Сосуды обеспечивают восходящий ток воды и минеральных веществ
дима м.
8 марта 2019 · 6,9 K
Проводящая система растений представлена “тонкими трубочками” по которым – в зависимости от типа – передвигаются определённые вещества
Она состоит из:
Кислемы
От ее клеток остались лишь жесткие клеточные стенки, поэтому они считаются “мертвыми”
Обеспечивает восходящий ток минеральных солей и воды от корня к листьямФлоэмы
Ее клетки живые
Ядра таких клеток после созревания отмирают, а цитоплазма прижимается к стенкам, освобождая путь для органических веществ
Обеспечивает нисходящий ток органических веществ (продуктов фотосинтеза) от листьев к корню
Восходящий (или водопроводящий) ток идет по ксилеме, которая образована мертвыми клетками. Нисходящий, более слабый ток идет по флоэме, клетки которой могут оставаться живыми. А состоит нисходящий ток из органических веществ – они отвечают за отток продуктов фотосинтеза.
Какие основные признаки есть у несовершенного остеогенеза, и от каких заболеваний его следует отличать?
Основной признак совпадающий у всех типов это ломкость костей, другие симптомы могут варьироваться от типа к типу и от тяжести:
Неправильная форма или искривление длинных костей.
Маленький рост.
Кожа, на которой легко появляются синяки.
Расшатанные суставы.
Слабые мышцы.
Белки глаз (склера) голубого, фиолетового или серого цвета.
Лицо в форме треугольника.
Грудная клетка в форме бочки.
Изогнутый позвоночник.
Коллапс или сдавление позвонков.
Хрупкие, деформированные или обесцвеченные зубы.
Потеря слуха.
Проблемы с дыханием.
Деформированный тазобедренный сустав, при котором шейка бедренной кости согнута вниз, состояние, называемое coxa vara.
Похожее заболевание это синдром брука, потому что это сочетание нес. остеогенеза и артрогрипоза, есть еще рахит, cdk13 синдром, гипофосфатимеческий рахит, осевая остеомаляция, синдром конради-хюнермана, дисплазия кнаста.
Какие особенности строения членистоногих позволили им расселиться почти по всей планете?
Мои интересы: разнообразны, но можно выделить следующие: литература, история…
Хорошей выживаемости и многочисленности членистоноги способствовали твердый наружный покров, высокая плодовитость, высокий уровень специализации органов движения, которые могли приспосабливаться в различным средам и поверхностям, различные типы ротового аппарата, способность к полету.
Почему цепь питания начинается с растений?
Люблю фантастику, вязание, начинающий садовод
Кто то же должен быть первым в пищевой цепочке. И это организмы-автотрофы(в том числе и растения). Только они умеют делать еду из энергии(например, из солнечного света). Растения никого не поедают и они единственные из всех живых существ, которые получают энергию из неорганических веществ и могут являться пищей для других организмов. Все остальные лишь перерабатывают энергию.
Чем природа и географическое расположение Финикии отличалась от природы Египта и Вавилонии? Были ли реки и плодородные земли?
Примерно 4000 лет назад природа, климат и население Ближнего Востока и Северной Африки разительно отличались от современности. Почва была плодородна, воды доставало, население – разнообразно и многочисленно, во всех трёх названных странах был большой торговый и военный флот. Финикия оказалась обделена огромными плодородными дельтами и реками, но обладала кедровыми лесами и горами, оливами и виноградом, располагалась вдоль моря кишащего рыбой, здесь водились улитки-багрянки, используемые в окраске тканей. Народ научился делать оливковое масло и вино, дуть стекло, а главное – строить качественные корабли с прочной обшивкой и килем. Это предопределило особые успехи в морской торговле, пиратстве и войне.
Прочитать ещё 1 ответ
Источник
Содержание:
- 1. Восходящий ток воды и минеральных веществ
- 2. Нисходящий ток органических веществ
- 3. Газообмен у высших растений
- 4. Выделение у высших растений
Восходящий ток воды и минеральных веществ
Восходяший ток — ток воды и растворенных в ней минеральных веществ от корня растения через его стебель к листьям и другим органам; это ток «вверх».
Вода из почвы поступает в тело растений путем всасывания клетками корня (главным образом в области кончика корня, где имеется множество мелких корневых волосков) за счет осмоса и (иногда) активного переноса.
Из корневых волосков вода по клеткам корня перемещается к центральному цилиндру: либо по цитоплазме клеток через специальные органеллы, обеспечивающие межклеточные цитоплазматические контакты у растений — плазмодесмы (симпластный путь); либо через вакуоли (вакуолярный путь); либо диффузией по оболочкам между клетками (апопластный путь).
Проникновение воды в центральный цилиндр регулируется слоем эндодермы — ткани, расположенной на границе первичной коры и центрального цилиндра и содержащей водонепроницаемое вещество суберин. Центральный цилиндр содержит проводящую ткань — ксилему, по которой вода поднимается вверх к листьям.
Минеральные соли проникают в корневые волоски и затем поступают в клетки коры и центрального цилиндра путем диффузии и активного переноса.
Растения не имеют никакого «насосного» механизма для передвижения веществ, что резко отличает их от животных с развитой сердечно-сосудистой системой. Вода в растении перемещается из областей с большей концентрацией ее молекул в области с меньшей концентрацией молекул.
В листьях в сухую погоду вода диффундирует наружу через устьица и испаряется (процесс транспирации; испарение воды происходит также с наружных клеток эпидермиса листьев и зеленых стеблей через покрывающий их восковой налет — кутикулу, а у листопадных растений после сбрасывания листьев — через чечевички). Испарение воды приводит к уменьшению концентрации ее молекул в листьях растений. В корнях же растений во влажной почве концентрация этих молекул велика. В результате разности концентраций молекул возникает ток молекул воды от корня к листьям. Вместе с током воды перемещаются растворенные в ней минеральные вещества. Этот восходящий ток воды и минеральных веществ осуществляется по ксилеме, содержащей транспортные трахеиды или сосуды и находящейся обычно во внутренних частях многочисленных пучков проводящих тканей, идущих от корня через стебель к листьям.
Растворенные в воде вещества, достигнув места назначения (верхушечной или пазушной меристемы, молодого листа, развивающегося цветка, плода и т.п.), «выделяются» из ксилемы на тончайших концах ее жилок и затем поступают в клетки путем диффузии и активного поглощения.
Нисходящий ток органических веществ
Нисходящий ток — ток органических веществ, прежде всего продуктов фотосинтеза, от листьев к другим органам растения.
Транспортировка органических веществ по телу растения осуществляется по флоэме — проводящей ткани, состоящей из ситовидных клеток и клеток-спутниц, а также клеток механической и основной ткани, и находящейся обычно в наружных слоях проводящих пучков. Передвижение веществ по флоэме осуществляется путем активного переноса; необходимая для этого энергия вырабатывается молекулами АТФ, содержащимися в клетках-спутницах.
Органические вещества по флоэме транспортируются не только вниз, но и вверх, т.е. в двух направлениях. Это отличает флоэму от ксилемы, по которой вещества передвигаются только вверх.
Кроме органических веществ, по флоэме в различной форме переносятся азот и сера (в форме аминокислот), фосфор (в виде фосфорилированных сахаров и ионов неорганического фосфата), калий (в виде ионов), витамины, ростовые вещества, вирусы, поступившие через листья из воздуха химические вещества и т.д.
Газообмен у высших растений
Специализированная дыхательная система у высших растений отсутствует.
Водные растения для дыхания используют растворенный в воде кислород, накапливают и хранят его в специальной основной ткани — аэренхиме.
В тело наземных растений кислород поступает из воздуха через устьица в эпидермисе листьев и зеленых стеблей, диффузно через ризодерму корня, а также через чечевички и трещины в коре на одревесневших стеблях и корнях. Захваченный растением газообразный кислород перемещается по межклетникам, постепенно растворяясь в воде, содержащейся в клеточных оболочках. В растворенном виде кислород перемещается вместе с водой либо по плазмодесмам из клетки в клетку (симпластный путь), либо по оболочкам клеток (апопластный путь), затем диффундируя вместе с водой внутрь клеток, где и потребляется.
Кислород, выделяемый в процессе фотосинтеза в клетках, содержащих хлорофилл, может сразу же потребляться митохондриями.
Диоксид углерода поступает из воздуха через устьица, затем по межклетникам доходит до клеток, где осуществляется процесс фотосинтеза, и проникает внутрь этих клеток путем диффузии. К фотосинтезирующим клеткам стебля диоксид углерода может также проникать через чечевички.
Выделение у высших растений
Растения синтезируют все необходимые им органические вещества ровно в том количестве, сколько необходимо для потребления в данный момент. Поэтому у растений нет специальной выделительной системы, как у животных.
Избыток диоксида углерода из клеток путем диффузии поступает в межклеточное пространство и через устьица, чечевички или трещины в корке выводится в окружающую среду. Через устьица и чечевички осуществляется также испарение воды и выделенных в межклетники спиртов, альдегидов, терпенов.
Многие органические отходы метаболизма и избыток некоторых минеральных солей, поглощаемых растениями, откладываются у растений в отмерших тканях (например, в древесине) и
Метки: растения
Источник
«В природе нет ничего бесполезного» – Мишель де Монтень
Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня
до клеток листа. Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) – 117 метров в высоту.
И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против
силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.
Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать
самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая
микропрепараты.
Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку.
Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.
Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты
обмена веществ из них.
Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям
(восходящий ток) и от листьев к корням (нисходящий ток).
Логическим путем можно угадать многие научные факты, даже не зная их. К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же
вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани – ксилемы (древесины).
От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани – флоэмы (луба).
Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, которая в процентном соотношении может составить до 25% от их массы. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.
В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.
Ксилема (древесина)
Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей. В толще проводящей ткани находятся отнюдь не только те самые трахеиды и
сосуды, ее пронизывают многочисленные механические волокна – древесинные, обеспечивающие каркасность и прочность. В ксилеме содержатся также запасающие структуры,
представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.
- Трахеиды
- Сосуды
- Древесинные волокна (либриформ)
- Паренхимные клетки (древесинная паренхима)
Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение
и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую,
спиралевидную, кольчатую.
Длинные трубки, представляющие собой слияние отдельных мертвых клеток “члеников” в единый “сосуд”. Ток жидкости идет из нижележащих отделов в вышележащие
благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.
Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению
он растягивается и обеспечивает ток воды и минеральных солей.
Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной
клеточной стенкой, которая придает ксилеме механическую прочность.
Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.
Флоэма (луб)
Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания,
подземные части, или “складировать” на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод – дисахарид сахароза.
Эта ткань представлена ситовидными трубками, генез (от греч. genesis – происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная
флоэма – из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.
Разберемся с компонентами, которые входят в состав флоэмы:
- Ситовидные элементы
- Склеренхимные элементы (лубяные волокна)
- Паренхимные элементы (лубяная паренхима)
Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток – “члеников”, соединенных в единую цепь. Между “члениками” имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито – вот откуда берется название ситовидных трубок 🙂
Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ
и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность
ситовидных трубок.
Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.
Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.
По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают.
Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.
Ниже вы найдете продольный срез тканей растения, изучите его.
Жилка
Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма – снизу. Над пучком и под ним располагаются уголковая или пластинчатая
колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия,
располагаются в центральном осевом цилиндре. Существует два вида жилок:
- Открытые
- Закрытые
Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема
ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно
обнаружить во всех органах двудольных растений.
Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы.
Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.
Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань
– склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.
Как вода поднимается от корней к листьям, против силы тяжести?
Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и
присасывающего листового.
- Корневое давление
- Транспирация
Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос:
клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться
в сосуды.
Работа верхнего концевого двигателя заключается в транспирации – испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых
волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место
освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости.
Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Источник