Сосуд вращающийся относительно вертикальной оси

Сосуд вращающийся относительно вертикальной оси thumbnail

В случае равномерного вращения цилиндрического сосуда вокруг вертикальной оси с угловой скоростью ш (рис. 2.25) уравнение любой изобарической поверхности = const) имеет вид

где z — координата точки пересечения свободной поверхности с осью вращения;

Изобарические поверхности — параболоиды вращения, ось которых совпадает с осью Oz, а вершины смещены вдоль этой

Рис. 2.25. Вращение цилиндрического сосуда вокруг вертикальной оси оси. Форма изобарических поверхностей не зависит от плотности жидкости.

Изменение давления по вертикали

т.е. такое же, как в неподвижном сосуде.

Пример 2.6. Вертикальный цилиндрический сосуд диаметром D = 40 см и высотой Н = 100 см наполнен до половины водой (рис. 2.26). Определить, с каким предельным числом оборотов можно вращать этот сосуд вокруг сто геометрической вертикальной оси, чтобы из него нс выливалась вода, а также силу давления жидкости на дно сосуда.

Рис. 2.26. Поверхности равного давления во вращающемся сосуде

Решение. Из рис. 2.26 видно, что Н = Zq + h. В соответствии с формулами (2.16) и (2.17)

Тогда

Начальный уровень Л0 в резервуаре по условию равен Н/2. Следовательно,

Соответственно

Предельное число оборотов
(об/мин).

Для определения силы давления жидкости на дно сосуда найдем распределение избыточного давления, полагая р0 = р ‘.

Координату z0 вершины параболоида определим по формуле
т.с. параболоид свободной поверхности касается дна сосуда. Тогда

Для точек на дне сосуда (z = 0) избыточное давление определим следующим образом:

Силу давления на дно сосуда найдем как сумму элементарных сил давления, действующих на элементарные кольцевые площадки, равные 2nrdr.

Задачи для самостоятельного решения

  • 2.18. Призматический сосуд дайной 3 м и шириной 1 м, перемещающийся горизонтально с постоянным ускорением 0,4g, разделен на два отсека, заполненных водой до высот 1 м и 1,75 м соответственно. Определить результирующую силу давления воды на перегородку, разделяющую отсеки.
  • 2.19. Измеритель ускорения тела, движущегося горизонтально, представляет собой закрепленную на нем U-образную трубку малого диаметра, наполненную жидкостью. Определить, с каким ускорением движется тело, если при движении в коленах измерителя установилась разность уровней жидкости 75 мм при расстоянии между уровнями 250 мм.

Рис. 2.27. К определению поверхности равного давления при равномерном вращении сосуда с жидкостью

Рис. 2.28. К определению относительного равновесия жидкости в закрытом равномерно вращающемся сосуде

2.20. Сосуд, имеющий форму усеченного конуса, заполнен водой до половины высоты и приводится во вращение вокруг своей вертикальной оси (рис. 2.27). Определить наибольшее число оборотов, при котором вода не будет выливаться из сосуда, если И =

= а = 0,8 м и угол а = 45°.

  • 2.21. Закрытый цилиндрический сосуд, радиус которого г, = 50 см, равномерно вращается относительно вертикальной оси. При этом уровень жидкости в открытой трубке малого диаметра, установленной на расстоянии г2 = 35 см от центра, расположен на высоте И =
  • 40 см (рис. 2.28). Плотность жидкости равна 800 кг/м3; атмосферное давление 760 мм рт. ст. Определить наибольшую

угловую скорость, при которой сохранится относительное равновесие жидкости. Давление насыщенных паров жидкости равно 49 кПа[1].

2.22. Закрытый сверху крышкой цилиндр диаметром 0,9 м и высотой 0,8 м содержит 0,35 м3 воды и вращается вокруг вертикальной оси с угловой скоростью 100 с1. Определить усилия, действующие при этом на крышку цилиндра, если давление на поверхности воды атмосферное.

Источник

Содержание:

  • Равновесие жидкости в сосуде, равномерно вращающемся относительно вертикальной оси.

Равновесие жидкости в сосуде, равномерно вращающемся относительно вертикальной оси

Равновесие жидкости в сосуде, равномерно вращающемся относительно вертикальной оси. В состоянии равновесия в движущемся сосуде жидкость движется вместе со всем контейнером. То есть, жидкость находится в относительном состоянии покоя. Рассмотрим цилиндрический контейнер радиусом H (рис. 2.9), заполненный до определенного уровня жидкостью плотностью p и вращающийся с постоянной угловой скоростью относительно вертикальной оси.

Через некоторое время после начала вращения сосуда жидкость под действием трения вращается с той же скоростью, что и сосуд. Равновесие жидкости устанавливается для сосуда, другими словами, для неинерциальных систем координат x, y, r, которые вращаются вместе с сосудом. При написании уравнений равновесия в неинерциальных системах необходимо ввести силу подвижной инерции в число рабочих forces.

В абсолютно покоящейся жидкости (сосуд неподвижен) действующей массовой силой (в поле сил тяжести) является только сила тяжести.
Людмила Фирмаль

  • В рассматриваемом случае такая сила направлена вдоль радиуса и равна & M (центробежная сила равна n2g элементарной массы AM, которая вращается на расстоянии r от вертикали axis. In помимо центробежной силы, гравитация DM ^действует на любую частицу AM-это: за счет силы тяжести ^ = ° ;=°; ПГХ = —§; От портативной инерции п *. =<sup class=»reg»>®</sup>ГХ Риш-0)2 в> пр%= 0、 Где*и y-горизонтальные координаты произвольно выбранной точки А в жидкости. Рассмотрим 2 вопроса здесь. 39.

Форма поверхности одинакового давления. Используйте уравнение поверхности равного давления (2.10)’ Rhyh + ру ю + Rghyg-0 Когда вы назначаете ему выражения Px, Py и Pr, вы находите co2 x yx + co2 yy-diig-0. После интеграции、 гг-(* 2 + У2) §Р= С Или Х2 + У2-Г2.、 СО2-Р2 / 2 §р= с(2.23) Как видно из (2.23), поверхность равного давления в этом случае представляет собой семейство совпадающих 1-вращающихся параболоидов с вертикальной осью. Различные значения константы C соответствуют различным параболам одинакового давления.

  • Свободная поверхность это также поверхность, на которой давление во всех точках равно давлению, равному внешнему давлению p0. Найти значение любой константы c параболоида свободной поверхности. Х-0; У = 0; РСВ = Р0.Если подставить эти координаты в Формулу (2.23), то: Ц0 = § 0. Уравнения свободной поверхности * С ш-Р0 = ^ (*2 +! 2. ) 2-й. Или Огнестрел-20 = СО2 Г2 / 2Д, (2.24) Частицы жидкости, находящиеся в относительном стационарном состоянии во вращающемся сосуде на расстоянии радиуса r от оси вращения, имеют линейную скорость u-(π.
Читайте также:  Расширены сосуды в глазах что делать

Высота, на которой точка свободной поверхности выше вершины параболоида(например、 Б = РК-Р0 = СО2 Р2 /2§= С2 / 2С (2.25) 1 матч-фигура, которая будет объединена при наложении. 40. 20 ордината вершины параболоида свободной поверхности при заданной угловой скорости зависит от количества жидкости в сосуде. Если перед вращением сосуда уровень жидкости был установлен на горизонтальную и высоту H, то объем жидкости был равен 2N2H.

Законы относительного равновесия жидкости находят широкое применение в промышленности, а именно, в измерительной технике (жидкостные тахометры), в металлургии (центробежное литье) и других областях техники.
Людмила Фирмаль

  • При вращении сосуда свободная поверхность становится параболой, форма объема жидкости изменяется, а величина при p = const{остается неизменной: | (Р0 +(r212d О2 ) О После интеграции、 Ч ■= рН + П2 К2 / 4Д Или Р0 = я-п * д * / 4#. Предполагая, что 20 = 0, мы знаем угловую скорость a, когда свободная поверхность жидкости касается дна контейнера. w = 2 Уды / я. Закон распределения давления. Используя дифференциальное уравнение жидкостных равновесий (2.5) и подставляя в него проекцию распределения плотности массовых сил, он выглядит следующим образом: гг = pY2(xc1x + ыыы) Сделай сам.

После интегрирования уравнения(2.26)、 / ? п(w2g72-ДГ)+ КБ(2.27) Если подставить координаты r = 0, r-r0 и давление p = p0 в уравнение (2.27), то получим Cp. С1! = Р0-Р (н0)= Р0 + rd0 Подставляя найденные значения C1 в(2.27), получаем 2r2 / 2d = H ’позволяет переписать любую точку в виде (2.28). Здесь k-глубина погружения точки под свободную поверхность, то есть вертикальное расстояние от свободной параболы до точки задачи. Поэтому в жидкости, которая неподвижна в равномерно вращающемся сосуде, вертикальное давление распределяется по закону гидростатического давления.

Смотрите также:

Задачи по гидравлике

Возможно эти страницы вам будут полезны:

  1. Равновесие однородной несжимаемой жидкости относительно земли.
  2. Геометрическая интерпретация основного уравнения гидростатики.
  3. Силы давления покоящейся жидкости на горизонтальные и наклонные плоские площадки (стенки).
  4. Силы давления покоящейся жидкости на цилиндрические стенки.

Источник

Сегодня я заварил себе чай и задумался

Сегодня утром я задумался, пока размешивал два кубика сахара в чашке с только что заваренным чаем. Задумался о форме жидкости, которую она принимает при вращении. Безусловно, все представляют себе что будет, если очень быстро начать размешивать сахар в чашке с чаем. Мне захотелось рассмотреть этот банальный и привычный процесс подробнее и попытаться рассказать Вам немного интересного из физики окружающих нас в быту явлений.

Идея эксперимента

Давайте представим, что мы имеем некоторую цилиндрическую тару, в которой находится некоторая жидкость. Вращаться жидкость можно заставить, как минимум, двумя очевидными способами: размешать её каким-нибудь предметом или начать вращать цилиндрическую тару, что, благодаря силам трения между жидкостью и поверхностью сосуда, приведет к вращению жидкости, увлекаемой содержащим её вращающимся сосудам.

Физическая модель

Остановимся на втором варианте. Итак, у нас есть вращающийся с постоянной циклической частотой сосуд, в котором при динамическом равновесии с постоянной циклической частотой вращается жидкость в том же направлении.

Вырежем из всей жидкости элементарный бесконечно малый объем около поверхности и рассмотрим какие силы на него действуют. В силу симметрии задачи, будем ориентироваться на цилиндрические координаты, что заметно упростит расчеты.

Качественный расчет формы поверхности

Запишем второй закон Ньютона для элементарного кусочка объема жидкости:

К примеру, после размешивания ложкой сахара в чашке только что заваренного чая, жидкость вращается вокруг оси симметрии, отсюда наш элементарный кусочек объема имеет центростремительное ускорение. Поэтому спроецируем наш закон Ньютона на ось, совпадающую с радиусом-вектором от элементарного объема до оси симметрии. Не будем учитывать вязкость и поверхностное натяжение. Сила, сообщающая центростремительное ускорение (в правой части нашего закона движения) возникнет из-за разности давлений столбов жидкости, что можно увидеть на увеличенной части первого рисунка.

Таким образом, у нас получится следующее выражение:
, где , а та самая сила определится как , где площадью эффективного сечения обозначена та площадь нашего элементарного объема, на которую действует разница давлений столбов жидкости .
Получаем силу

Масса нашего элемента объема определяется по знакомой всем формуле , а сам объем будет равен (элементарный объем в цилиндрических координатах).
В итоге, 2 закон Ньютона для нашей маленькой задачки расписывается в следующее выражение:

После небольших сокращений и преобразований получаем:

Теперь проинтегрируем обе части выражения, используя неопределенные интегралы:

Детальный расчет формы поверхности

Теперь мы получили вполне ясную зависимость для формы поверхности и с уверенностью можем сказать, что это параболоид. Но нам неизвестна постоянная величина . Давайте её определим для полного понимания физики процесса.

Так как объем жидкости не меняется (мы считаем, что не пролили ни капли, пока размешивали наш чай ツ), то запишем объемы до вращения и во время вращения с постоянной циклической частотой.

Читайте также:  Бог хапи и его сосуды

До вращения:
, где — это высота жидкости в цилиндрической поверхности в спокойном состоянии (вращения нет).

Во время вращения:

Данные объемы равны, поэтому:

Отсюда выражается ранее неизвестная постоянная:
И окончательное уравнение формы поверхности вращающейся жидкости имеет вид:
или преобразовав

Некоторые заметки

Хотелось бы обратить внимание на то, что форма поверхности зависит от частоты вращения, ускорения свободного падения, геометрических параметров сосуда, первоначального объема жидкости, но не зависит от плотности жидкости. Это выражение мне показалось довольно интересным, так как с его помощью можно легко смоделировать примерное расположение жидкости внутри вращающегося вокруг своей оси симметрии цилиндрического сосуда. Для этого можно воспользоваться MathCAD’ом и построить несколько графиков.

Графическое представление результатов расчета

Возьмем вполне реальные параметры системы, соизмеримые с размерами чашки или стакана.
Радиус цилиндрической поверхности:
Высота жидкости в цилиндрической поверхности без вращения:
Ускорение свободного падения:
Циклическая частота вращения цилиндрической поверхности:
(Все значения этих величин заданы в системе Си)

Далее перепишем нашу функцию для её отображения в MathCAD.
Для 2D отображения сечения:

Для 3D отображения поверхности:

В качестве изменяющегося параметра будем менять циклическую частоту вращения . Результаты можно наблюдать на рисунках ниже:

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

Выводы

Видно, что если циклическая частота превысит значение , то мы увидим дно вращающегося цилиндрического сосуда, и, начиная с этой частоты, жидкость будет плавно «переходить» на стенки сосуда, всё сильнее оголяя дно. Очевидно, что при очень больших частотах вся жидкость растечется по стенкам сосуда. Теперь мы знаем все параметры такой жидкости. Зная её уравнение, не составит большого труда рассчитать толщину слоя жидкости на стенке сосуда на определенной высоте при определенной частоте.

upd. Отдельно хотелось бы подчеркнуть те противоречащие друг другу допущения, которые были приняты при рассмотрении задачи:
1. Считалось что, жидкость вращается благодаря вращению сосуда, который её содержит. Это может быть только при учете внутреннего трения, вязкости и поверхностного натяжения.
2. Но при выводе формы поверхности эти явления не учитываются для того, чтобы упростить решение и показать только качественный результаты моделирования. Т.е. решение немного противоречит описываемой изначально модели. Учет всех явлений, включая нелинейность процесса при высоких частотах, настолько бы усложнил задачу, что её вряд ли можно было бы решить аналитически и показать примерную и понятную модель для человека, который не связан с математикой/физикой.
3. Цель состоялась в том, чтобы показать лишь очень приближенное и самое простое решение, включающее в себя ряд допущений.

Источник

Вращение сосуда с жидкостью вокруг вертикальной оси

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему постоянную угловую скорость w вращения вокруг вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная по­верхность ее видоизменится: в центральной части уровень жидкости понизится, у стенок – повысится, и вся свободная поверхность жидкости станет некоторой поверхностью вращения (рис. 2.15).

 
 

Рис. 2.15

На жидкость в этом случае будут действовать две массовые силы, сила тяжести и центробежная сила, которые, будучи отнесенными к единице массы, соответственно равны g и . Равнодействующая массовая сила j увеличивается с увеличением радиуса за счет второй составляющей, а угол наклона ее к горизонту уменьшается. Эта сила нормальна к свободной поверхности жидкости, поэтому угол наклона поверхности к горизонту возрастает с увеличением радиуса. Найдем уравнение положения свободной поверхности.

Учитывая, что сила нормальна к свободной поверхности, получим , отсюда или после интегрирования .

В точке пересечения свободной поверхности с осью вращения C=h и r=0, поэтому окончательно будем иметь

, (2.10)

где .

Таким образом, свободная поверхность жидкости является параболоидом вращения. Максимальную высоту подъема жидкости можно определить, используя выражение (2.10) и исходя из равенства объемов неподвижной жидкости и жидкости во время вращения.

Запишем закон изменения давления во вращающейся жидкости в функции радиуса и глубины относительно верхней точки жидкости (без вывода):

.

Вращение сосуда с жидкостью вокруг горизонтальной оси

При таком вращении угловая скорость w столь велика, что (действие силы тяжести можно не учитывать). Закон изменения давления в жидкости для этого случая получим из рассмотрения уравнения равновесия элементар­ного объема с площадью основания dS и высотой dr, взятой вдоль радиуса (рис. 2.16). На выделенный элемент жидкости действуют силы давле­ния и центробежная сила.

 
 

Рис. 2.16

Обозначив давление в центре площадки dS, расположенной на радиусе r, через p, а в центре другого основания объема (на радиусе r + dr) через p + dp (разложили p в ряд Тейлора, но так как в данном случае p зависит только от r, то dr/dr сократился), получим следующее уравнение равновесия выделенного объема в направлении радиуса

или .

После интегрирования получим . Постоянную C найдем из условия, что при r = rp = p0, следовательно, .

Подставив ее значение в предыдущее уравнение, получим связь между p и r в следующем виде:

. (2.11)

Очевидно, что поверхностями уровня в данном случае будут цилиндрические поверхности с общей осью – осью вращения жидкости.

Часто бывает необходимо определить силу давления вращающейся вместе с сосудом жидкости на его стенку, нормальную к его оси вращения. Для этого определим силу давления, приходящуюся на элементарную кольцевую площадку радиусом r и шириной dr. Используя формулу (2.11), получим

Читайте также:  Сетка сосудов на правом боку

,

а затем следует выполнить интегрирование в требуемых пределах:

.

Если равно внешнему давлению, то .

При большой скорости вращения жидкости получается значительная суммарная сила давления Fб на боковую стенку. Это используется в некоторых фрикционных муфтах, где для сцепления двух валов требуется создание больших сил давления.

Приведем выражение для определения силы Fб без вывода:

, где – длина цилиндра.

Источник

ДонНТУ>
Портал магистров ДонНТУ |
Реферат | Библиотека|Отчет о поиске | Ссылки
| Биография

Несколько интересных задач гидравлики

Выполнил магистр ДонНТУ Карпушин М. Ю.

Задача 1.

Неподвижный сосуд, составленный из двух цилиндров, заполнен жидкостью, удерживаемой поршнями, на которые действуют силы Р1 и Р2.

Определить положения x и y поршней относительно торцовой стенки сосуда, при которых система находится в равновесии.

Площади поршней равны F1 и F2, объем жидкости между ними равен W.
При решении задачи трением поршней о стенки сосуда пренебречь.

Решение

В состоянии равновесия сила, действующая на нижний поршень P2 уравновешивается силой, действующей на верхний поршень P1 и силой давления жидкости объемом W на нижний поршень площадью F2. Исходя из этого, можем записать

Откуда находим высоту узкой части сосуда x для заданных условий

После определения x можем найти и высоту широкой части сосуда, записав объем жидкости как

Откуда

Задача 2.

В сосуд, заполненный водой и маслом (плотность масла 900 кг/м^3), погружен кусок воска (плотность воска 960 кг/м^3).

Определить, какая часть объема воска погрузится в воду и какая останется в масле?

Решение

На тело, погруженное в жидкость, действует сила массы объема вытесненной жидкости, тогда можно записать

где Gк – сила тяжести куска воска, Vм,Vв – объемы куска в масле и воде соответственно.
Силу тяжести куска запишем в виде

Подставляя второе уравнения в первое и решая его относительно отношения объемов Vв/ Vм, получаем

Объем куска воска

Подставляя отношение объемов

Задача 3.

Однородный брус постоянного сечения F, длиной L и плотностью р1 нижним концом шарнирно закреплен на глубине H р1.

Определить, какой угол наклона а отвечает устойчивому равновесию бруса в жидкости и при каких значениях L/H брус будет покоится в вертикальном положении.

Решение

Брус будет покоиться при равенстве нулю моменту сил от его веса и подъемной силы

Где

Поставляя вторые уравнения в первое, имеем

При вертикальном положении бруса а=0, из последнего уравнения

Задача 4.

Сосуд, вращающийся относительно вертикальной оси, состоит из двух цилиндров одинаковой высотой a = 200 мм и диаметрами d = 150 мм и D = 300 мм. Нижний цилиндр целиком заполнен жидкостью.

При какой частоте вращения жидкость начнет выливаться из сосуда?

Решение

Объем параболоида вращения в узкой части сосуда

Исходя из сохранения объема системы объем жидкости в широкой части сосуда равен объему параболоида в нижней и определяется как

Приравнивая объемы, получаем угловую скорость, при которой жидкость начнет выливаться из сосуда

Задача 5.

Определить расход Q1, который подается в верхний бак, если система (L1=150 м, d1=100 мм, все остальные трубы Li = 50 м, di = 60 мм) работает при постоянных напорах H= 6 м и h = 2 м.

Коэффициент сопротивления трения первой трубы принять равным м = 0,03, местными потерями напора пренебречь.

Определить расходы, которые установятся при этом во всех трубах системы.

Решение

Потери в трубопроводе 3-6 больше потерь в трубопроводе 5 на величину h

Отсюда расход в трубе 6

Сосуд вращающийся относительно вертикальной оси

Потери в 4-м трубопроводе меньше чем во 2-5-м на величину h

Откуда

Сосуд вращающийся относительно вертикальной оси

Потери напора в трубе 1-4

Исходя из балансов расходов в трубах

Тогда

Сосуд вращающийся относительно вертикальной оси

После подстановки численных значений получаем

Q5 = 2,36 л/с

Q6 = 3,01 л/с

Q4 = 4,70 л/с

Q1 = 10,07 л/с

Задача 6.

Определить время затопления баржи, заполненной нефтью (относительной плотностью g = 0,85) на высоту H0 = 2 м, после получения ею донной пробоины (диаметр отверстия В0 = 50 мм, коэффициент расхода м = 0,61). Размеры баржи: высота h = 3 м, площадь F = 120 м^2, ее начальное погружение а = 2 м.

Сосуд вращающийся относительно вертикальной оси

Решение.

Расход воды в баржу будет определятся глубиной погружения баржи и высотой столба нефти в барже H0

Время затопления баржи

t = 41317 с = 11,5 ч.

Задача 7.

Два одинаковых цилиндрических резервуара заполнены жидкостью до уровня h каждый и имеют донные отверстия площадью f1 и f2, коэффициенты расхода которых равны м1 и м2 соответственно. Отверстия открываются одновременно.

Определить уровень у в нижнем резервуаре в тот момент, когда верхний резервуар будет полностью опорожнен.

Найти у в частном случае, когда м1 = м2 и f1 = f2.

Решение

Расход жидкости из нижнего резервуара

Т. к. сосуды имеют призматическую форму то средние расходы можно определять как среднеарифметические. Расход из верхнего резервуара

Расход из нижнего без учета верхнего

Время опорожнения верхнего резервуара

За это же время будет происходить изменение уровня в нижнем резервуаре

Приравнивая последние два уравнения, выразим уровень жидкости в нижнем резервуаре у после опорожнения верхнего

Где

При k = 1 y = 0,38h.

Условия задач взяты из Сборника задач по машиностроительной гидравлике. Под ред. И. И. Куколевского и Л.Г. Подвидза. – М.: Машиностроение, 1981 – 464с.

© ДонНТУ 2008, Kарпушин

Источник