Сосуды это клетки с утолщенными стенками

Сосуды это клетки с утолщенными стенками thumbnail

В процессе эволюции у высших растений совершенствование организации сопровождалось усложнением внутреннего строения — появлением органов и тканей.

Ткань — совокупность клеток, сходных по морфологическим и физиологическим признакам и выполняющих определенные функции. Орган состоит обычно из нескольких тканей.

Различают ткани:

1.образовательная (меристема) появляется по мере деления зиготы. Формирует тело зародыша,   по мере роста растения перемещается во все его точки роста – верхушки корней, стеблей, в основания междоузлий и листьев – это первичные меристемы (их клетки делятся в поперечном, радиальном и тангенциальном – параллельным поверхности – направлениях; лежат беспорядочно):

Верхушечные (апикальные)

Боковые (латеральные)

Вставочные (интеркалярные)

Основное свойство меристем – способность делиться митозом и дифференцироваться (преобразовываться в другие ткани).

Меристемы могут возникать и из уже имеющихся тканей – это вторичные меристемы (клетки делятся только в тангенциальном – параллельным поверхности – направлении; лежат четкими рядами):

Камбий – образовательная ткань корня и стебля, состоящая из клеток, при делении и дифференцировке которых с внутренней стороны от слоя камбия откладывается древесина, с внешней – луб (у голосеменных и двудольных растений)

Феллоген (пробковый камбий)

Раневые меристемы

2. покровные ткани растений находятся на границе с внешней средой и защищают их от высыхания, механического повреждения, действия высоких и низких температур, чрезмерного испарения воды, проникновения микроорганизмов:

Кожица (эпидерма) в виде однорядного слоя клеток покрывает листья и однолетние побеги. Наружная поверхность клеток этой ткани часто покрыта кутикулой или восковым налетом, особенно развитых у растений засушливых местообитаний. Основные функции эпидермы — защитная и регуляция газообмена и испарения воды (связь с внешней средой – через устьица)

Пробка сменяет эпидерму, вследствие чего к осени зеленый цвет побегов переходит в бурый; из нескольких слоев отмерших клеток, стенки которых пропитаны жироподобным веществом суберином, непроницаемым для воды и газов.  Т.к. живые ткани, лежащие под пробкой, нуждаются в газообмене и удалении избытка влаги, то связь с внешней средой осуществляется через  разрывы в пробке, заполненные рыхло расположенными клетками — чечевички.

Пробка вместе со слоями отмерших клеток других тканей входит в состав корки, которая предохраняет стволы деревьев от механических повреждений, лесных пожаров, резкой смены температур и т. п. Корка ежегодно наращивается за счет клеток находящегося под ней камбия.

3. проводящие ткани служат для распространения по всему растению веществ, всасываемых корнями, и веществ, образующихся в листьях и молодых стеблях.

Различают:

Дальний  или осевой транспорт веществ (от листьев к корням и от корней к листьям)

Ближний или радиальный.

Проводящая система растений состоит из:

Ксилемы  или древесины – комплекс тканей, расположенных внутрь ль камбия или в проводящих пучках; обеспечивает восходящий ток воды и минеральных солей.                                                                            

Состоит из:

-сосудов (проводящая ткань)

– древесных волокон (механическая ткань)

-древесной паренхимы (основная ткань)

Флоэмы  или луба – комплекс тканей с внешней стороны от камбия или в проводящих пучках; служит для проведения нисходящим током продуктов фотосинтеза к местам их использования или отложения в запас (подземные органы, созревающие плоды и семена и др.).

Состоит из:

-ситовидных трубок (проводящая ткань)

-лубяных волокон  (механическая ткань)

-лубяной паренхимы (основная ткань)

Дальний, или осевой, восходящий ток осуществляется по трахеидам и сосудам. Трахеиды — мертвые вытянутые клетки, лишенные цитоплазмы, имеющие одревесневшие стенки, в которых находятся поры. Через поровую мембрану происходит фильтрация растворов. Ток жидкости по трахеидам медленный, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственными проводящими элементами ксилемы. У покрытосеменных развиты сосуды — полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках имеются сквозные отверстия — перфорации, благодаря которым быстрота тока растворов многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность.

Читайте также:  Давление число ударов молекул о стенки сосуда

Нисходящий ток органических веществ осуществляется по ситовидным трубкам, входящим в состав проводящей ткани — флоэмы (луб). Ситовидные трубки состоят из члеников, поперечные перегородки которых пронизаны мелкими отверстиями, образующими «сито». Клетки ситовидных трубок лишены ядер, но содержат живую цитоплазму, образующую единое целое с цитоплазмой соседних клеток. Скорость движения по ситовидным трубкам меньше, чем скорость движения по сосудам.

Элементы проводящей системы вместе с волокнами механической ткани образуют пучки. Сосудисто-волокнистые пучкихорошо видны в листьях в виде жилок, они распространены в стебле, корнях, плодах и объединяют растение в единое целое.

4. механические ткани формируют «внутренний скелет» растения; обеспечивают прочность его органов: сопротивление нагрузкам на растяжение, сжатие и изгиб. Прочность и упругость клеток механических тканей достигается утолщением и одревеснением их оболочек. В молодых участках растущих органов механических тканей нет, т.к. живые клетки, находясь в состоянии тургора, благодаря плотным клеточным стенкам приобретают упругость.

Наиболее распространенная классификация механических тканей:

Склеренхима – представлена волокнами – длинными узкими клетками с равномерно утолщенной одревесневающей клеточной стенкой и обычно отмершим протопластом. В корне, стебле, плодах. В составе ксилемы (древесные волокна), флоэмы (лубяные волокна) и т.д.

Склереиды – клетки округлой или кубовидной формы с толстыми стенками, способными раздревесневать (утрачивать лигнин). В тканях мезофилла листа, мякоти сочных плодов (каменистые клетки), «косточек» плодов костянок

Колленхима – свойственна только двудольным, под эпидермой надземных органов. Округлая или кубовидная форма клеток, живой протопласт, неравномерное утолщение клеточных стенок (свойства пружины)

5. основная ткань  или паренхима, состоит из живых тонкостенных клеток, располагающихся между другими тканями:

основная паренхима – в сердцевине стеблей

древесная паренхима – между сосудами и древесными волокнами в древесине

лубяная паренхима – между ситовидными трубками и волокнами в лубе

хлорофиллоносная паренхима – столбчатая ткань в листе под верхней эпидермой, губчатая – под нижней

запасающая паренхима – в эндосперме семян, клубнях, корнеплодах, плодах

воздухоносная паренхима – у водных растений с плавающими листьями и стеблями.

Источник

Сосуды микроциркуляторного русла. Артериолы. Прекапилляры. Посткапилляры. Венулы.

По мере уменьшения калибра артерий все оболочки их стенок становятся тоньше. Артерии постепенно переходят в артериолы, с которых начинается микроциркуляторное сосудистое русло (МЦР). Через стенки его сосудов осуществляется обмен веществ между кровью и тканями, поэтому микроциркуляторное русло именуется обменным звеном сосудистой системы. Постоянно происходящий обмен воды, ионов, микро- и макромолекул между кровью, тканевой средой и лимфой, представляет собой процесс микроциркуляции, от состояния которого зависит поддержание постоянства внутритканевого и внутриорганного гомеостаза. В составе МЦР различают артериолы, прекапилляры (прекапиллярные артериолы), гемокапилляры, посткапилляры (посткапиллярные венулы) и венулы.

Артериолы — мелкие сосуды диаметром 50-100 мкм, постепенно переходящие в капилляры. Основная функция артериол — регулирование притока крови в основное обменное звено МЦР — гемокапилляры. В их стенке еще сохраняются все три оболочки, свойственные более крупным сосудам, хотя они и становятся очень тонкими. Внутренний просвет артериол выстлан эндотелием, под которым лежат единичные клетки подэндотелиального слоя и тонкая внутренняя эластическая мембрана. В средней оболочке спиралевидно располагаются гладкие миоциты. Они образуют всего 1-2 слоя. Гладкие мышечные клетки имеют непосредственный контакт с эндотелиоцитами, благодаря наличию перфораций во внутренней эластической мембране и в базальной мембране эндотелия. Эндотелио-миоцитарные контакты обеспечивают передачу сигналов от эндотелиоцитов, воспринимающих изменение концентраций биологически активных соединений, регулирующих тонус артериол, на гладкомышечные клетки. Характерным для артериол является также наличие миомиоцитарных контактов, благодаря которым артериолы выполняют свою роль “кранов сосудистой системы” (Сеченов И.М.). Артериолы обладают выраженной сократительной активностью, называемой вазомоцией. Наружная оболочка артериол чрезвычайно тонка и сливается с окружающей соединительной тканью.

строение артериол

Прекапилляры (прекапиллярные артериолы) — тонкие микрососуды (диаметром около 15 мкм), отходящие от артериол и переходящие в гемокапилляры. Их стенка состоит из эндотелия, лежащего на базальной мембране, гладкомышечных клеток, расположенных поодиночке и наружных адвентициальных клеток. В местах отхождения от прекапиллярных артериол кровеносных капилляров имеются гладкомышечные сфинктеры. Последние регулируют приток крови к отдельным группам гемокапилляров и при отсутствии выраженной функциональной нагрузки на орган большая часть прекапиллярных сфинктеров закрыта. В области сфинктеров гладкие миоциты формируют несколько циркулярных слоев. Эндотелиоциты имеют большое количество хеморецепторов и образуют множество контактов с миоцитами. Эти особенности строения позволяют прекапиллярным сфинктерам реагировать на действие биологически активных соединений и изменять приток крови в гемокапилляры.

Гемокапилляры. Наиболее тонкостенные сосуды микроциркуляторного русла, по которым кровь транспортируется из артериального звена в венозное. Из этого правила есть исключения: в клубочках почек гемокапилляры располагаются между приносящими и выносящими артериолами. Такие атипично расположенные кровеносные капилляры образуют сети, называемые чудесными. Функциональное значение гемокапилляров чрезвычайно велико. Они обеспечивают направленное движение крови и обменные процессы между кровью и тканями. По диаметру гемокапилляры подразделяются на узкие (5-7 мкм), широкие (8-12 мкм), синусоидные (20-30 мкм и более с меняющимся по ходу диаметром) и лакуны.

Стенка кровеносных капилляров состоит из клеток — эндотелиоцитов и перицитов, а также неклеточного компонента — базальной мембраны. Снаружи капилляры окружены сетью ретикулярных волокон. Внутренняя выстилка гемокапилляров образована однослойным пластом плоских эндотелиоцитов. Стенку капилляра в поперечнике образуют от одной до четырех клеток. Эндотелиоциты имеют полигональную форму, содержат, как правило, одно ядро и все органеллы. Наиболее характерными ультраструктурами их цитоплазмы являются пиноцитозные везикулы. Последних особенно много в тонких периферических (маргинальных) частях клеток. Пиноцитозные везикулы связаны с плазмолеммой наружной (люминальной) и внутренней (аблюминальной) поверхностей эндотелиоцитов. Их образование отражает процесс трансэндотелиального переноса веществ. При слиянии пиноцитозных пузырьков формируются сплошные трансэндотелиальные канальцы. Плазмолемма люминальной поверхности эндотелиальных клеток покрыта гликокаликсом, выполняющим функцию адсорбции и активного поглощения из крови продуктов обмена веществ и метаболитов. Здесь эндотелиальные клетки образуют микровыросты, численность которых отражает степень функциональной транспортной активности гемокапилляров. В эндотелии гемокапилляров ряда органов наблюдаются “отверстия” (фенестры) диаметром около 50-65 нм, закрытые диафрагмой толщиной 4-6 нм. Их присутствие облегчает течение обменных процессов.

Эндотелиальные клетки обладают динамическим сцеплением и непрерывно скользят одна относительно другой, образуя интердигитации, щелевые и плотные контакты. Между эндотелиоцитами в гемокапиллярах некоторых органов обнаруживаются щелевидные поры и прерывистая базальная мембрана. Эти межклеточные щели служат еще одним из путей транспорта веществ между кровью и тканями.

Снаружи от эндотелия располагается базальная мембрана толщиной 25-35 нм. Она состоит из тонких фибрилл, погруженных в гомогенный липопротеиновый матрикс. Базальная мембрана в отдельных участках по длиннику гемокапилляра расщепляется на два листка, между которыми лежат перициты. Они оказываются как бы “замурованными” в базальной мембране. Полагают, что деятельность и изменение диаметра кровеносных капилляров регулируется, благодаря способности перицитов набухать и отбухать. Аналогом наружной оболочки сосудов в гемокапиллярах служат адвентициальные (периваскулярные) клетки вместе с преколлагеновыми фибриллами и аморфным веществом.

Для гемокапилляров характерна органная специфичность строения. В этой связи различают три типа капилляров: 1) непрерывные, или капилляры соматического типа, — располагаются в мозгу, мышцах, коже; 2) фенестрированные, или капилляры висцерального типа, — располагаются в эндокринных органах, почках, желудочно-кишечном тракте; 3) прерывистые, или капилляры синусоидного типа, — располагаются в селезенке, печени.

В гемокапиллярах соматического типа эндотелиоциты соединены друг с другом с помощью плотных контактов и образуют сплошную выстилку. Базальная мембрана их также непрерывная. Присутствие подобных капилляров со сплошной эндотелиальной выстилкой в мозгу, например, необходимо для надежности гемато-энцефалического барьера. Гемо-капилляры висцерального типа выстланы эндотелиоцитами с фенестрами. Базальная мембрана при этом непрерывная. Капилляры этого типа характерны для органов, в которых обменно-метаболические отношения с кровью более тесные — эндокринные железы выделяют в кровь свои гормоны, в почках из крови фильтруются шлаки, в желудочно-кишечном тракте в кровь и лимфу всасываются продукты расщепления пищи. В прерывистых (синусоидных) гемокапиллярах между эндотелиоцитами имеются щели, или поры. Базальная мембрана в этих участках отсутствует. Такие гемокапилляры присутствуют в органах кроветворения (через поры в их стенке в кровь поступают созревшие форменные элементы крови), печени, которая выполняет множество метаболических функций и клетки которой “нуждаются” в максимально тесном контакте с кровью.

Количество гемокапилляров в разных органах неодинаково: на поперечном срезе в мышце, например, на 1 мм2 площади насчитывается до 400 капилляров, тогда как в коже — всего 40. В обычных физиологических условиях до 50 % гемокапилляров являются нефункционирующими. Количество “открытых” капилляров зависит от интенсивности работы органа. Кровь протекает через капилляры со скоростью 0,5 мм/с под давлением 20-40 мм рт. ст.

Посткапилляры, или посткапиллярные венулы, — это сосуды диаметром около 12-30 мкм, образующиеся при слиянии нескольких капилляров. Посткапилляры по сравнению с капиллярами имеют больший диаметр и в составе стенки чаще встречаются перициты. Эндотелий фенестрированного типа. На уровне посткапилляров происходят также активные обменные процессы и осуществляется миграция лейкоцитов.

Венулы образуются при слиянии посткапилляров. Начальным звеном венулярного отдела МЦР являются собирательные венулы. Они имеют диаметр около 30-50 мкм и не содержат в структуре стенки гладких миоцитов. Собирательные венулы продолжаются в мышечные, диаметр которых достигает 50-100 мкм. В этих венулах имеются гладкомышечные клетки (численность последних увеличивается по мере удаления от гемокапилляров), которые ориентированы чаще вдоль сосуда. В мышечных венулах восстанавливается четкая трехслойная структура стенки. В отличие от артериол, в мышечных венулах нет эластической мембраны, а форма эндотелиоцитов более округлая. Венулы отводят кровь из капилляров, выполняя отточно-дренажную функцию, выполняют вместе с венами депонирующую (емкостную) функцию. Сокращение продольно ориентированных гладких миоцитов венул создает некоторое отрицательное давление в их просвете, способствующее “присасыванию” крови из посткапилляров. По венозной системе вместе с кровью из органов и тканей удаляются продукты обмена веществ.

Гемодинамические условия в венулах и венах существенно отличаются от таковых в артериях и артериолах в связи с тем, что кровь в венозном отделе течет с небольшой скоростью (1-2 мм/с) и при низком давлении (около 10 мм рт. ст.).

В составе микроциркуляторного русла существуют также артериоло-венулярные анастомозы, или соустья, обеспечивающие прямой, в обход капилляров, переход крови из артериол в венулы. Путь кровотока через анастомозы короче транскапиллярного, поэтому анастомозы называют шунтами. Различают артериоло-венулярные анастомозы гломусного типа и типа замыкающих артерий. Анастомозы гломусного типа регулируют свой просвет посредством набухания и отбухания эпителиоидных гломусных Е-клеток, расположенных в средней оболочке соединяющего сосуда, образующего нередко клубочек (гломус). Анастомозы типа замыкающих артерий содержат скопления гладких мышечных клеток во внутренней оболочке. Сокращение этих миоцитов и их выбухание в просвет в виде валика или подушечки могут уменьшить или полностью закрыть просвет анастомоза. Артериоло-венулярные анастомозы регулируют местный периферический кровоток, участвуют в перераспределении крови, терморегуляции, регуляции давления крови. Различают еще атипические анастомозы (полушунты), в которых соединяющий артериолу и венулу сосуд представлен коротким гемокапилляром. По шунтам протекает чистая артериальная кровь, а полушунты, будучи гемокапиллярами, передают в венулу смешанную кровь.

– Также рекомендуем “Вены. Строение вен. Стенки и структура вен.”

Оглавление темы “Сердечно-сосудистая система. Дыхательная система.”:

1. Желчевыводящие пути и желчный пузырь. Строение желчного пузыря.

2. Сердечно-сосудистый комплекс органов. Артерии. Виды и строение артерий.

3. Сосуды микроциркуляторного русла. Артериолы. Прекапилляры. Посткапилляры. Венулы.

4. Вены. Строение вен. Стенки и структура вен.

5. Лимфатические сосуды. Строение лимфатических сосудов. Стенки лимфатических сосудов.

6. Сердце. Эндокард. Миокард. Строение сердца.

7. Дыхательный комплекс органов. Развитие дыхательной системы.

8. Гортань. Слизистая гортани. Стенки гортани. Трахея. Стенки трахеи. Слизистая трахеи.

9. Легкие. Внутрилегочные бронхи. Строение внутрилегочных бронхов.

10. Респираторный отдел легких. Строение респираторного отдела легких.

Источник

Читайте также:  Сделать мрт сосудов в спб