Стеклянная капиллярная трубка опущена в широкий сосуд

>>> Перейти на мобильную версию сайта >>>
Учебник для 10 класса
Физика
Термодинамика
Задачи на материал данной главы отличаются от обычных задач на гидростатику лишь тем, что в них принимается во внимание еще одна сила — сила поверхностного натяжения, определяемая формулой (7.4.3).
Для решения задач используются также формулы для поверхностной энергии (7.3.2), давления под изогнутой поверхностью (7.6.6) и высоты поднятия жидкости в капилляре (7.7.3).
Задача 1
Определите энергию, освободившуюся при слиянии мелких капель воды радиусом r = 2 • 10-3 мм в одну большую каплю радиусом R = 2 мм. Считать, что при слиянии мелких капель температура не изменяется. Поверхностное натяжение воды равно σ = 7,4 • 10-2 Н/м.
Решение. Обозначим число мелких капель через n. Тогда общая поверхность всех мелких капель
Поверхность одной большой капли
Поверхностная энергия всех мелких капель
а одной крупной капли
Так как температура не изменялась, то кинетическая энергия молекул воды тоже не изменилась. Следовательно, выделение энергии произошло за счет уменьшения потенциальной (поверхностной)энергии:
Чтобы найти число капель п, учтем, что объем воды не изменился. Сумма объемов мелких капель
а объем большой капли
Так как V1 = V2, то
Отсюда число мелких капель
Подставляя это значение n в выражение (7.8.1), получим
Задача 2
Смачиваемый водой кубик массой m = 0,02 кг плавает на поверхности воды. Ребро кубика имеет длину а = 0,03 м. На каком расстоянии х от поверхности воды находится нижняя грань кубика?
Решение. Архимедова сила уравновешивает силу тяжести кубика и силу поверхностного натяжения. Следовательно,
Отсюда
Силы поверхностного натяжения вносят поправку около 1 мм.
Задача 3
Два мыльных пузыря радиусами R и r «срослись», как показано на рисунке 7.29. Какую форму примет пленка, разделяющая оба пузыря? Какие углы образуются между пленками в местах их соприкосновения?
Рис. 7.29
Решение. Давление внутри мыльного пузыря радиусом R больше атмосферного давления на величину , а внутри меньшего пузыря — на величину . В этих выражениях учтено, что у мыльного пузыря две поверхности. Давление внутри пузыря радиусом R вместе с давлением участка пленки между пузырями должно уравновесить давление внутри меньшего пузыря. Следовательно,
где Rx — радиус кривизны участка пленки АВ. Отсюда
Силы поверхностного натяжения в любой точке поверхности соприкосновения пузырей уравновешивают друг друга и равны между собой. А это возможно только в том случае, когда углы между векторами сил равны 120°.
Задача 4
Длинную стеклянную капиллярную трубку, радиус канала которой r = 1 мм, закрыли снизу и наполнили водой. Трубку поставили вертикально и открыли ее нижний конец, при этом часть воды вылилась. Какова высота столба оставшейся в капилляре воды?
Решение. Столб воды в поставленной вертикально трубке удерживается верхним и нижним менисками (рис. 7.30).
Рис. 7.30
Давление в точке В под верхним мениском
а давление в точке С над нижним мениском
С другой стороны,
Следовательно,
или
Отсюда
Задача 5
Конец капиллярной трубки опущен в воду. Какое количество теплоты Q выделится при поднятии жидкости по капилляру? Краевой угол принять равным нулю (полное смачивание).
Решение. Жидкость поднимается согласно формуле (7.7.3) на высоту h = . Потенциальная энергия столбика жидкости в поле тяготения Земли
так как
Силы поверхностного натяжения совершают работу
На увеличение потенциальной энергии Еp идет половина этой работы. Следовательно, выделение теплоты происходит за счет другой половины. Таким образом,
Задача 6
Капиллярная трубка погружена в воду таким образом, что длина непогруженной ее части составляет l = 0,2 м. Вода поднялась в трубке на высоту = 0,1 м. В этом положении верхний конец трубки закрывают пальцем и трубку погружают в воду до тех пор, пока уровень воды в ней не сравняется с уровнем воды в сосуде. Найдите длину выступающей из воды части трубки в этом положении. Внешнее давление р0 = 105 Па.
Решение. Согласно формуле (7.7.3)
Найдем давление воздуха, которое установится в погруженном закрытом сверху капилляре после выравнивания уровней воды (в сосуде и капилляре). Обозначим давление воздуха в капилляре буквой р, тогда под вогнутой поверхностью воды в капилляре давление равно (см. § 7.6). Так как жидкость в капилляре и сосуде находится в равновесии, то давление на жидкость в сосуде (атмосферное давление р0) равно давлению :
Откуда
Полагая температуру неизменной и применив закон Бойля—Мариотта, получим
Отсюда
Найдем из уравнения (7.8.7) значение σ и подставим его в выражение (7.8.8):
И наконец, подставив в (7.8.10) выражение (7.8.11) для р, окончательно получим
Упражнение 6
- Какую работу надо совершить, чтобы выдуть мыльный пузырь диаметром D = 12 см? Поверхностное натяжение мыльного раствора считать равным 4 • 10-2 Н/м.
- Каким усилием можно оторвать тонкое металлическое кольцо от мыльного раствора (σ = 4 • 10-2 Н/м), если диаметр кольца 15,6 см, масса 7,0 г и кольцо соприкасается с раствором по окружности?
- Каким образом, используя явления смачивания и несмачивания, можно осуществить минимальный и максимальный термометры?
- При удалении с поверхности ткани жирного пятна рекомендуется смачивать пропитанной бензином ваткой края пятна. Смачивать бензином сразу само пятно не следует. Почему?
- Чтобы мазь лучше впитывалась в смазанные лыжные ботинки, их нагревают. Как нужно нагревать ботинки — снаружи или изнутри?
- Почему с помощью утюга можно вывести пятно жира с костюма?
- Почему при сушке дров на солнце на конце полена, находящемся в тени, выступают капельки воды?
- На сколько давление воздуха внутри мыльного пузыря больше атмосферного давления, если диаметр пузыря D = 10 мм? Поверхностное натяжение мыльного раствора σ = 4 • 10-2 Н/м.
- Из трубки с раструбами на концах выдули два мыльных пузыря (рис. 7.31), после чего закрыли пальцем трубку С. Будет ли воздух переходить из одного пузыря в другой? До каких пор?
Рис. 7.31
- В носик стеклянной трубки от пипетки (рис. 7.32) попадает капля воды. В какую сторону при этом устремляется капля — к широкому или узкому концу трубки? Почему?
Рис. 7.32
- В дне чайника имеется круглое отверстие диаметром 0,1 мм. До какой высоты можно налить воду в чайник, чтобы она не выливалась через отверстие? Сохранится ли это условие, если воду в чайнике нагревать?
- Конец стеклянной капиллярной трубки радиусом r = 0,05 см опущен в воду на глубину h = 2 см. Какое давление необходимо, чтобы выдуть пузырек воздуха через нижний конец трубки?
- Смачивающая жидкость плотностью р поднялась в капиллярной трубке на высоту h. Каково давление в жидкости внутри капилляра на высоте h/4? Атмосферное давление равно р0.
- Докажите, что в случае неполного смачивания (Θ ≠ 0) высота поднятия жидкости в вертикальной капиллярной трубке вычисляется по формуле , где Θ — краевой угол, r — радиус канала трубки и ρ — плотность жидкости. Как изменится формула , если сосуд с жидкостью будет установлен в лифте, движущемся с ускорением , направленным вверх? вниз?
- Длинную капиллярную трубку радиусом 0,8 мм заполнили водой и перевели в вертикальное положение. Найдите массу жидкости, оставшейся в трубке после того, как часть воды вылилась.
- В капиллярной трубке, опущенной вертикально в воду на глубину l, вода поднялась на высоту h (рис. 7.33). Нижний конец трубки закрывают, вынимают ее из воды и снова открывают. Определите длину столбика воды, оставшейся в трубке.
Рис. 7.33
- Стеклянная капиллярная трубка, внутренний диаметр которой d = 0,5 мм, погружена в воду. Верхний конец трубки выступает на h = 2 см над поверхностью воды. Какую форму имеет мениск? Чему равен его радиус кривизны?
- Капиллярная стеклянная трубка имеет радиус канала r = 0,05 см и запаяна сверху. Трубка открытым концом опускается вертикально в воду. Какой длины следовало бы взять трубку, чтобы при этих условиях вода в ней поднялась на высоту h = 1 см? Давление воздуха р0 = 105 Па. Поверхностное натяжение воды σ = 7 • 10-2 Н/м.
- Каким образом можно без потерь налить жидкость в сосуд, находясь в условиях невесомости (на космическом корабле)? Как в этих условиях извлечь жидкость из сосуда?
- Великому датскому физику Н. Бору довелось однажды мыть посуду в горной альпийской хижине. Он был крайне удивлен, увидев, что можно получить чистую посуду с помощью небольшого количества грязной воды и грязной тряпки. В чем здесь дело?
Источник
>>> Перейти на мобильный размер сайта >>>
Учебник для 10 класса
ФИЗИКА
Задачи на материал данной главы отличаются от обычных задач на гидростатику лишь тем, что в них принимается во внимание еще одна сила — сила поверхностного натяжения, определяемая формулой (7.4.3).
Для решения задач используются также формулы для поверхностной энергии (7.3.2), давления под изогнутой поверхностью (7.6.6) и высоты поднятия жидкости в капилляре (7.7.3).
Задача 1
Определите энергию, освободившуюся при слиянии мелких капель воды радиусом r = 2 • 10-3 мм в одну большую каплю радиусом R = 2 мм. Считать, что при слиянии мелких капель температура не изменяется. Поверхностное натяжение воды равно σ = 7,4 • 10-2 Н/м.
Решение. Обозначим число мелких капель через n. Тогда общая поверхность всех мелких капель
Поверхность одной большой капли
Поверхностная энергия всех мелких капель
а одной крупной капли
Так как температура не изменялась, то кинетическая энергия молекул воды тоже не изменилась. Следовательно, выделение энергии произошло за счет уменьшения потенциальной (поверхностной)энергии:
Чтобы найти число капель п, учтем, что объем воды не изменился. Сумма объемов мелких капель
а объем большой капли
Так как V1 = V2, то
Отсюда число мелких капель
Подставляя это значение n в выражение (7.8.1), получим
Задача 2
Смачиваемый водой кубик массой m = 0,02 кг плавает на поверхности воды. Ребро кубика имеет длину а = 0,03 м. На каком расстоянии х от поверхности воды находится нижняя грань кубика?
Решение. Архимедова сила уравновешивает силу тяжести кубика и силу поверхностного натяжения. Следовательно,
Отсюда
Силы поверхностного натяжения вносят поправку около 1 мм.
Задача 3
Два мыльных пузыря радиусами R и r «срослись», как показано на рисунке 7.29. Какую форму примет пленка, разделяющая оба пузыря? Какие углы образуются между пленками в местах их соприкосновения?
Рис. 7.29
Решение. Давление внутри мыльного пузыря радиусом R больше атмосферного давления на величину , а внутри меньшего пузыря — на величину . В этих выражениях учтено, что у мыльного пузыря две поверхности. Давление внутри пузыря радиусом R вместе с давлением участка пленки между пузырями должно уравновесить давление внутри меньшего пузыря. Следовательно,
где Rx — радиус кривизны участка пленки АВ. Отсюда
Силы поверхностного натяжения в любой точке поверхности соприкосновения пузырей уравновешивают друг друга и равны между собой. А это возможно только в том случае, когда углы между векторами сил равны 120°.
Задача 4
Длинную стеклянную капиллярную трубку, радиус канала которой r = 1 мм, закрыли снизу и наполнили водой. Трубку поставили вертикально и открыли ее нижний конец, при этом часть воды вылилась. Какова высота столба оставшейся в капилляре воды?
Решение. Столб воды в поставленной вертикально трубке удерживается верхним и нижним менисками (рис. 7.30).
Рис. 7.30
Давление в точке В под верхним мениском
а давление в точке С над нижним мениском
С другой стороны,
Следовательно,
или
Отсюда
Задача 5
Конец капиллярной трубки опущен в воду. Какое количество теплоты Q выделится при поднятии жидкости по капилляру? Краевой угол принять равным нулю (полное смачивание).
Решение. Жидкость поднимается согласно формуле (7.7.3) на высоту h = . Потенциальная энергия столбика жидкости в поле тяготения Земли
так как
Силы поверхностного натяжения совершают работу
На увеличение потенциальной энергии Еp идет половина этой работы. Следовательно, выделение теплоты происходит за счет другой половины. Таким образом,
Задача 6
Капиллярная трубка погружена в воду таким образом, что длина непогруженной ее части составляет l = 0,2 м. Вода поднялась в трубке на высоту = 0,1 м. В этом положении верхний конец трубки закрывают пальцем и трубку погружают в воду до тех пор, пока уровень воды в ней не сравняется с уровнем воды в сосуде. Найдите длину выступающей из воды части трубки в этом положении. Внешнее давление р0 = 105 Па.
Решение. Согласно формуле (7.7.3)
Найдем давление воздуха, которое установится в погруженном закрытом сверху капилляре после выравнивания уровней воды (в сосуде и капилляре). Обозначим давление воздуха в капилляре буквой р, тогда под вогнутой поверхностью воды в капилляре давление равно (см. § 7.6). Так как жидкость в капилляре и сосуде находится в равновесии, то давление на жидкость в сосуде (атмосферное давление р0) равно давлению :
Откуда
Полагая температуру неизменной и применив закон Бойля—Мариотта, получим
Отсюда
Найдем из уравнения (7.8.7) значение σ и подставим его в выражение (7.8.8):
И наконец, подставив в (7.8.10) выражение (7.8.11) для р, окончательно получим
Упражнение 6
- Какую работу надо совершить, чтобы выдуть мыльный пузырь диаметром D = 12 см? Поверхностное натяжение мыльного раствора считать равным 4 • 10-2 Н/м.
- Каким усилием можно оторвать тонкое металлическое кольцо от мыльного раствора (σ = 4 • 10-2 Н/м), если диаметр кольца 15,6 см, масса 7,0 г и кольцо соприкасается с раствором по окружности?
- Каким образом, используя явления смачивания и несмачивания, можно осуществить минимальный и максимальный термометры?
- При удалении с поверхности ткани жирного пятна рекомендуется смачивать пропитанной бензином ваткой края пятна. Смачивать бензином сразу само пятно не следует. Почему?
- Чтобы мазь лучше впитывалась в смазанные лыжные ботинки, их нагревают. Как нужно нагревать ботинки — снаружи или изнутри?
- Почему с помощью утюга можно вывести пятно жира с костюма?
- Почему при сушке дров на солнце на конце полена, находящемся в тени, выступают капельки воды?
- На сколько давление воздуха внутри мыльного пузыря больше атмосферного давления, если диаметр пузыря D = 10 мм? Поверхностное натяжение мыльного раствора σ = 4 • 10-2 Н/м.
- Из трубки с раструбами на концах выдули два мыльных пузыря (рис. 7.31), после чего закрыли пальцем трубку С. Будет ли воздух переходить из одного пузыря в другой? До каких пор?
Рис. 7.31
- В носик стеклянной трубки от пипетки (рис. 7.32) попадает капля воды. В какую сторону при этом устремляется капля — к широкому или узкому концу трубки? Почему?
Рис. 7.32
- В дне чайника имеется круглое отверстие диаметром 0,1 мм. До какой высоты можно налить воду в чайник, чтобы она не выливалась через отверстие? Сохранится ли это условие, если воду в чайнике нагревать?
- Конец стеклянной капиллярной трубки радиусом r = 0,05 см опущен в воду на глубину h = 2 см. Какое давление необходимо, чтобы выдуть пузырек воздуха через нижний конец трубки?
- Смачивающая жидкость плотностью р поднялась в капиллярной трубке на высоту h. Каково давление в жидкости внутри капилляра на высоте h/4? Атмосферное давление равно р0.
- Докажите, что в случае неполного смачивания (Θ ≠ 0) высота поднятия жидкости в вертикальной капиллярной трубке вычисляется по формуле , где Θ — краевой угол, r — радиус канала трубки и ρ — плотность жидкости. Как изменится формула , если сосуд с жидкостью будет установлен в лифте, движущемся с ускорением , направленным вверх? вниз?
- Длинную капиллярную трубку радиусом 0,8 мм заполнили водой и перевели в вертикальное положение. Найдите массу жидкости, оставшейся в трубке после того, как часть воды вылилась.
- В капиллярной трубке, опущенной вертикально в воду на глубину l, вода поднялась на высоту h (рис. 7.33). Нижний конец трубки закрывают, вынимают ее из воды и снова открывают. Определите длину столбика воды, оставшейся в трубке.
Рис. 7.33
- Стеклянная капиллярная трубка, внутренний диаметр которой d = 0,5 мм, погружена в воду. Верхний конец трубки выступает на h = 2 см над поверхностью воды. Какую форму имеет мениск? Чему равен его радиус кривизны?
- Капиллярная стеклянная трубка имеет радиус канала r = 0,05 см и запаяна сверху. Трубка открытым концом опускается вертикально в воду. Какой длины следовало бы взять трубку, чтобы при этих условиях вода в ней поднялась на высоту h = 1 см? Давление воздуха р0 = 105 Па. Поверхностное натяжение воды σ = 7 • 10-2 Н/м.
- Каким образом можно без потерь налить жидкость в сосуд, находясь в условиях невесомости (на космическом корабле)? Как в этих условиях извлечь жидкость из сосуда?
- Великому датскому физику Н. Бору довелось однажды мыть посуду в горной альпийской хижине. Он был крайне удивлен, увидев, что можно получить чистую посуду с помощью небольшого количества грязной воды и грязной тряпки. В чем здесь дело?
Источник
Страница 3 из 5
7.41. Какую работу А против сил поверхностного натяжения надо совершить, чтобы разделить сферическую каплю ртути радиусом R = 3 мм на две одинаковые капли?
7.42. Какую работу А против сил поверхностного натяжения надо совершить, чтобы увеличить вдвое объем мыльного пузыря радиусом r= 1 см? Поверхностное натяжение мыльного раствора a = 0,043 Н/м.
7.43. Какую работу А против сил поверхностного натяжения надо совершить, чтобы выдуть мыльный пузырь диаметром d = 4см? Поверхностное натяжение мыльного раствора
a = 0,043Н/м.
7.44. Найти давление p воздуха в воздушном пузырьке диаметром d = 0,01мм, находящемся на глубине h = 20 см под по-верхностью воды. Атмосферное давление p0=101,7 кПа.
7.45. Давление воздуха внутри мыльного пузыря на dр = 133,3 Па больше атмосферного. Найти диаметр d пузыря. Поверхностное натяжение мыльного раствора а = 0,043 Н/м.
7.46. На какой глубине hпод водой находится пузырек воздуха если известно, что плотность воздуха в нем p = 2кг*м3?
Диаметр пузырька d = 15мкм, температура t = 20° С, атмосферное давление p0=101,3 кПа.
7.47. Во сколько раз плотность воздуха в пузырьке, нахо-.дящемся на глубине h = 5 м под водой, больше плотности воздуха при атмосферном давлении p0=101,3 кПа? Радиус пузырь-r = 0,5 мкм.
7.48. В сосуд с ртутью опущен открытый капилляр, внутренней диаметр которого d = 3 мм. Разность уровней в сосуде и в капилляре dh = 3,7 мм. Найти радиус R кривизны мениска в капилляре.
7.49. В сосуд с водой опущен открытый капилляр, внутренний диаметр которого d = 1мм. Разность уровней в сосуде и в капилляре dh = 2,8 см. Найти радиус кривизны R мениска в капилляре. Какова была бы разность уровней dh в сосуде и в капилляре, если бы смачивание было полным?
7.50. На какую высоту h поднимается бензол в капилляре, внутренний диаметр которого d = 1мм? Смачивание считать полным.
7.51. Каким должен быть внутренний диаметр d капилляру чтобы при полном смачивании вода в нем поднималась
dh = 2 см? Задачу решить, когда капилляр находится: а) на Земле, б) на Луне.
7.52. Найти разность уровней dh ртути в двух сообщавшихся капиллярах, внутренние диаметры которых равны d1=1мм и d2 =2 мм. Несмачивание считать полным.
7.53. Каким должен быть наибольший диаметр d пор в фиmиле керосинки, чтобы керосин поднимался от дна керосинки до горелки (высота h = 10 см)? Считать поры цилиндрическими трубками и смачивание полным.
7.54. Капилляр внутренним радиусом r = 2 мм опущен в жидкость. Найти поверхностное натяжение а жидкости, если известно, что в капилляр поднялась масса жидкости m = 0,09 г.
7.55. В сосуд с водой опущен капилляр, внутренний радиус которого r=0,16мм. Каким должно быть давление p воздуха
над жидкостью в капилляре, чтобы уровень воды в капилляре и с сосуде был одинаков? Атмосферное давление p0 = 101,3 кПа. Смачивание считать полным.
7.56. Капиллярная трубка опущена вертикально в сосуд с водой. Верхний конец трубки запаян. Для того чтобы уровень воды в трубке и в широком сосуде был одинаков, трубку пришлось погрузить в воду на 15% ее длины. Найти внутренней радиус r трубки. Атмосферное давление p0=100кПа. Смачивание считать полным.
7.57. Барометрическая трубка А, заполненная ртутью, имеет внутренний диаметр d, равный: а) 5мм; б) 1,5см. Можно ли определить атмосферное давление непосредственно по высоте ртутного столба? Найти высоту ртутного столба в каждом из этих случаев. Атмосферное давление p0= 758 мм рт. ст. Несмачивание считать полным.
7.58. Внутренний диаметр барометрической трубки d = 0,75 см. Какую поправку надо ввести, измеряя атмосферное давление по высоте ртутного столба? Несмачивание считать полным.
7.59. Какую относительную ошибку мы допускаем, вычисляя атмосферное давление p0= 101,ЗкПа по высоте ртутного столба.
если внутренний диаметр барометрической трубки d равен: а) 5мм; б) 10мм? Несмачивание считать полным.
7.60. На поверхность воды положили жирную (полностью несмачиваемую водой) стальную иголку. Каков наибольший диаметр d иголки, при котором она еще может держаться на воде?
Источник