Сосуды это какая ткань
У этого термина существуют и другие значения, см. Сосуд.
Кровеносные сосуды тела человека (схема)
Кровено́сные сосу́ды — эластичные трубчатые образования в теле животных и человека, по которым силой ритмически сокращающегося сердца или пульсирующего сосуда осуществляется перемещение крови по организму: к органам и тканям по артериям, артериолам, капиллярам, и от них к сердцу — по венулам и венам.
Классификация кровеносных сосудов[править | править код]
Среди сосудов кровеносной системы различают артерии, вены и сосуды системы микроциркуляторного русла; последние осуществляют взаимосвязь между артериями и венами и включают, в свою очередь, артериолы, капилляры, венулы и артериоло-венулярные анастомозы[1]. Сосуды разных типов отличаются не только по своему диаметру, но также по тканевому составу и функциональным особенностям[2].
- Артерии — сосуды, по которым кровь движется от сердца. Артерии имеют толстые стенки, в которых содержатся мышечные волокна, а также коллагеновые и эластические волокна. Они очень эластичные и могут сужаться или расширяться — в зависимости от количества перекачиваемой сердцем крови. Текущая по артериям кровь насыщена кислородом (исключение составляет лёгочная артерия, по которой течёт венозная кровь)[3][4].
- Артериолы — мелкие артерии (диаметром менее 300 мкм), по току крови непосредственно предшествующие капиллярам. В их сосудистой стенке преобладают гладкие мышечные волокна, благодаря которым артериолы могут менять величину своего просвета и, таким образом, сопротивление. Самые мелкие артериолы — прекапиллярные артериолы, или прекапилляры — сохраняют в стенках лишь единичные гладкомышечные клетки[5][6].
- Капилляры — это мельчайшие кровеносные сосуды, настолько тонкие, что вещества могут свободно проникать через их стенку. Диаметр их просвета колеблется от 3 до 11 мкм, а общее число в организме человека — около 40 млрд. Через стенку капилляров (уже не содержащую гладкомышечных клеток) осуществляется отдача питательных веществ и кислорода из крови в клетки и переход углекислого газа и других продуктов жизнедеятельности из клеток в кровь[7][8].
- Венулы — мелкие кровеносные сосуды, обеспечивающие в большом круге отток обеднённой кислородом и насыщенной продуктами жизнедеятельности крови из капилляров в вены. Делятся на примыкающие к капиллярам посткапиллярные венулы (посткапилляры) диаметром от 8 до 30 мкм и собирательные венулы диаметром 30—50 мкм, впадающие в вены[9].
- Вены — это сосуды, по которым кровь движется к сердцу. По мере укрупнения вен их число становится всё меньше, и в конце концов остаются лишь две — верхняя и нижняя полые вены, впадающие в правое предсердие. Стенки вен тоньше, чем стенки артерий, и содержат соответственно меньше мышечных волокон и эластических элементов[10][11].
- Артериоло-венулярные анастомозы — сосуды, обеспечивающие непосредственный переток крови из артериолы в венулу — в обход капиллярного русла. Содержат в своих стенках хорошо выраженный слой гладкомышечных клеток, регулирующих такой переток[12][13].
Строение кровеносных сосудов (на примере аорты)[править | править код]
Строение аорты: 1. эластическая мембрана (внешняя оболочка или Tunica externa, 2. мышечная оболочка (Tunica media), 3. внутренняя оболочка (Tunica intima)
Этот пример описывает строение артериального сосуда. Строение других типов сосудов может отличаться от описанного ниже. Подробнее см. соответствующие статьи.
Основная статья: Аорта
Аорта выстлана изнутри эндотелием, который вместе с подлежащим слоем рыхлой соединительной ткани (субэндотелием) образует внутреннюю оболочку (лат. tunica intima). Средняя оболочка состоит из большого количества эластических окончатых мембран. Также в ней присутствует небольшое количество гладких миоцитов. Поверх средней оболочки лежит рыхлая волокнистая соединительная ткань с большим содержанием эластических и коллагеновых волокон (лат. tunica adventitia).
Заболевания сосудов[править | править код]
- Атеросклероз
- Болезнь Бюргера
- Варикозное расширение вен
- Раны
- Тромбофлебит
См. также[править | править код]
- Вазодилатация
- Вазоконстрикция
- Гемодинамика
- Реология
- Закон Пуазёйля
Примечания[править | править код]
- ↑ Сапин и Билич, т. 2, 2009, с. 338—340, 344.
- ↑ Гистология, цитология и эмбриология, 2004, с. 386—387.
- ↑ Сапин и Билич, т. 2, 2009, с. 338, 340—343.
- ↑ Гистология, цитология и эмбриология, 2004, с. 386, 391.
- ↑ Сапин и Билич, т. 2, 2009, с. 340, 344.
- ↑ Гистология, цитология и эмбриология, 2004, с. 394.
- ↑ Сапин и Билич, т. 2, 2009, с. 344—347.
- ↑ Гистология, цитология и эмбриология, 2004, с. 399—400.
- ↑ Сапин и Билич, т. 2, 2009, с. 345.
- ↑ Сапин и Билич, т. 2, 2009, с. 338, 354.
- ↑ Гистология, цитология и эмбриология, 2004, с. 402—403.
- ↑ Сапин и Билич, т. 2, 2009, с. 347.
- ↑ Гистология, цитология и эмбриология, 2004, с. 400.
Литература[править | править код]
- Гистология, цитология и эмбриология. 6-е изд / Под ред. Ю. И. Афанасьева, С. Л. Кузнецова, H. А. Юриной. — М.: Медицина, 2004. — 768 с. — ISBN 5-225-04858-7.
- Сапин М. Р., Билич Г. Л. . Анатомия человека: в 3-х тт. Т. 2. 3-е изд. — М.: ГЭОТАР-Медиа, 2009. — 496 с. — ISBN 978-5-9704-1373-9.
Ссылки[править | править код]
- Кровеносные сосуды
- Схема кровеносных сосудов человека
Источник
У этого термина существуют и другие значения, см. Сосуд.
Сосу́ды (трахеи) — проводящие элементы ксилемы, представляющие собой длинные полые трубки, образованные одним рядом клеток (члеников) со сквозными отверстиями (перфорациями) на поперечных стенках, по которым происходит массовое передвижение веществ.
Строение[править | править код]
Сосуды растений (трахеи) состоят из многих клеток, которые называются члениками сосуда. Членики расположены друг над другом, образуя длинную полую трубку. Поперечные перегородки между члениками растворяются, и возникают перфорации (сквозные отверстия). По таким полым трубкам растворы передвигаются значительно легче, чем по трахеидам. Каждый сосуд может состоять из огромного числа члеников, поэтому средняя длина сосудов — несколько сантиметров (иногда до 1 м и больше). Самые совершенные сосуды состоят из широких коротких члеников, диаметр которых превышает длину, а в перфорационных пластинках имеется одно крупное отверстие (простая перфорация). Сосуды менее специализированные состоят из более длинных и узких члеников, поперечные стенки между которыми наклонены. Перфорационные пластинки имеют несколько отверстий, расположенных друг над другом (лестничная перфорация) или в беспорядке (сетчатая перфорация).
Развитие сосуда[править | править код]
Членики сосуда образуются из продольного ряда клеток и вначале представлены расположенными друг над другом живыми паренхимными тонкостенными клетками, полость которых заполнена цитоплазмой с крупным ядром.
Первичная оболочка члеников сосудов состоит из микрофибриллярной фазы и матрикса, заполняющего промежутки между пространственно организованными микрофибриллами целлюлозы. В оболочке молодых члеников сосуда преобладают компоненты матрикса и вода. В связи с этим они могут удлиняться и разрастаться в ширину, протопласт вакуолизируется и занимает постенное положение.
Ещё до завершения роста начинается отложение слоёв вторичной оболочки. Каждый из слоёв отличается направлением ориентации микрофибрилл, характерным для данного типа элементов ксилемы. В тех участках первичной оболочки, где позднее образуются перфорации, вторичная оболочка не откладывается, но за счёт разбухания пектинового вещества межклеточной пластинки эти участки несколько утолщаются.
В самых ранних по времени образования трахеальных элементах вторичная оболочка может иметь форму колец, не связанных друг с другом (кольчатые сосуды). Позднее появляются трахеальные элементы со спиральными утолщениями, затем с лестничными утолщениями (сосуды с утолщениями, которые могут быть охарактеризованы как плотные спирали, витки которых связаны между собой).
Сосуды с относительно небольшими округлыми участками первичной оболочки, не прикрытыми изнутри вторичной оболочкой, называют пористыми.
Вторичная оболочка, а иногда и первичная, как правило, лигнифицируются, то есть пропитываются лигнином. Это придает им дополнительную прочность, но ограничивает возможности дальнейшего роста органа в длину. Одновременно с одревеснением боковых клеток сосуда идет процесс разрушения поперечных стенок между члениками: они ослизняются и постепенно исчезают. Так формируется перфорация. Вокруг перфорации всегда сохраняется остаток продырявленной стенки в виде ободка (перфорационный поясок).
После образования перфорации протопласт отмирает, его остатки в виде бородавчатого слоя выстилают стенки трахеальных элементов (трахеид и члеников сосудов). В результате последовательных структурных изменений формируется сплошная полая трубка сосуда, полость которой заполняется водой.
Механизм действия[править | править код]
Механизм поступления воды в трахеальные элементы и проведения её ко всем частям растения сложен. Основная масса воды поступает в растение через корневые волоски. В силу т. н. корневого давления вода проходит к водопроводящим элементам корня, поднимается к листьям и испаряется с их поверхности наружу через устьица (транспирация).
Сосуды заполнены водой. По мере того, как вода движется по сосудам, в столбе воды создаётся натяжение. Оно передаётся вниз по стеблю на всём пути от листа к корню благодаря сцеплению (когезии) молекул воды. Молекулы стремятся «прилипнуть» друг к другу в силу своей полярности, а затем удерживаются вместе за счёт водородных связей. Кроме того, они стремятся прилипнуть к стенкам сосудов под действием сил адгезии. Натяжение в сосудах ксилемы достигает такой силы, что может тянуть весь столб воды вверх, создавая массовый поток. При этом прочность стенкам обеспечивают целлюлоза и лигнин.
Литература[править | править код]
- Атлас по анатомии растений: учеб. пособие для вузов / Бавтуто Г. А., Ерёмин В. М., Жигар М. П.. — Мн.: Ураджай, 2001. — 146 с. — (Учеб. и учеб. пособия для вузов). — ISBN 985-04-0317-9.
Источник
Проводящая ткань — вид тканей растений, служащих для передвижения по организму растворённых питательных веществ. У многих высших растений она представлена проводящими элементами (сосудами и ситовидными трубками). В стенках проводящих элементов есть поры и сквозные отверстия, облегчающие передвижение веществ от клетки к клетке.
Проводящая ткань образует в теле растения непрерывную разветвлённую сеть, соединяющую все его органы в единую систему — от тончайших корешков до молодых побегов, почек и кончиков листа.
Происхождение[править | править код]
Учёные считают, что возникновение тканей связано в истории Земли с выходом растений на сушу. Когда часть растения оказалась в воздушной среде, а другая часть (корневая) — в почве, появилась необходимость доставки воды и минеральных солей от корней к листьям, а органических веществ от листьев к корням. Так в ходе эволюции растительного мира возникло два типа проводящих тканей — древесина и луб. По древесине (по трахеидам и сосудам) вода с растворёнными минеральными веществам поднимается от корней к листьям — это водопроводящий, или восходящий, ток. По лубу (по ситовидным трубкам) образовавшиеся в зелёных листьях органические вещества поступают к корням и другим органам растения — это нисходящий ток.
Значение[править | править код]
Проводящие ткани растений — это ксилема (древесина) и флоэма (луб). По ксилеме (из корня в стебель) идёт восходящий ток воды с растворёнными в ней минеральными солями. По флоэме — более слабый и медленный ток воды и органических веществ.
Значение древесины
Ксилема, по которой идёт сильный и быстрый восходящий ток, образована мёртвыми, разными по величине клетками. Цитоплазмы в них нет, стенки одревеснели и снабжены многочисленными порами. Представляют собой цепочки из прилегающих друг к другу длинных мёртвых водопроводящих клеток. В местах соприкосновения у них имеются поры, по которым и передвигаются растворы из клетки в клетку по направлению к листьям. Так устроены трахеиды.
У цветковых растений появляются и более совершенные проводящие ткани — сосуды. В сосудах поперечные стенки клеток в большей или меньшей степени разрушаются. Таким образом, сосуды — это полые трубки, образованные множеством мёртвых трубчатых клеток (члеников). По таким сосудам растворы передвигаются ещё быстрее. Помимо цветковых, другие высшие растения имеют только трахеиды.
Значение луба
В силу того, что нисходящий ток более слабый, клетки флоэмы могут оставаться живыми. Они образуют ситовидные трубки — их поперечные стенки густо пронизаны отверстиями. Ядер в таких клетках нет, но они сохраняют живую цитоплазму. Ситовидные трубки остаются живыми недолго, чаще 2-3 года, изредка — 10-15 лет. На смену им постоянно образуются новые ситовидные трубки.
Визуализация[править | править код]
Интересный метод визуализации проводящей системы деревьев предложили В. И. Иванов-Омский и Е. И. Иванова. Они использовали коронный разряд, или, точнее, эффект Кирлиана. Этим методом у осины, например, обнаружены эллипсовидные на срезе конгломераты сосудов[1].
См. также[править | править код]
- Концентрический пучок
- Коллатеральный пучок
- Биколлатеральный пучок
- Радиальный пучок
Примечания[править | править код]
- ↑ Иванов-Омский В.И., Иванова Е.И. Фотографирует разряд: древесный водопровод // Природа. — 2013. — № 3. — С. 14-19.
Источник
Об особенностях, функциях и рисках одного из самых важных ресурсов организма.
Фото Getty
Кровеносная система
Перед рассказом об уникальности крови хотелось бы уделить внимание кровеносной системе. Это многоуровневая физиологическая структура, обеспечивающая замкнутый круговорот крови. От эффективности циркуляции крови зависит скорость доставки полезных веществ ко всем тканям организма.
Виды сосудов
Из курса школьной биологии известно, что все сосуды подразделяются на три вида:
- Артерии — кровеносные сосуды, несущие кровь от сердца к органам;
- Вены — кровеносный сосуд, по которому кровь движется к сердцу;
- Капилляры — мелкокалиберные сосуды, менее 10 мкм в диаметре.
Артерии
Артерии — эластичные и гладкие сосуды. Их основная задача: перенос крови от сердца к органам. Артерии бывают крупного калибра и среднего калибра. Например, аорта достигает диаметра с большой палец, отличается прочностью и характеризуются толстой сосудистой стенкой.
Вены
Вена — полная противоположность артерий. Они имеют маленькие клапаны на внутренних стенках, не отличаются гибкостью и способны к спаданию. Основная задача вены: перенос крови от органов к сердцу. В венах отсутствует сильное давление, как например в артериях. Вены являются местом накопления крови (депо крови).
Есть заблуждение, что по артериям течёт только артериальная кровь, а по венам только венозная. Это не так, например, лёгочные вены несут к сердцу обогащённую кислородом кровь, а лёгочная артерия несёт венозную кровь. Всё зависит от отношения к сердцу (если от сердца — артерия, к сердцу — вена).
Капилляры
Капилляры — очень маленькие полупроницаемые сосуды. Благодаря изменениям в калибре артерий, кровь, доходящая до капилляров, теряет начальное давление. Это способствует обмену веществ на клеточном уровне.
Vasa vasorum
За поддержания жизни некоторых сосудов отвечает — Vasa vasorum (сосуды сосудов). Vasa vasorum представляет сеть мелких кровеносных сосудов, которые снабжают стенки крупных кровеносных сосудов, таких как эластичные артерии (например, аорта) и крупные вены (например, полые вены).
Малый и большой круг кровообращения
Малый круг
Малый круг кровообращения напоминает маленькую железную дорогу между двумя заводами: лёгким и сердцем. В его задачи входит транспортировать кровь, насыщенную углекислым газом в лёгкие, а на обратном пути экспортировать кислород к сердцу.
Большой круг
Это сложная и многоуровневая логистическая система, которая транспортирует кровь по всему организму. Очень затейливая система, учитывающая потребности всех внутренних органов.
Атеросклероз
Распространённым заболеванием кровеносной системы является атеросклероз. Это хроническое заболевание артерий, связанное с отложением на внутренних стенках кровеносных сосудов холестерина и других жиров.
По статистике, среди группы сердечно-сосудистых болезней на атеросклероз и гипертоническую болезнь как причин смерти приходится 85% для мужчин и 76% для женщин. Смертельные исходы от инфаркта миокарда в среднем составляют 5, 9% всех вскрытий, начиная с 20 до 80 лет и выше;
Для снижения риска атеросклероза требуется:
- Отказ от курения;
- Здоровое питание. Отказ от несбалансированного питания является не только профилактикой сосудистых патологий, но и желудочно-кишечного тракта. Специалисты советуют отказаться от алкоголя, ограничить потребление простых углеводов (газированные напитки), уменьшить суточное потребление соли (до пяти грамм);
- Активный образ жизни. Хорошо подходят плавание, быстрая ходьба, езда на велосипеде и прогулки, особенно людям с малоподвижной работой;
- Психологический комфорт. Стресс наносит удар не только по нервной системе, но и по сердечно-сосудистой. В случае постоянного стресса может потребоваться помощь специалиста.
Чтобы избежать проблем с атеросклерозом, нужно контролировать уровень холестерина, особенно людям с гиподинамией, ожирением, страдающем диабетом. Рекомендации о питании можно прочитать в памятке ВОЗ.
Кровь и её функции
Кровь — это многофункциональная, подвижная ткань, циркулирующая по кровеносным сосудам. Она выполняет множество задач, но основной ролью является обеспечения взаимодействия организма с внешней средой.
Кровь состоит из двух компонентов: клеток (форменных элементов) и межклеточного вещества (плазмы). Форменных элементов в крови около 45%, а доля плазмы — 55%. Состав и качество крови контролирует не только внутренние факторы, но и нервная система. Кровь составляет около 9% от человеческой массы тела. По ходу жизни используется не вся кровь. Она подразделяется на ОЦК и Д.К.
ОЦК(объём циркулирующей крови) — объём крови, находящейся в функционирующих кровеносных сосудах. Приблизительно половина крови выполняет свою задачу и циркулирует в кровеносных сосудах.
Д.К (депонированная кровь) — другая часть крови, в которой нет острой необходимости, накапливается в печени (около 20%), селезёнке (около 16%), коже (до 10%). Эта кровь будет использована в случае потребности другими органами и тканями. Например, после массивного кровотечения.
Функции крови
Кровь выполняет восемь основных функций:
Гуморальная регуляция — перенос гормонов, медиаторов и другого;
Регуляция водно-солевого обмена между кровью и тканями;
- Питательная — транспорт питательных веществ, воды, витаминов и т.п;
- Дыхательная — перенос кислорода и углекислого газа;
Гомеостатическая— поддержания гомеостаза;
Защитная — уничтожение клеточных агентов, образование иммунных комплексов, защита от механических травм путём свёртывания крови;
- Терморегуляторная — регуляция температуры тела путём охлаждения энергоёмких органов и согревания органов, теряющих тепло;
- Экскреторная — удаление из тканей конечных продуктов метаболизма, лишней воды и минеральных солей;
Группа крови
Существует около 30 различных систем групп крови. AB0 — самая известная система, её открыли в начале 20-го века. Благодаря ей появилась возможность создания безопасной системы переливания крови, что спасает миллионы жизней.
Группа крови — это уникальная характеристика антигенных свойств эритроцитов. Также возможно нахождение резус-фактора. Это сложный белок, который находится на поверхности эритроцитов. В случае наличия резус-фактора кровь становится резус-положительной, а при отсутствии — резус-отрицательной.
Группы крови системы AB0
Резус-фактор передаётся по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-положительным. Кровь плода проникает в организм матери, вызывая образование в ее крови антирезус-агглютининов.
Если эти антитела поступят через плаценту обратно в кровь плода, произойдёт агглютинация(склеивания форменных элементов крови). При высокой концентрации антирезус-агглютининов может наступить смерть плода и выкидыш. При лёгких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.
Состав крови
Плазма
Плазма — это сложный биохимический раствор, содержащий различное количество минеральных веществ, белков, растворённых жиров, факторов свёртывания крови, иммунных комплексов, жизненно важных гормонов и прочего. Также в плазме содержится продукты распада, токсины и чужеродные агенты.
Плазма состоит из 95% воды, но это не мешает ей удерживать идеальный баланс плотности жидкости (1, 025 до 1, 029 г/мл). Резкое изменение плотности приведёт к повреждению форменных элементов крови. Благодаря буферным системам крови pH плазмы в норме равняется 7, 36—7, 42. Это гарантирует нормальное протекание биохимических реакций и благоприятные условия для клеток крови.
Свежезамороженная плазма включена в перечень ВОЗ наиболее важных лекарств, необходимых в базовой системе здравоохранения. Плазму используют в лечении множества заболеваний, поэтому она требуется во многих донорских центрах.
Форменные элементы крови
Различают белые клетки крови — лейкоциты, красные клетки крови — эритроциты и кровяные пластинки — тромбоциты. В живом организме важен баланс. Любое изменение в количестве или качестве клеток приводит к серьёзным заболеваниям.
Лейкоциты
Всегда на страже здоровья. Лейкоциты первые, кто вступает в бой с чужеродными микроорганизмами. Лейкоциты или белые кровяные клетки образуют «белую кровь».
По наличию или отсутствию специфических гранул лейкоциты делятся на две группы — гранулоциты и агранулоциты.
Гранулоциты — подгруппа белых клеток крови, характеризующихся наличием специфических гранул. В свою очередь их подразделяют на три группы, в зависимости от восприятия специального красителя
Агранулоциты – К ним относятся лимфоциты и моноциты, содержащие одно ядро овальной формы и не имеющие зернистости. Являются основой гуморального иммунитета.
Лейкоциты в крови здоровых мужчин и женщин содержатся в следующем соотношении:
Нейтрофилы сегментоядерные – от 47 до 72%;
Нейтрофилы палочкоядерные – от 1 до 6%;
Эозинофилы – от 1 до 4%;
Базофилы – около 0,5%;
Лимфоциты – от 19 до 37%;
Моноциты – от 3 до 11%.
Норма лейкоцитов от 4×10⁹ до 9×10⁹. Снижение лейкоцитов называется лейкопения, а повышение лейкоцитоз. Эти показатели играют важную роль в диагностики воспалительных заболеваний, например, выраженный лейкоцитоз проявляется при обострениях большинства бактериальных инфекций.
Клетки рождаются в красном костном мозге. Лейкоциты, в зависимости от вида, живут от нескольких часов до нескольких лет. Они способны двигаться к месту недавнего разрушения погибшего лейкоцита. Массовая гибель лейкоцитов в зоне поражения образует гной.
ВИЧ и лейкоциты
Т-хелперы – это уникальные клетки, способные заметить чужеродный агент и подать сигнал о помощи более крупным лейкоцитам. ВИЧ поражает в большей степени Т-хелперов, поэтому иммунитет теряет защитные-сигнальные свойства, что даёт развитие серьёзным инфекционным заболеваниям.
Лейкоцит
Эритроциты
Эритроциты – красные кровяные тельца, имеют уникальную двояковогнутую поверхность и очень эластичны. Основная функция – транспорт кислорода и углекислого газа. В плазме эритроцита содержится важный белок – гемоглобин.
Гемоглобин– сложный железосодержащий белок, который окрашивает кровь в характерный цвет. Одна молекула гемоглобина может нести до четырёх молекул кислорода.
Зрелый эритроцит очень уникальная клетка, он не имеет ядра, что обеспечивает большую площадь для транспортировки газов, а также способен переносить питательные вещества и некоторые ферменты. Эритроцит не способен к самовоспроизведению. Он рождается в красном костном мозге.
Содержание эритроцитов в крови
- У мужчин — 3,9 –5,5⋅1012 на литр (3,9 – 5,5 млн в1 мм³);
- У женщин — 3,9 –4,7⋅1012 на литр (3,9 – 4,7 млн в1 мм³).
Снижение эритроцитов называется эритропения, а повышение эритроцитоз. Снижение гемоглобина вызывает анемию, что приводит к гипоксии (кислородное голодание) тканей. Эритроцитоз опасен образованием тромбов из-за большого количества эритроцитов.
Эритроцит
Тромбоциты
Тромбоциты – это очень маленькие кровяные пластинки, которые отрываются от гигантской клетки мегакариоцита. Мегакариоциты — это крупные клетки костного мозга. Они имеют крупное ядро.
Важнейшими свойствами тромбоцита является способность к склеиванию. При необходимости они начинают склеиваться и образовывают тромб. Тромб участвует в закупорке повреждённого сосуда и остановки кровотечения.
Тромбоцит способен не только склеиваться с себе подобными, но и прикрепляться к чужеродным агентам, выделяя специальный белок для переваривания незваного гостя.
Повышение тромбов в крови называется тромбоцитоз, что приводит к неуправляемому образованию тромбов в крови. Снижение тромбоцитов называется тромбоцитопения. Тогда у пациентов возникает проблемы с остановкой кровотечения, и они могут погибнуть от мелкого кровоизлияния.
Тромбоцит
Заключение
Кровь — это зеркало здоровья. Любые изменения в организме сказываются на крови. Это маленький мир со своей экосистемой, и, как и у любой живой системы, у неё есть запас прочности.
Может показаться, что доноров крови много, и ваша кровь лишняя, но это не так. Даже крупные учреждения по приёму крови в столичных городах нуждаются в даже распространённых группах крови. Рекомендации по донорству крови рассказано в этой статье на TJ.
Эта статья создана участником Лиги авторов. О том, как она работает и как туда вступить, рассказано в этом материале.
Привет! Ты классный, береги себя
Источник