Сосуды высокого давления крови

Артериальное давление — это кровяное давление, которое возникает в результате работы сердца, нагнетающего кровь в сосудистую систему, и последующего сопротивления кровеносных сосудов. Между тем, повышение давления на каждые 10 мм ртутного столба увеличивает риск развития сердечно-сосудистых заболеваний приблизительно на 30%. Медики утверждают, что люди с повышенным давлением в 7 раз чаще страдают от нарушения мозгового кровообращения, которое может привести к инсульту, и в 4 раза больше подвержены ишемической болезни сердца. Что же происходит с сосудами при повышении давления и как побороть гипертонию? Давайте разберемся.

Что происходит с сосудами

Кровеносные сосуды начинают медленно сужаться, и давление на его стенки повышается. В результате в сердечно-сосудистой системе происходят необратимые изменения – сосуды теряют свою эластичность, утолщаются и становятся жесткими. Таким образом, сердце постоянно работает «на износ», и любой стресс может привести к весьма печальным последствиям. Ситуация усложняется, если человек страдает сахарным диабетом или атеросклерозом – в этих случаях риск закупоривания сосудов возрастает в несколько раз.

Итак, при стойком повышении артериального давления сосуды сужаются, а значит, основу лечения гипертоника должны составлять сосудорасширяющие препараты. Однако стоит помнить, что сбивать давление при гипертонии действительно важно, но таким путем от болезни, увы, не избавиться, поэтому самым правильным решением будет обратиться к врачу. Также надо отметить, что если не стабилизировать работу сердечно-сосудистой системы вовремя, повышенное давление может перейти в гипертонический криз, который в свою очередь грозит наступлением инфаркта или инсульта.

Что нужно знать о сосудорасширяющих препаратах

Во-первых, заниматься самолечением крайне опасно, поэтому людям с повышенным давлением нельзя откладывать визит к врачу, который и назначит необходимое лечение. Во-вторых, принимать сосудорасширяющие препараты нужно с осторожностью, так как при их приеме давление может резко упасть. Ну а если оно снизится более чем на 20 мм ртутного столба, то есть возникнет артериальная гипотензия, у человека также может случиться инсульт. Кроме того, при неправильно подобранной дозировке у пациента могут развиться нарушения в работе сердечно-сосудистой системы, температура тела может повыситься, а зрение – ухудшиться.

Как лечиться в домашних условиях

Помимо назначенных врачом препаратов, людям с повышенным давлением нужно придерживаться нескольких правил.

Первое: питание должно быть сбалансированным и желательно дробным – есть нужно 4-5 раз в день небольшими порциями. Кроме того, людям с повышенным давлением рекомендуется отказаться от жирной, слишком соленой и сладкой пищи, выпечки и специй. Также не следует злоупотреблять черным чаем и кофе.

Второе: бросить курить и ограничить себя в употреблении алкоголя.

Третье: вести активный образ жизни. При гипертонии идеальными вариантами будут лечебная физкультура и пешие прогулки.

Четвертое: пить травяные отвары и настойки. В частности, на работу сердечно-сосудистой системы благотворно влияют настойки боярышника и пустырника, а также отвары календулы, ромашки и мяты.

Первые признаки гипертонии

Основными симптомами гипертонии являются приступы головной боли, учащенное сердцебиение, появление «мушек» перед глазами, апатия, раздражительность, сонливость и ухудшение зрения. Также на повышенное давление укажут чрезмерная потливость, быстрая утомляемость, отеки лица и онемение пальцев на руках.

По материалам davleniya.net, fakty.ua.

Источник

По своим функциональным характеристикам сосуды большо­го и малого кругов кровообращения делятся на следующие груп­пы:

1. Амортизирующие сосуды эластического типа. К ним отно­сятся аорта, легочная артерия, крупные артерии. Их функция вы­ражается в сглаживании (амортизации) резкого подъема артери­ального давления во время систолы. За счет эластических свойств этих сосудов создается непрерывный кровоток, как во время сис-Толы, так и диастолы. Во время систолы одна часть кинетической энергии, создаваемой сердцем, затрачивается на продвижение крови, другая преобразуется в потенциальную энергию растяну­тых сосудов аорты и крупных артерий, образующих эластическую «компрессионную камеру». Во время диастолы потенциаль­ная энергия растянутого сосуда снова переходит в кинетическую энергию движения крови. Благодаря этому эффекту и обеспечи­вается непрерывное течение крови.

2. Резистивные сосуды (сосуды сопротивления). К ним отно­сятся средние и мелкие артерии, артериолы, прекапилляры и пре-капиллярные сфинктеры. Эти сосуды имеют хорошо развитую гладкомышечную стенку, за счет которой просвет сосуда может резко уменьшаться и создавать большое сопротивление кровото-ку. Этими свойствами особенно обладают артериолы, которые на­зывают «кранами сосудистой системы».

3. Обменные сосуды. К ним относятся капилляры, в которых происходят обменные процессы между кровью и тканевой жид­костью.

4. Емкостные сосуды — это вены, благодаря своей растяжи­мости они способны вмещать 70—80% всей крови.

5. Артериовенозные анастомозы (шунты) — это сосуды, со­единяющие артериальную и венозную части сосудистой систе­мы, минуя капиллярную сеть.

Движение крови по кровеносным сосудам подчиняется зако­нам гемодинамики, являющейся частью гидродинамики — науки о движении жидкостей по трубкам. Основным условием кровотока является градиент давления между различными отделами сосу­дистой системы.

Давление в сосудах создается работой сердца. Кровь течет из области высокого давления в область низкого. При движении ей приходится преодолевать сопротивление, создаваемое, во-пер­вых, трением частиц крови друг о друга, во-вторых, трением час­тиц крови о стенки сосуда. Особенно велико это сопротивление в артериолах и прекапиллярах. Сопротивление (R) в кровеносном сосуде можно определить по формуле Пуазейля:

Читайте также:  Сосуд в колумбарии 4 букв

R = 8lη/πr4

где 1 — длина трубки (сосуда); η — вязкость жидкости (крови);π — отношение окружности к диаметру; r радиус трубки (сосу­да). Значит, сопротивление зависит от длины сосуда, вязкости крови, которая в 5 раз больше вязкости воды, и радиуса сосуда.

В соответствии с законами гидродинамики количество жид­кости (крови), протекающей через поперечное сечение сосуда за единицу времени (мл/с), или объемная скорость кровотока (О), прямо пропорциональна разности давления в начале (Р1) сосудис­той системы — в аорте и в ее конце (Р2), т.е. в полых венах, и об­ратно пропорциональна сопротивлению (R} току жидкости:

Q=(P1 – Р2)R

В связи с замкнутостью кровеносной системы объемная ско­рость кровотока во всех ее отделах (во всех артериях, всех капил­лярах, всех венах) одинакова. Зная объемную скорость кровото­ка, можно рассчитать линейную скорость или расстояние, прохо димое частицей крови за единицу времени:

V = Q/πr2.

В отличие от объемной, линейная скорость изменяется по ходу сосудистого русла и обратно пропорциональна суммарному по перечному сечению всех сосудов данного калибра. Самое узко< место в сосудистой системе — это аорта, поэтому она имеет самую большую линейную скорость кровотока — 50—60 см/с. В артериях она равна 20—40 см/с, в артериолах — 5 мм/с, в венах -7—20 см/с; самый широкий суммарный просвет, в 500—600 paз превышающий диаметр аорты, имеют капилляры, поэтому линейная скорость в них минимальная — 0,5 мм/с.

Помимо объемной и линейной скорости кровотока, существует еще один гемодинамический показатель — время кругообороте крови — это время, в течение которого частица крови пройдет к большой и малый круг кровообращения, оно составляет 20 — 25 с.

Основным гемодинамическим показателем является артери­альное давление (АД), уровень которого по ходу сосудистого рус­ла падает неравномерно (рис. 13) и зависит от ряда факторов, глав­ный из которых — работа сердца. Во время систолы АД повыша­ется — это систолическое, или максимальное, давление.

Рис. 13. Схема изменения кровяного давления вдоль сосудистого русла (по Фолькову, 1967):

О— 1 — сердце — «насос»; 1—2— аорта и крупные артерии; 2—3 — арте­риолы и прекапилляры; 3—4— прекапиллярные сфинктеры; 4—5— ка­пилляры; 5—6— посткапиллярные сосуды; 6—7— венулы и вены

У здорового человека в возрасте 20 — 40 лет в плечевой арте­рии оно равно 110 — 120 мм рт.ст. Во время диастолы АД снижается — это диастолическое, или минимальное, давление, равное 70 — 80 мм рт.ст. Разницу между систолическим и диастолическим давлением составляет пульсовое давление — 40 мм рт.ст. Различа­ют еще среднее давление, или равнодействующую изменений давления во время систолы и диастолы. Оно равно 100 мм рт.ст. АД прежде всего зависит от работы сердца. Остановка сердца приводит к быстрому падению АД до 0.

На уровень давления влияет количество циркулирующей кро­ви. При кровопотере давление снижается. АД зависит также от эластичности сосудистой стенки. Поэтому у пожилых людей (после 50 лет) в связи с потерей эластичности сосуда АД повыша­ется до 140/90 мм рт.ст.

Сопротивление сосуда, которое изменяется в зависимости от его просвета, влияет на уровень АД. Так, прием сосудосуживаю­щих препаратов приводит к увеличению сопротивления в сосуде и повышению АД.

Увеличение вязкости крови повышает артериальное давле­ние, уменьшение — снижает.

Возраст определяет величину АД. У новорожденных систоли­ческое давление равно 70 — 80 мм рт.ст, у ребенка первых лет жиз­ни — 80—120, подростка — 110—120, у взрослого человека 20-40 лет – 110/70-120/80, после 50 лет – 140-150/90 мм рт.ст. Физические упражнения повышают давление до 180 мм рт.ст. и более, особенно систолическое. Во время сна давление па­дает на 15—20 мм рт.ст.

Прием пищи, эмоции повышают систолическое давление. На уровень АД влияет положение тела в пространстве, так как сосудистая система находится в поле силы тяжести. В вертикаль­ном положении давление, создаваемое работой сердца, склады­вается с гидростатическим давлением. Поэтому давление в сосу­дах, расположенных ниже сердца, больше чем давление в сосу­дах, расположенных выше сердца. При горизонтальном положе­нии эти различия нивелируются. Так, в вертикальном положе­нии в сосудах стопы, т.е. на 125 см ниже сердца, гидростатичес­кое давление составляет 90 мм рт.ст. Сложив его со средним АД, получим: 100+90= 190 мм рт.ст. В артериях головного мозга (на 40 см выше сердца) АД снижается на 30 мм рт.ст., составляя 100-30 =70 мм рт.ст.

В настоящее время существуют два способа измерения АД. Первый — кровавый, прямой, применяется в остром эксперимен­те на животных, второй — бескровный, непрямой, используется для измерения давления на плечевой артерии у человека.

На кривой давления (рис.14), записанной на сонной артерии животного, различают волны 3 порядков: волны первого порядка, или пульсовые, обусловленные деятельностью сердца, волны второго порядка, или дыхательные, вдох сопровождается понижением АД, а выдох — повы­шением. Иногда, при не­достаточном кровоснаб­жении сосудодвигатель-ного центра (после кро-вопотери, при отравле­нии некоторыми ядами) регистрируются волны третьего порядка (Трау-бе—Геринга), каждая из которых охватывает как пульсовые, так и не­сколько дыхательных волн второго порядка.

Читайте также:  Лопнул сосуд на подбородке

Рис. 14. Кривая кровяного давления (запись на кролике в остром опыте):

о — волны первого порядка — пульсовые;

б — волны второго порядка — дыхательные;

в — волны третьего порядка (Траубе — Ге­ринга);

г — отметка времени с ценой деле­ния 0,3 с

В клинике наиболь­шее распространение по­лучил бескровный, не­прямой метод измерения АД с помощью сфигмоманометра Д.Рива-Роччи и выслушивания сосудистых тонов Н.С.Короткова на плечевой артерии ниже места пережатия ее манжеткой, в кото­рую нагнетается воздух выше максимального значения АД и до исчезновения пульса на лучевой артерии. Появление первого со­судистого тона после выпускания воздуха из манжетки обуслов­лено ударом о стенку артерии порции крови, проходящей через сдавленный участок сосуда. Этот момент соответствует систоли­ческому, или максимальному, давлению.

По мере снижения давления в манжетке, звуковые явления, создаваемые завихрениями крови в еще пережатой артерии, про­слушиваются достаточно хорошо. Затем они исчезают, так как со­суд открыт как во время систолы, так и во время диастолы, пре­пятствий для прохождения крови нет. Момент исчезновения то­нов Короткова соответствует диастолическому, или минимально­му, давлению.

Артериальный пульс

Артериальный пульс — это ритмические колебания стенки артерии, связанные с повышением давления во время систолы. Деятельность сердца создает два вида движения в артериальной системе: пульсовую волну и пульсирующее течение крови, или линейную скорость кровотока (в артериях она не более 50 см/с).

Пульсовая волна возникает в аорте во время фазы изгнания крови и распространяется со скоростью 4—6 м/с. Периферичес­ких артерий мышечного типа (например, лучевой) она достигает со скоростью 8—12 м/с. С возрастом эластичность артерий сни­жается и скорость распространения пульсовой волны (СРПВ) возрастает. Она может увеличиваться при повышении АД в связи с увеличением напряжения сосудистой стенки. СРПВ претерпева­ет значительные изменения под действием лекарственных препа­ратов.

Артериальный пульс можно зарегистрировать с помощью приборов сфигмографов. Кривая пульса называется сфигмограм­мой.

Различают центральный пульс — пульс на аорте и прилегаю­щих к ней артериях (сонной, подключичной) и периферический — пульс на лучевой, бедренной и других артериях.

На кривой центрального пульса (рис.15) имеется восходящая часть — анакрота, обусловленная повышением давления и рас­тяжением стенки артерии в начале фазы изгнания. В конце пе­риода изгнания перед закрытием полулунных клапанов происхо­дит внезапное падение давления в аорте, при этом регистрирует­ся выемка, или инцизура. Далее происходит захлопывание полу­лунных клапанов и возникает вторичная волна повышения дав­ления. Ей соответствует дикротический подъем, или зубец, после которого регистрируется катакрота — спад пульсовой кривой, обусловленный диастолой сердца и падением давления в желу­дочках.

Центральный пульс отличается от периферического, тем что, начиная от вершины подъема кривой, может регистрироваться систолическое плато, обра­зованное ударной и остаточ­ной систолической волнами.

На кривой периферичес­кого пульса анакротический подъем более медленный, дикротический зубец менее вы­ражен и является результа­том интерференции цент­ральных и периферических волн.

Рис. 15. Сфигмограмма (по В.А.Зарубину):

/ — схема сфигмограммы; cd — анакрота; de — систолическое плато; gh — катакрота; f — инцизура; g дикротический зубец; II — запись пульса на сонной артерии: a — запись пульса; б — отметка времени с ценой деления 0,7 с

Артериальный пульс от­ражает состояние сердечно­сосудистой системы и имеет несколько характеристик: частоту, ритм, быстроту, амплитуду, напряжение и форму. Частота пульса у здо­рового человека соответству­ет частоте сердечных сокра­щений. В покое она равна 60 — 80 в 1 минуту. Если пульс менее 60 в 1 минуту — это брадикардия, более 80 — тахикардия. Повышение температуры тела на 1° С сопровождается учащением пульса на 8 ударов в 1 ми­нуту.

Ритм пульса может быть правильным — это ритмичный пульс или неправильным — аритмичный (например, дыхательная арит­мия).

Быстрота пульса отражает скорость, с которой происходит повышение давления в артерии во время подъема пульсовой вол­ны и снижение во время ее спада. Различают быстрый и медлен­ный пульс, оба вида пульса наблюдаются при патологии аорталь­ных клапанов и аорты.

Амплитуда пульса — это амплитуда колебаний стенки сосуда, зависящая от систолического объема сердца, а также от эластич­ности сосудов: чем они более эластичны, тем меньше амплитуда пульса.

Напряжение пульса определяется тем сопротивлением стенки артерии, которая противодействует нажиму давящего пальца. Различают твердый и мягкий пульс. При высоком АД пульс стано­вится твердым, «проволочным».

По форме пульс может быть дикротическим или анакротиче-ским в зависимости от степени выраженности дикротического зубца.

Микроциркуляция

Термином «микроциркуляция» обозначают ток крови и лим­фы по мельчайшим кровеносным и лимфатическим сосудам, пи­тающим любой орган, а также транспорт воды, газов и различных веществ (в том числе и лекарственных) между микрососудами и интерстициальным пространством.

Микрососуды — это главное звено сосудистой системы. Они выполняют целый ряд функций:

1. Участвуют в перераспределении крови в организме в зави­симости от его потребностей.

Читайте также:  Сосуды глаз красные чем лечить

2. Создают условия для обмена веществ между кровью и тка­нями.

3. Играют компенсаторно-приспособительную роль при воз­действии экстремальных факторов среды — переохлаждение, пе­регревание и др.

В состав внутриорганного микроциркуляторного русла вхо­дят следующие сосуды: артериолы, прекапилляры, или метаартериолы, прекапиллярные сфинктеры, капилляры, посткапилляр­ные венулы, венулы и артериовенозные анастомозы. К кровенос­ным сосудам, расположенным в интерстициальном пространстве, примыкают замкнутые лимфатические капилляры и мелкие лимфатические сосуды.

Рис. 16. Схема артериовенозного анастомоза:

/ — артериола; 2 — артериовенозный анастомоз; 3 — капилля­ры; 4 — венула

Совокупность всех вышеперечисленных элементов микроциркуляторного русла называется микроциркуляторной едини­цей, или «модулем» (рис.16). Артериолы — это тонкие сосуды ди­аметром 70 мкм, содержат кольцевой слой гладких мышц, сокращение которых создает сопротивление кровотоку, поэтому их называют резистивными сосудами. Их функция — регуляция уровня АД в артериях. При уменьшении просвета артериолы АД в артериях увеличивается, при увеличении – падает. И.М. Сеченовназвал артериолы «кранами сосудиетой системы». Артериальное давление в артериолах равно нозный 60 – 80 мм рт.ст.

Прекапилляры, или метаартериолы, имеют диаметр от 7 до 16 мкм. В них отсутствуют эластические элементы, но их мышеч­ные клетки обладают автоматией, т.е. способностью спонтанно генерировать импульсы. Их особенность — большая чувствитель­ность к химическим веществам, в том числе к сосудосуживаю­щим и сосудорасширяющим.

Каждый прекапилляр заканчивается прекапиллярным сфинктером. Это последнее звено, в котором встречаются гладко-мышечные клетки. От состояния сфинктера зависит число от­крытых и закрытых капилляров и появление так называемых «плазменных» капилляров, по которым протекает только плазма без форменных элементов, например, после кровопотери, при ма­локровии. Прекапиллярные сфинктеры также находятся преиму­щественно под контролем гуморальных факторов и химических веществ, растворенных в крови. Так, хорошо известный антаго­нист кальция — нифедипин (коринфар), а также бета-адреноблокатор — анаприлин (обзидан) расширяют Прекапиллярные сфинктеры, улучшают капиллярную фильтрацию и снижают ар­териальное давление.

Капилляры — самое важное звено в системе микроциркуля­ции, это обменные сосуды, обеспечивающие переход газов, во­ды, питательных веществ из сосудистого русла в ткани и из тка­ней в сосуды. Всего у человека 40 млрд капилляров. Капилля­ры — это тончайшие сосуды диаметром 5—7 мкм и длиной от 0,5 до 1,1 мм. Они тесно примыкают к клеткам органов и тканей, об­разуя обширную обменную поверхность, равную 1000— 1500 м2, хотя в них и содержится всего 200—250 мл крови. Капилляр не имеет сократительных элементов, у него 2 оболочки: внутрен­няя — эндотелиальная и наружняя — базальная, в которую впа­яны клетки-перициты.

Различают три типа капилляров: 1. Соматический — эндотелий капилляра не имеет фенестр и пор, а базальный слой непре­рывный (капилляры скелетных и гладких мышц, кожи, коры боль­ших полушарий). Капилляры данного типа непроницаемы или почти непроницаемы для крупных молекул белка, но хорошо про­пускают воду и растворенные в ней минеральные вещества. 2. Висцеральный — имеет фенестрированный эндотелий и сплош­ную базальную мембрану. Этот тип капилляров расположен в ор­ганах (почки, кишечник, эндокринные железы), секретирующих и всасывающих большие количества воды с растворенными в ней веществами. 3. Синусоидный — это капилляры с большим диамет­ром, между эндотелиоцитами имеются щели, базальная мембрана прерывиста или может полностью отсутствовать. Через их стенки хорошо проникают макромолекулы и форменные элементы кро­ви. Такого типа капилляры находятся в печени, костном мозге, се­лезенке.

Количество функционирующих капилляров зависит от состо­яния органа. Так, в покое открыто только 25 – 35% всех капилля­ров. Кровь поступает в капилляр под давлением 30 мм рт.ст., а вы­ходит под давлением 10 мм рт.ст. и течет по капилляру с очень ма­ленькой скоростью, всего 0,5 мм/с, что создает благоприятные ус­ловия для протекания обменных процессов между кровью и тка­нями.

Посткапиллярные венулы — это первое звено емкостной час­ти микроциркуляторного русла. Наряду с эндотелиальными и гладкомышечными клетками в стенке вен появляются соединительнотканные элементы, придающие ей большую растяжи­мость. Диаметр этих сосудов составляет от 12 мкм до 1 мм, давле­ние — 10 мм рт.ст., скорость кровотока — 0,6—1 мм/с. Постка­пиллярные венулы наряду с капиллярами относят к обменным со­судам, через стенку которых способны проходить высокомолеку­лярные вещества.

Артериовенозные анастомозы, или шунты — это сосуды, со­единяющие артериолу с венулой, минуя или в обход капиллярной сети. Они находятся в коже, легких, почках, печени, имеют гладкомышечные элементы и, в отличие от других сосудов, большое количество рецепторов и нервных окончаний, обеспечивающих регуляцию кровотока. Основные функции анастомозов заключа­ются: 1) в перераспределении крови к работающему органу, 2) оксигенации венозной крови; 3) поддержании постоянной темпера­туры в данном органе или участке тела — терморегуляторная функция; 4) увеличении притока крови к сердцу.

В системе микроциркуляции различают два вида кровотока:

1. Медленный, транскапиллярный, преобладает в состоянии по­коя, обеспечивает обменные процессы. 2. Быстрый, юкстакапил-

лярный, через артериовенозные анастомозы, преобладает в со­стоянии функциональной активности, например, в мышцах при физической нагрузке. Так, 1 мл крови проходит через капилляры за б ч, а через артериовенозные анастомозы — всего за 2 с.



Источник