Сосуды являются основными элементами водопроводящей

Сосуды являются основными элементами водопроводящей thumbnail

«В природе нет ничего бесполезного» – Мишель де Монтень

Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня
до клеток листа. Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) – 117 метров в высоту.
И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против
силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.

Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать
самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая
микропрепараты.

Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку.
Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.

Проводящие ткани растений

Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты
обмена веществ из них.
Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям
(восходящий ток) и от листьев к корням (нисходящий ток).

Логическим путем можно угадать многие научные факты, даже не зная их. К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же
вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани – ксилемы (древесины).
От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани – флоэмы (луба).

Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, которая в процентном соотношении может составить до 25% от их массы. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.

В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.

Ксилема (древесина)

Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей. В толще проводящей ткани находятся отнюдь не только те самые трахеиды и
сосуды, ее пронизывают многочисленные механические волокна – древесинные, обеспечивающие каркасность и прочность. В ксилеме содержатся также запасающие структуры,
представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.

  • Трахеиды
  • Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение
    и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую,
    спиралевидную, кольчатую.

    Трахеиды ксилемы

  • Сосуды
  • Длинные трубки, представляющие собой слияние отдельных мертвых клеток “члеников” в единый “сосуд”. Ток жидкости идет из нижележащих отделов в вышележащие
    благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.

    Сосуды ксилемы

    Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению
    он растягивается и обеспечивает ток воды и минеральных солей.

    Растяжение сосудов

  • Древесинные волокна (либриформ)
  • Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной
    клеточной стенкой, которая придает ксилеме механическую прочность.

  • Паренхимные клетки (древесинная паренхима)
  • Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.

Флоэма (луб)

Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания,
подземные части, или “складировать” на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод – дисахарид сахароза.

Читайте также:  Сосуды работающие под давлением лекции

Эта ткань представлена ситовидными трубками, генез (от греч. genesis – происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная
флоэма – из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.

Разберемся с компонентами, которые входят в состав флоэмы:

  • Ситовидные элементы
  • Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток – “члеников”, соединенных в единую цепь. Между “члениками” имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито – вот откуда берется название ситовидных трубок 🙂

    Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ
    и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность
    ситовидных трубок.

    Клетки-спутницы

  • Склеренхимные элементы (лубяные волокна)
  • Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.

  • Паренхимные элементы (лубяная паренхима)
  • Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.

По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают.
Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.

Ниже вы найдете продольный срез тканей растения, изучите его.

Клетки-спутницы

Жилка

Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма – снизу. Над пучком и под ним располагаются уголковая или пластинчатая
колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия,
располагаются в центральном осевом цилиндре. Существует два вида жилок:

  • Открытые
  • Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема
    ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно
    обнаружить во всех органах двудольных растений.

  • Закрытые
  • Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы.
    Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.

Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань
– склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.

Жилка, сосудисто-волокнистый пучок

Как вода поднимается от корней к листьям, против силы тяжести?

Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и
присасывающего листового.

  • Корневое давление
  • Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос:
    клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться
    в сосуды.

  • Транспирация
  • Работа верхнего концевого двигателя заключается в транспирации – испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых
    волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место
    освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости.
    Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также:  Слабые сосуды и курение

Источник

Трахеальные элементы представляют
собой наиболее высокоспециализированные клетки
ксилемы. Как правило, они вытянуты в длину и в
зрелом состоянии мертвы. Для них характерны
лигнифицированные оболочки со вторичными
утолщениями и порами.

Процесс отложения вторичной оболочки
и пропитывание ее лигнином осуществляется еще в
живой клетке. При этом на первых этапах развития
растения все клетки растущих частей удлиняются
(вытягиваются). Однако такое удлинение было бы
невозможным при сплошной жесткой оболочке. В
этом отношении у высших растений выработалось
оптимальное приспособление: вторичная оболочка
не одевает клетку сплошь, а расположена кольцами
или спиралью. Подобные кольчатые и спиральные
утолщения позволяют молодым трахеальным
элементам вытягиваться в длину и в то же время
препятствуют из сдавливанию. Кроме того, этот тип
вторичного утолщения является чрезвычайно
экономичным.

При всех достоинствах кольчатых и
спиральных элементов как путей для проведения
воды, их механическая прочность оставляет желать
лучшего. Поэтому, как только у молодого растения
заканчиваются ростовые процессы, связанные с
удлинением клеток, в ксилеме начинают
формироваться трахеальные элементы со сплошной
вторичной одревесневшей оболочкой. Когда
формирование сплошной оболочки заканчивается,
клетки очень быстро отмирают.

Однако и в этом случае оболочка
водопроводящего элемента не может быть
совершенно сплошной. Обычно в ней имеются
многочисленные углубления в виде пор. Поэтому
зрелые водопровдящие элементы называют
точечно-поровыми. Итак, в процессе онтогенеза
(индивидуального развития растения) наблюдается
ряд взаимопревращения трахеальных элементов:
кольчатые, спиральные, сетчатые, лестничные,
точечно-поровые.

Различают два типа проводящих
элементов: 1) трахеиды и 2) членики сосудов.
Отличаются они главным образом тем, что членики
сосудов имеют сквозные отверстия ≈ перфорации, в
то время как трахеиды являются
неперфорированными элементами. Поэтому по
сосудам растворы продвигаются значительно
легче, чем по трахеидам.

Трахеиды ≈ это основной
водопроводящий элемент высших растений с
момента их появления на суше и по сей день.
Трахеиды имеют замкнутую со всех сторон
первичную оболочку. Поэтому вода по трахеидам
должна проходить через окаймленные поры,
просачиваясь через первичные оболочки и
склеивающий их межклеточный слой. Понятно, что
подобная структура не является оптимальной для
быстрой подачи воды.

Поэтому в процессе эволюции в ряде
групп высших растений возник новый более
совершенный проводящий элемент ≈ членик сосуда.
Для члеников сосудов характерно наличие в концах
клеток перфораций. Соединяясь между собой
перфорациями, сотни и тысячи члеников образуют
сосуды ≈ длинные сквозные трубки, по которым
вода перемещается практически беспрепятственно.

Водопроводящие элементы, обладающие
достаточно толстой оболочкой, инкрустированной
лигнином, играют в теле растения также и
механическую роль.

Поэтому специализация трахеальных
элементов в процессе эволюции шла в направлении
разделения механической и проводящей функций.

Примитивная древесина большинства
хвощей, папоротников, голосеменных имеет гомогенную
(однородную) ксилему и состоит исключительно из
трахеид и небольшого количества древесинной
паренхимы. В такой древесине узкопросветные
толстостенные трахеиды выполняют
преимущественно механическую функцию, а
широкопросветные и тонкостенные ≈
водопроводящую.

Более совершенная гетерогенная
древесина покрытосеменных состоит из сосудов,
трахеид, волокон – либриформа и запасающей
паренхимы.

Членики сосудов у цветковых растений
морфологически довольно разнообразны и образуют
четкий эволюционный ряд. Этот эволюционный ряд,
построенный на работах выдающегося
американского ботаника И. Бэйли, помещается во
всех учебниках, как одна из ярких и бесспорных
демонстраций эволюционных преобразований.

Эволюционный ряд члеников сосудов
начинается с длинных трахеид, имеющих лестничную
поровость и косые заостренные концы. Постепенно
клетки укорачиваются, становятся более широкими,
а их концевые стенки все менее наклонными и в
конце концов оказываются поперечными.

В наиболее примитивных члениках
лестничная перфорационная пластинка имеет
множество перегородок. В процессе эволюции они
сокращаются и исчезают совсем, так что остается
одна сквозная крупная перфорация.

Характерно, что с появлением сосудов
цветковых растений не исчезли трахеиды,
поскольку совершенный водопроводящий аппарат не
всегда является преимуществом. Так, в условиях
высокой влажности и затенения способность
быстро проводить воду не имеет особого значения.
У таких растений процент трахеид и примитивных
члеников сосудов с лестничной перфорацией
заметно выше, чем у растений, произрастающих в
засушливых условиях.

Получается, что соотношение
проводящих элементов четко обусловлено
экологическими условиями и определяет водный
баланс растения.

Мы уже говорили, что сочетание в одном
клеточном элементе ≈ трахеиде ≈ и способности
проводить воду и механической прочности было
важным эволюционным приспособлением. Появление
сосудов, с их все увеличивающейся полостью и
относительно тонкими стенками, несколько
ослабило бы механическую роль ксилемы, если
сосуды остались бы единственным элементом этой
ткани. В связи с этим наметился второй
эволюционный ряд специализации в сторону
повышения механической прочности, и трахеиды,
через промежуточную стадию волокнистой трахеиды
превратились в волокна либриформа.

Читайте также:  Skyrim сосуд с кровью

При этом происходило утолщение
оболочек клеток, сужение полостей, все большая
редукция окаймления пор. Поры у волокон
либриформа стали узкие, щелевидные. Вместе с тем,
сократилось и количество пор.

Паренхимные клетки, входящие в состав
древесины, запасают крахмал, жиры и многие другие
эргастические вещества.

В ходе онтогенеза у растения из
первичной латеральной меристемы прокамбия
появляется первичная ксилема. У некоторых
растений со временем начинает работать
вторичная боковая меристема ≈ камбий, дающая
начало вторичной ксилеме.

Обычно первичная ксилема отчетливо
подразделяется на два структурных типа: 1) протоксилему
и 2) метаксилему

Источник

Появление проводящих тканей в процессе эволюции является одной из причин, которые сделали возможным выход растений на сушу. В нашей статье мы рассмотрим особенности строения и функционирования ее элементов – ситовидных трубок и сосудов.

Особенности проводящей ткани

Когда на планете произошли серьезные изменения климатических условий, растениям пришлось приспосабливаться к ним. До этого все они обитали исключительно в воде. В наземно-воздушной среде стала необходимой добыча воды из почвы и ее транспортировка ко всем органам растения.

Различают два вида проводящей ткани, элементами которой являются сосуды и ситовидные трубки:

  1. Луб, или флоэма – расположена ближе к поверхности стебля. По ней органические вещества, образованные в листе во время фотосинтеза, передвигаются по направлению к корню.
  2. Второй тип проводящей ткани называется древесина, или ксилема. Она обеспечивает восходящий ток: от корня к листьям.

ситовидные трубки

Ситовидные трубки растений

Это проводящие клетки луба. Между собой они разделены многочисленными перегородками. Внешне их строение напоминает сито. Отсюда и происходит название. Ситовидные трубки растений живые. Это объясняется слабым давлением нисходящего тока.

Их поперечные стенки пронизаны густой сетью отверстий. А клетки содержат много сквозных отверстий. Все они являются прокариотическими. Это означает, что в них нет оформленного ядра.

Живыми элементы цитоплазмы ситовидных трубок остаются только на определенное время. Продолжительность этого периода варьирует в широких пределах – от 2 до 15 лет. Данный показатель зависит от вида растения и условий его произрастания. Ситовидные трубки транспортируют воду и органические вещества, синтезированные в процессе фотосинтеза от листьев к корню.

ситовидные трубки растений

Сосуды

В отличие от ситовидных трубок, эти элементы проводящей ткани представляют собой мертвые клетки. Визуально они напоминают трубочки. Сосуды имеют плотные оболочки. С внутренней стороны они образуют утолщения, которые имеют вид колец или спиралей.

Благодаря такому строению сосуды способны выполнять свою функцию. Она заключается в передвижении почвенных растворов минеральных веществ от корня к листьям.

сосуды и ситовидные трубки

Механизм почвенного питания

Таким образом, в растении одновременно осуществляется передвижение веществ в противоположных направлениях. В ботанике этот процесс называют восходящим и нисходящим током.

Но какие силы заставляют воду из почвы двигаться вверх? Оказывается, что это происходит под влиянием корневого давления и транспирации – испарения воды с поверхности листьев.

Для растений этот процесс является жизненно необходимым. Дело в том, что только в почве находятся минералы, без которых развитие тканей и органов будет невозможным. Так, азот необходим для развития корневой системы. В воздухе этого элемента предостаточно – 75 %. Но растения не способны фиксировать атмосферный азот, поэтому минеральное питание так важно для них.

Поднимаясь, молекулы воды плотно сцепляются между собой и стенками сосудов. При этом возникают силы, способные поднять воду на приличную высоту – до 140 м. Такое давление заставляет почвенные растворы через корневые волоски проникать в кору, и далее к сосудам ксилемы. По ним вода поднимается к стеблю. Далее, под действием транспирации, вода поступает в листья.

В жилках рядом с сосудами находятся и ситовидные трубки. Эти элементы осуществляют нисходящий ток. Под воздействием солнечного света в хлоропластах листа синтезируется полисахарид глюкоза. Это органическое вещество растение расходует на осуществление роста и процессов жизнедеятельности.

Итак, проводящая ткань растения обеспечивает передвижение водных растворов органических и минеральных веществ по растению. Ее структурными элементами являются сосуды и ситовидные трубки.

Источник