняет или даже делает невозможным движение по ним судов. Поэтому строят шлюзы, которые рассчитывают по принципу сообщающихся сосудов. Формулы, используемые для вычислений, были получены в результате теоретического анализа, а после подтверждены экспериментально. Эти правила применяют при строении фонтанов, гидравлических прессов, плотин и различных устройств.
Общие сведения
В древние времена перед человечеством возникла проблема доставки воды в свои жилища. Так появились акведуки, а после и водопроводные трубы, канализация. В те времена механизмы ещё не были придуманы, поэтому задача решалась с помощью природных сил. Суть изобретений заключалась в организации самотёка жидкости за счёт изменения высот желобов и труб.
Использование таких систем хоть и позволяло справляться с поставленной задачей, но приносило определённые неудобства. Работа трубопроводов заключалась в использовании свойств жидкости перетекать из одного места в другое за счёт изменения оказываемого давления.
В 1684 году Паскаль продемонстрировал парадокс. Для этого он использовал:
- закрытую бочку с водой;
- герметичную трубку;
- кружку.
Его опыт заключался в следующем. Один конец трубки был вставлен в бочку, а второй вертикально поднят на высоту порядка шести метров. В свободный конец Паскаль вылил кружку воды. Из-за малого диаметра трубки вода стала подниматься, а бочка лопнула. Как оказалось, в середине ёмкости создалось большое давление, привёдшее к её повреждению.
Этот парадокс объясняется законом Архимеда. Он гласит, что на тело, погруженное в воду, действует выталкивающая сила, равная весу жидкости. Значит, тело не сможет плавать в ней. Но это ошибочное рассуждение. Так как на самом деле архимедова сила появляется из-за гидростатического давления, зависящего от размера водяного столба, а не веса воды.
Поэтому тело и может находиться на поверхности резервуара, если его масса будет меньше веса воды. Это возможно, когда резервуар ненамного превышает размеры физического тела. Например, судно не тонет в ограниченном доке, так же как в и открытом океане, несмотря на то что масса воды между плавающим средством и стенами порта может быть меньше, чем вес корабля.
Закон Паскаля описывается формулой давления: P = F / S, где:
- p — давление;
- F — приложенная сила;
- S — площадь поверхности сосуда.
Из выражения следует, что увеличение силы на стенки удерживающие возрастает пропорционально. Давление принято изменять в ньютонах на квадратный метр или в паскалях. Этот закон нашёл применение в тормозных системах, гидравлических прессах.
Условие равновесия
Пусть имеются два сосуда, при этом они могут иметь разную форму и размеры. В нижней части они сообщаются, то есть соединяются с помощью трубки, которая имеет запорный вентиль. Ёмкость, стоящую слева, удобно обозначить цифрой один, соответственно, с правой стороны — два. В первую колбу можно налить жидкость, высота столба которой составляет h1. Её плотность пусть будет равняться p1. Во втором сосуде налито другое вещество с плотностью p и расстоянием от поверхности до дна h2.
Можно предположить, что высоты столбов подобраны так, что при открытии крана движение водного раствора не произойдёт. То есть он не будет перетекать из одной ёмкости в другую. Это важно для рассуждений, так как в другом случае жидкости просто перемешаются. Поэтому пусть растворы находятся в состоянии равновесия. Значит, давление и в первом, и во втором сосудах в нижних точках трубки будет одинаковым.
Действительно, если представить, что вместо крана стоит лёгкая перегородка, то для того, чтобы она осталась на своём месте, давление с её двух сторон должно быть скомпенсировано. Другими словами, в системе должны действовать одинаковые силы.
Так как растворы находятся в равновесии, то можно записать: P1 = P2. Давление можно выразить через плотность и высоту столба. Для рассматриваемого случая оно будет гидростатическим. Определяют его по формуле: p = ρ * g * h, где:
- ρ — плотность искомой жидкости;
- g — ускорение свободного падения;
- h — высота столба.
Полученное равенство справедливо как для первой, так и второй ёмкости. Его можно подставить в равенство равновесия: ρ1 * g * h1 = ρ2 * g * h2. После того как левую и правую часть сократить на g, формула примет вид: ρ1 * h1 = ρ2 * h2. Последнее выражение для сообщающихся сосудов и описывает условие равновесия.
Теперь можно рассмотреть частный случай, когда обе ёмкости заполнены однородной жидкостью. Это означает, что ρ1 = ρ2 = ρ. Условие равновесия примет вид: ρh1 = ρh2. Выражение можно сократить на плотность. Отсюда следует, что h1 = h2. Найденное правило называют математическим действием закона сообщающихся сосудов.
Опираясь на выведенную формулу, можно сформулировать закон словами. Но для этого нужно вспомнить, что такое h1 и h2. По сути, это расстояние от свободной поверхности жидкости, рассчитываемое по вертикали. Отсюда следует определение, что свободные поверхности однородной жидкости в соединённых ёмкостях устанавливаются на одинаковой высоте.
Опыт на сообщение
Чтобы открыть свой закон, Паскалю понадобилось использовать для опытов только два сосуда. Всё дело в том, что, согласно формуле, на установившийся уровень жидкости не влияет форма, размер, масса и другие характеристики. Если они сообщающиеся, то высота столба во всех ёмкостях будет одинаковой.
Для того чтобы самостоятельно убедиться в действии закона, можно провести простой эксперимент. Понадобится взять два любых шприца, наполнить один из них водой и соединить с другим трубочкой. Затем поднять их на любой уровень и убедиться, что водяная линия столбов будет находиться в одной горизонтали. Причём она не изменится даже при наклоне сосудов.
Проведённый опыт не будет называться полным, если не провести эксперимент с разными жидкостями. Так, если налить растворы с отличающейся плотностью, то можно наблюдать, что водяной столб не сможет выровняться.
Например, такое явление особо заметно, если попробовать смешать раствор поваренной соли и воды. Интересно то, что высота столба будет настолько меньше, насколько отличается плотность.
Решение примеров
В школе после рассмотрения темы преподаватель часто предлагает школьникам написать реферат или подготовить небольшое сообщение для видеоурока. В таком докладе, кроме теории, рекомендуется приводить несколько задач. Их решение желательно сопровождать рисунками, чтобы наглядно продемонстрировать в проекте, как работают сообщающиеся сосуды.
Физики обычно демонстрируют полезность явления на следующих двух примерах:
- Труба с площадью сечения S погружена в чашу со ртутью на одну треть. Не изменяя положение нижнего конца трубки, её наклон изменили на угол j. Определить, как поменялась высота. Если принять размер столба ртути за h, то, зная площадь сечения трубки, можно вычислить объём жидкости: V = S * h. Длину, которую занимает жидкость, можно определить так: l = h / cos (j). Значит, объём будет равняться: V1 = S * l = (S * h) / cos (j). Отсюда возможно определить изменение объёма в трубке: ΔV = V1 — V = (S * h) / c o s (j) — S * h. Так как площадь ёмкости равняется: S = π * D2 / 4, то искомая высота составит: Δh = Δ V * S = 4 * S * h * (1 − cos (j) / cos (j) * π * D 2 ).
- Какой площадью нужно изготовить отливной поршень в водяном прессе, чтобы выигрыш был в шесть раз? Площадь большого рычага равна двум метрам. Рассматриваемая система есть не что иное, как гидравлический пресс. То есть это два сообщающихся сосуда. Если принять, что большему поршню S соответствует сил F, а меньшему — S1 и F1, то по закону Паскаля они будут относиться друг к другу как F / S = F1 / S1. Из этого равенства можно выразить искомую площадь: S1 = F1 * S / F. Согласно условию: F1 / F = 6. Значит, расчётная формула примет вид: S = S * n = 2 * 6 = 12.
Даже не заглядывая в Википедию, можно привести множество примеров использования свойства как в быту, так и в природе. Например, перелив в ванной, поилка для домашних птиц, различные устройства полива, чайник, фонтаны, шлюзы. В работе всех этих вещей используется закон для сообщающихся сосудов. Но самый простой пример — это применяемый в строительстве водяной уровень. Причём его конструкция настолько проста, что повторить её сможет любой даже в домашних условиях.
Источник
23. Давление в жидкостях. Сообщающиеся сосуды
Сборник задач по физике, Лукашик В.И.
505. Сосуд с водой имеет форму, изображенную на рисунке 132. Одинаково ли давление воды на боковые стенки сосуда на уровне аб?
На уровне ab давление воды на боковые стенки одно и то же (см. рис. 132).
506. Цилиндрические сосуды уравновешены на весах (рис. 133). Нарушится ли равновесие весов, если в них налить воды столько, что поверхность ее установится на одинаковом уровне от дна сосудов? Одинаково ли будет давление на дно сосудов?
Равновесие весов нарушается, так как в разных сосудах различная масса воды. Давление на дно сосуда будет одинаковым, так как высота столба воды в обоих сосудах одна и та же (см. рис. 133)
507. Цилиндрические сосуды уравновешены на весах (см. рис. 133). Мальчик налил в оба сосуда воду одинаковой массы. Нарушилось ли равновесие весов? Одинаково ли будет давление воды на дно сосудов?
Равновесие весов не нарушилось. Давление воды на дно сосуда будет различным, так как уровень налитой воды будет различным (см. рис. 133).
508. В цилиндрический сосуд, частично заполненный водой, опустили деревянный брусок. Изменилось ли давление воды на дно сосуда?
Давление воды на дно увеличилось, так как при опускании в воду деревянного бруска ее уровень поднялся.
509. В трех сосудах с одинаковой площадью дна налита вода до одного уровня (рис. 134). В каком сосуде налито больше воды? Одинаково ли давление на дно в этих сосудах? Почему?
Воды налито больше в крайнем левом сосуде. Давление на дно будет одинаковым во всех трех сосудах, так как везде вода налита до одного уровня (см. рис. 134).
510. Уровень воды в сосудах одинаковый (рис. 135). Будет ли переливаться вода из одного сосуда в другой, если открыть кран?
При открывании крана вода из одного сосуда в другой переливаться не будет, так как уровень воды в сосудах будет одинаковый, а следовательно давление воды на любом уровне так же одинаково (см. рис. 135).
511. Уровень жидкостей в сосудах (см. рис. 135) одинаковый. В левом налита вода, в правом — керосин. Одинаковы ли давления на дно? Одинаковы ли давления на кран? Будет ли переливаться жидкость из одного сосуда в другой, если открыть кран?
Давление воды на дно и на кран больше, чем давление керосина. Объясняется это тем, что плотность воды больше плотности керосина. Если кран открыть, то вследствие разности давлений вода потечет в сосуд с керосином (см. рис. 135).
512. В левой части сосуда над жидкостью находится воздух (рис. 136). Какую высоту столба жидкости следует учитывать при расчете давления на дно сосуда: высоту Н или высоту H1? Ответ объясните.
513. В полиэтиленовый мешок налита вода (рис. 137). Что показывают динамометры: давление или силы, действующие на столики динамометров? Стрелка правого динамометра закрыта листом бумаги. Каково показание правого динамометра? Будут ли изменяться показания динамометров, если воду в мешок доливать (выливать)? Ответы обоснуйте.
Динамометры показывают силы давления жидкости на боковые стенки сосуда с водой. Показания их одинаковы и равны 70Н. Если воду в мешок доливать, то показания динамометров увеличатся, а если воду выливать, то уменьшатся, т.к. увеличится либо уменьшится давление столба жидкости (см. рис.137).
514. Одинаково ли давление воды на дно сосудов (рис. 138)? Чему равно это давление? Изменится ли давление, если воду заменить керосином? Чему оно будет равно в этом случае?
515. Высота столба воды в стакане 8 см. Какое давление на дно стакана оказывает вода? Какое давление оказывала бы ртуть, налитая до того же уровня?
516. Какое давление на дно сосуда оказывает слой керосина высотой 0,5 м?
517. В цилиндрический сосуд налиты ртуть, вода и керосин. Определите общее давление, которое оказывают жидкости на дно сосуда, если объемы всех жидкостей равны, а верхний уровень керосина находится на высоте 12 см от дна сосуда.
518. Сосуды с водой имеют равные площади дна (рис. 139). В каком из них избыточное давление воды на дно (без учета атмосферного давления) больше и во сколько раз?
519. Водолаз в жестком скафандре может погружаться в море на глубину 250 м, искусный ныряльщик — на глубину 20 м. На сколько и во сколько раз отличаются давления воды на этих глубинах?
520. Рассчитайте давление воды: а) на самой большой глубине Тихого океана — 11 035 м; б) на наибольшей глубине Азовского моря — 14 м (плотность воды в нем принять равной 1020 кг/м3).
521. Определите по графику (рис. 140) глубину погружения тела в озеро, соответствующую давлению воды 100, 300 и 500 кПа.
10 м; 30 м; 50 м (рис. 140).
522. Аквариум наполнен доверху водой. С какой силой давит вода на стенку аквариума длиной 50 см и высотой 30 см?
523. В аквариум высотой 32 см, длиной 50 см и шириной 20 см налита вода, уровень которой ниже края на 2 см. Рассчитайте: а) давление воды на дно; б) вес воды; в) силу, с которой вода действует на стенку шириной 20 см.
524. Ширина шлюза 10 м. Шлюз заполнен водой на глубину 5 м. С какой силой давит вода на ворота шлюза?
525. В цистерне, заполненной нефтью, на глубине 3 м имеется кран, площадь отверстия которого 30 см2. С какой силой давит нефть на кран?
526. Прямоугольный сосуд вместимостью 2 л наполовину наполнен водой, а наполовину керосином, а) Каково давление жидкостей на дно сосуда? б) Чему равен вес жидкостей в сосуде? Дно сосуда имеет форму квадрата сo стороной 10 см.
527. Определите силу, с которой действует керосин на квадратную пробку площадью поперечного сечения 16 см2, если расстояние от пробей до уровня керосина в сосуде равно 400 мм (рис. 141).
528. Какую силу испытывает каждый квадратный метр площади поверхности водолазного костюма при погружении в морскую воду на глубину 10 м?
529. Плоскодонная баржа получила пробоину в дне площадью 200 см2. С какой силой нужно давить на пластырь, которым закрывают отверстие, чтобы сдержать напор воды на глубине 1,8 м? (Вес пластыря не учитывать.)
530. Определите высоту уровня воды в водонапорной башне, если манометр, установленный у ее основания, показывает давление 220000 Па.
531. На какой глубине давление воды в море равно 412 кПа?
532. Напор воды в водокачке создается насосом. Определите на какую высоту поднимается вода, если давление, созданное насосом, равно 400 кПа?
533. Брусок размером 0,5×0,4×0,1 м находится в баке с водой на глубине 0,6 м (рис. 142). Вычислите: а) с какой силой вода давит на верхнюю грань бруска; б) на нижнюю грань бруска; в) сколько весит вода, вытесненная бруском.
534. Произведите расчет, взяв данные предыдущей задачи, предполагая, что воду заменили керосином.
535. Используя результаты двух предыдущих задач, вычислите, на сколько сила, действующая на тело снизу, больше силы, действующей на тело сверху: а) в воде; б) в керосине. Сравните полученные результаты с весом вытесненной воды и с весом вытесненного керосина.
536. Один из кофейников, изображенных на рисунке 143, вмещает больше жидкости, чем другой. Укажите какой и объясните.
Правый кофейник вмещает больше жидкости, чем левый, гак как у него кончик носика находится выше.
537. Точкой А обозначен уровень воды в левом колене трубки (рис. 144). Сделайте рисунок и на нем отметьте точкой В уровень воды в правом колене трубки.
538. В сообщающиеся сосуды налита вода. Что произойдет и почему, если в левый сосуд долить немного воды (рис. 145); в средний сосуд долить воды (рис. 146)?
Уровень воды увеличится во всех сосудах на одинаковую высоту. Таким образом, уровни снова выравнятся (рис. 145, 146).
539. Справедлив ли закон сообщающихся сосудов в условиях невесомости? Объясните почему.
Закон сообщающихся сосудов в условиях невесомости не действует, так как жидкости в состоянии невесомости не обладают весом и потому не оказывают давления на дно сосудов.
540. Как при помощи сообщающихся сосудов проверить, горизонтально ли нанесена филенка (линия, отделяющая окраску панели от верхней части стены)?
Нужно взять длинную тонкую резиновую трубку, вставить стеклянные трубки на концах, залить эту систему водой, а концы стеклянных трубок подвести к филенке. Используя свойство сообщающихся сосудов, пройтись с одной из стеклянных трубок вдоль стены.
541. Объясните действие фонтана (рис. 147).
Действие фонтана объясняется тем, что давление жидкости в верхнем конце правой трубки будет больше атмосферного, так как уровень воды в этой трубке меньше уровня воды в левой трубке.
542. В левом колене сообщающихся сосудов налита вода, в правом — керосин (рис. 148). Высота столба керосина 20 см. Рассчитайте, на сколько уровень воды в левом колене ниже верхнего уровня керосина.
543. В сообщающихся сосудах находятся ртуть и вода (рис. 149). Высота столба воды 68 см. Какой высоты столб керосина следует налить в левое колено, чтобы ртуть установилась на одинаковом уровне?
544. В сообщающихся сосудах находилась ртуть. Когда в правую трубку налили слой керосина высотой 34 см, то уровень ртути в левой трубке поднялся на 2 см. Какой высоты следует налить слой воды в левую трубку, чтобы ртуть в трубках установилась на одинаковом уровне (рис. 149)?
545. В сообщающихся сосудах находятся ртуть, вода и керосин (рис. 150). Какова высота слоя керосина, если высота столба воды равна 20 см и уровень ртути в правом колене ниже, чем в левом, на 0,5 см?
Источник
1.5. Гидростатика
Давление. Сила давления
Давление равно отношению силы давления к площади. Это универсальное определение относится к твердым телам, жидкости, газу.
Способы увеличения давления: увеличить силу; уменьшить площадь. Давление в твердых телах передается в том же направлении, в котором действует сила. При решении задач (например, тело на наклонной плоскости) рассматриваются проекции сил — давление тела на плоскость и реакция опоры — на оси координат. Направление движения тела, при действии несколкиз сил, не совпадает с направлением силы давления на тело.
Гидростатика. Закон Паскаля: давление, производимое на жидкость или газ, передается жидкостью или газом во все стороны одинаково. Это связано с подвижностью молекул в жидком и газообразном состояниях.
Давление столба жидкости:
(ро же аш), где ρ — плотность жидкости, g — ускорение свободного падения.
h – высота столба жидкости или глубина, на котороей измеряется давление.
Сила давления: F = p S . Используя две формулы, находим силу давления на дно сосуда, на боковую грань аквариума и т.п. Экзаменационные задачи на эту тему простые; вычисляйте всё в системе СИ.
Гидростатический парадокс (следствие закона Паскаля): давление на дно сосуда определяется только высотой столба жидкости. И не только на дно, но и вообще на данной глуибне. Независимо от фомы сосуда и его размеров (см. формулу выше).
Поэтому в трех сосудах давление на дно одинаково.
Но сила давления разная — не путаем понятия!
Сообщающиеся сосуды
Сообщающиеся сосуды – сосуды, соединенные между собой (трубкой) или имеющие общее дно.
Уровень жидкости в сообщающихся сосудах располагается горизонтально, если:
поверхности жидкости открыты;
в сосуды налита однородная жидкость;
ни один из сосудов не является капилляром;
в жидкостях нет пузырьков с воздухом.
Давление столбов жидкости на одном горизонтальном уровне одинаково:
Гидравлический пресс – простой механизм, дающий выигрыш в силе. Он представляет собой сообщающиеся сосуды разного сечения. В основе его действия лежит закон Паскаля.
Внешняя сила, действующая на малый поршень, совершает работу. Давление в жидкости одинаково. (Высота столбов жидкостей в цилиндрах пресса меняется, но в задачах это не учитывается.
Такой пресс может работать в любом положении и в невесомости.)
Сила давления жидкости, действующая на большой поршень совершает полезную работу. Из меньшего цилиндра в больший перемещается некоторый объем жидкости — при этом перемещение меньшего поршня больше. Выигрыш в силе аналогичен действию рычага. Затрачиваемая и совершаемая работы одинаковы (если КПД 100%).
Источник
Источник