Стенки кровеносных сосудов гладкая

Стенки кровеносных сосудов гладкая thumbnail

У этого термина существуют и другие значения, см. Сосуд.

Кровеносные сосуды тела человека (схема)

Кровено́сные сосу́ды — эластичные трубчатые образования в теле животных и человека, по которым силой ритмически сокращающегося сердца или пульсирующего сосуда осуществляется перемещение крови по организму: к органам и тканям по артериям, артериолам, капиллярам, и от них к сердцу — по венулам и венам.

Классификация кровеносных сосудов[править | править код]

Среди сосудов кровеносной системы различают артерии, вены и сосуды системы микроциркуляторного русла; последние осуществляют взаимосвязь между артериями и венами и включают, в свою очередь, артериолы, капилляры, венулы и артериоло-венулярные анастомозы[1]. Сосуды разных типов отличаются не только по своему диаметру, но также по тканевому составу и функциональным особенностям[2].

  • Артерии — сосуды, по которым кровь движется от сердца. Артерии имеют толстые стенки, в которых содержатся мышечные волокна, а также коллагеновые и эластические волокна. Они очень эластичные и могут сужаться или расширяться — в зависимости от количества перекачиваемой сердцем крови. Текущая по артериям кровь насыщена кислородом (исключение составляет лёгочная артерия, по которой течёт венозная кровь)[3][4].
  • Артериолы — мелкие артерии (диаметром менее 300 мкм), по току крови непосредственно предшествующие капиллярам. В их сосудистой стенке преобладают гладкие мышечные волокна, благодаря которым артериолы могут менять величину своего просвета и, таким образом, сопротивление. Самые мелкие артериолы — прекапиллярные артериолы, или прекапилляры — сохраняют в стенках лишь единичные гладкомышечные клетки[5][6].
  • Капилляры — это мельчайшие кровеносные сосуды, настолько тонкие, что вещества могут свободно проникать через их стенку. Диаметр их просвета колеблется от 3 до 11 мкм, а общее число в организме человека — около 40 млрд. Через стенку капилляров (уже не содержащую гладкомышечных клеток) осуществляется отдача питательных веществ и кислорода из крови в клетки и переход углекислого газа и других продуктов жизнедеятельности из клеток в кровь[7][8].
  • Венулы — мелкие кровеносные сосуды, обеспечивающие в большом круге отток обеднённой кислородом и насыщенной продуктами жизнедеятельности крови из капилляров в вены. Делятся на примыкающие к капиллярам посткапиллярные венулы (посткапилляры) диаметром от 8 до 30 мкм и собирательные венулы диаметром 30—50 мкм, впадающие в вены[9].
  • Вены — это сосуды, по которым кровь движется к сердцу. По мере укрупнения вен их число становится всё меньше, и в конце концов остаются лишь две — верхняя и нижняя полые вены, впадающие в правое предсердие. Стенки вен тоньше, чем стенки артерий, и содержат соответственно меньше мышечных волокон и эластических элементов[10][11].
  • Артериоло-венулярные анастомозы — сосуды, обеспечивающие непосредственный переток крови из артериолы в венулу — в обход капиллярного русла. Содержат в своих стенках хорошо выраженный слой гладкомышечных клеток, регулирующих такой переток[12][13].

Строение кровеносных сосудов (на примере аорты)[править | править код]

Строение аорты: 1. эластическая мембрана (внешняя оболочка или Tunica externa, 2. мышечная оболочка (Tunica media), 3. внутренняя оболочка (Tunica intima)

Этот пример описывает строение артериального сосуда. Строение других типов сосудов может отличаться от описанного ниже. Подробнее см. соответствующие статьи.

Основная статья: Аорта

Аорта выстлана изнутри эндотелием, который вместе с подлежащим слоем рыхлой соединительной ткани (субэндотелием) образует внутреннюю оболочку (лат. tunica intima). Средняя оболочка состоит из большого количества эластических окончатых мембран. Также в ней присутствует небольшое количество гладких миоцитов. Поверх средней оболочки лежит рыхлая волокнистая соединительная ткань с большим содержанием эластических и коллагеновых волокон (лат. tunica adventitia).

Заболевания сосудов[править | править код]

  • Атеросклероз
  • Болезнь Бюргера
  • Варикозное расширение вен
  • Раны
  • Тромбофлебит

См. также[править | править код]

  • Вазодилатация
  • Вазоконстрикция
  • Гемодинамика
  • Реология
  • Закон Пуазёйля

Примечания[править | править код]

  1. ↑ Сапин и Билич, т. 2, 2009, с. 338—340, 344.
  2. ↑ Гистология, цитология и эмбриология, 2004, с. 386—387.
  3. ↑ Сапин и Билич, т. 2, 2009, с. 338, 340—343.
  4. ↑ Гистология, цитология и эмбриология, 2004, с. 386, 391.
  5. ↑ Сапин и Билич, т. 2, 2009, с. 340, 344.
  6. ↑ Гистология, цитология и эмбриология, 2004, с. 394.
  7. ↑ Сапин и Билич, т. 2, 2009, с. 344—347.
  8. ↑ Гистология, цитология и эмбриология, 2004, с. 399—400.
  9. ↑ Сапин и Билич, т. 2, 2009, с. 345.
  10. ↑ Сапин и Билич, т. 2, 2009, с. 338, 354.
  11. ↑ Гистология, цитология и эмбриология, 2004, с. 402—403.
  12. ↑ Сапин и Билич, т. 2, 2009, с. 347.
  13. ↑ Гистология, цитология и эмбриология, 2004, с. 400.

Литература[править | править код]

  • Гистология, цитология и эмбриология. 6-е изд / Под ред. Ю. И. Афанасьева, С. Л. Кузнецова, H. А. Юриной. — М.: Медицина, 2004. — 768 с. — ISBN 5-225-04858-7.
  • Сапин М. Р., Билич Г. Л. . Анатомия человека: в 3-х тт. Т. 2. 3-е изд. — М.: ГЭОТАР-Медиа, 2009. — 496 с. — ISBN 978-5-9704-1373-9.
Читайте также:  Давления условные пробные и рабочие сосуды

Ссылки[править | править код]

  • Кровеносные сосуды
  • Схема кровеносных сосудов человека

Органы и ткани, образующиеся из зародышевых листков

Эктодерма
  • Эпидермис кожи
  • Ногти
  • Волосы
  • Потовые железы
  • Вся нервная система: головной мозг, спинной мозг, нервное окончание, нервы
  • Рецепторные клетки органов чувств
  • Хрусталик глаза
  • Зубная эмаль
Энтодерма
  • Эпителий желудка, пищевода, кишечника, трахеи, бронхов, лёгких, желчного пузыря, мочевого пузыря, мочеиспускательного канала
  • Печень
  • Поджелудочная железа
  • Щитовидная и паращитовидная железы
  • Хорда
Мезодерма
  • Гладкая мускулатура всех органов
  • Скелетная мускулатура
  • Сердечная мышца
  • Соединительная ткань
  • Кости
  • Хрящи
  • Дентин зубов
  • Кровь
  • Кровеносные сосуды
  • Брыжейка
  • Почки
  • Семенники и яичники

Источник

Стенка кровеносного сосуда состоит из нескольких слоев: внутреннего
(tunica intima), содержащего эндотелий, подэндотелиальный слой и
внутреннюю эластическую мембрану; среднего (tunica media), образованного
гладкомышечными клетками и эластическими волокнами; наружного (tunica
externa), представленного рыхлой соединительной тканью, в которой
находятся нервные сплетения и vasa vasorum. Стенка кровеносного сосуда
получает питание за счет ветвей, отходящих от главного ствола этой же
артерии или рядом лежащей другой артерии. Эти ветви проникают в стенку
артерии или вены через наружную оболочку, образуя в ней сплетение
артерий, поэтому они получили название «сосуды сосудов» (vasa vasorum).
Кровеносные сосуды, направляющиеся к сердцу, принято называть венами, а
отходящие от сердца — артериями, независимо от состава крови, которая
протекает по ним. Артерии и вены отличаются особенностями внешнего и
внутреннего строения.
1.       Различают следующие типы строения артерий: эластический, эластическо-мышечный и мышечно-эластический.
К артериям эластического типа относятся аорта, плечеголовной ствол,
подключичная, общая и внутренняя сонная артерии, общая подвздошная
артерия. В среднем слое стенки преобладают над коллагеновыми
эластические волокна, лежащие в виде сложной сети, образующей мембраны.
Внутренняя оболочка сосуда эластического типа более толстая, чем у
артерии мышечно-эластического типа. Стенка сосудов эластического типа
состоит из эндотелия, фибробластов, коллагеновых, эластических,
аргирофильных и мышечных волокон. В наружной оболочке много
коллагеновых соединительнотканных волокон.
Для артерий эластическо-мышечного и мышечно-эластического типов
(верхние и нижние конечности, экстраорганные артерии) характерно наличие
в их среднем слое эластических и мышечных волокон. Мышечные и
эластические волокна переплетаются в виде спиралей по всей длине
сосуда.

2.       Мышечный тип строения имеют внутриорганные артерии,
артериолы и венулы. Их средняя оболочка образована мышечными волокнами
(рис. 362). На границе каждого слоя сосудистой стенки имеются
эластические мембраны. Внутренняя оболочка в области разветвления
артерий утолщается в виде подушечек, которые противостоят вихревым
ударам потока крови. При сокращении мышечного слоя сосудов совершается
регуляция кровотока, что ведет к нарастанию сопротивления и повышению
кровяного давления. При этом возникают условия, когда кровь
направляется в другое русло, где давление ниже вследствие расслабления
сосудистой стенки, или поток крови сбрасывается по артериоловенулярным
анастомозам в венозную систему. В организме постоянно происходит
перераспределение крови, и в первую очередь она направляется к более
нуждающимся органам. Например, при сокращении, т. е. работе,
поперечнополосатых мышц кровоснабжение их увеличивается в 30 раз. Зато в
других органах компенсаторно наступает замедление кровотока и
уменьшение кровоснабжения.

3. Вены по строению отличаются от артерий, что зависит от
низкого давления крови. Стенка вен (нижняя и верхняя полые вены, все
экстраорганные вены) состоит из трех слоев (рис. 362). Внутренний слой
хорошо развит я содержит, помимо эндотелия, мышечные и эластические
волокна. Во многих венах встречаются клапаны (рис. 363), имеющие
соединительнотканную створку и в основании клапана — валикообразное
утолщение из мышечных волокон. Средний слой вен более толстый и состоит
из спиральных мышечных, эластических и коллагеновых волокон. В венах
отсутствует наружная эластическая мембрана. В местах слияния вен и
дистальнее клапанов, выполняющих роль сфинктеров, мышечные пучки
образуют циркулярные утолщения. Наружная оболочка состоит из рыхлой
соединительной и жировой ткани, содержит более густую сеть
околососудистых сосудов (vasa vasorum), чем артериальная стенка. Многие
вены имеют паравенозное русло за счет хорошо развитого
околососудистого сплетения (рис. 364).
В стенке венул выявляются мышечные клетки, выполняющие роль
сфинктеров, функционирующих под контролем гуморальных факторов
(серотонин, катехоламин, гистамин и др.). Внутриорганные вены окружены
соединительнотканным футляром, находящимся между стенкой вены и
паренхимой органа. Часто в этой соединительнотканной прослойке
располагаются сети лимфатических капилляров, например в печени, почках,
яичке и других органах. В полостных органах (сердце, матка, мочевой
пузырь, желудок и др.) гладкие мышцы их стенок вплетаются в стенку
вены. Ненаполненные кровью вены спадаются из-за отсутствия в их стенке
упругого эластического каркаса.

365. Однослойная сеть кровеносных капилляров слизистой оболочки мочевого пузыря.

4. Кровеносные капилляры имеют диаметр 5—13 мкм, но
встречаются органы и с широкими капиллярами (30—70 мкм), например в
печени, передней доле гипофиза; еще более широкие капилляры в
селезенке, клиторе и половом члене. Стенка капилляра тонка и состоит из
слоя эндотелиальных клеток и базальной мембраны. С внешней стороны
кровеносный капилляр окружен перицитами (клетки соединительной ткани). В
стенке капилляра отсутствуют мышечные и нервные элементы, поэтому
регуляция кровотока по капиллярам полностью находится под контролем
мышечных сфинктеров артериол и венул (это их отличает от капилляров), а
деятельность регулируется симпатической нервной системой и
гуморальными факторами.
В капиллярах кровь течет постоянной струей без пульсирующих
толчков со скоростью 0,04 см/с под давлением 15—30 мм рт. ст.
Капилляры в органах, анастомозируя друг с другом, образуют
сети. Форма сетей зависит от конструкции органов. В плоских органах —
фасции, брюшине, слизистых оболочках, конъюнктиве глаза — формируются
плоские сети (рис. 365), в трехмерных — печень и другие железы, легкие —
имеются трехмерные сети (рис. 366).
Число капилляров в организме огромно и их суммарный просвет
превосходит диаметр аорты в 600— 800 раз. 1 мл крови разливается по
капиллярной площади 0,5 м2.

Источник

Структура и функции сосудистой стенки

Кровь в организме человека протекает по замкнутой системе кровеносных сосудов. Сосу­ды не только пассивно ограничивают объем цир­куляции и механически предотвращают кровопо-терю, но и обладают целым спектром активных функций в гемостазе. В физиологических услови­ях неповрежденная сосудистая стенка способству­ет поддержанию жидкого состояния крови. Не­поврежденный эндотелий, контактирующий с кровью, не обладает свойствами инициировать процесс свертывания. Кроме того, он содержит на своей поверхности и выделяет в кровоток ве­щества, которые препятствуют свертыванию. Это свойство предотвращает образование тромба на интактном эндотелии и ограничивает рост тром­ба за пределы повреждения. При повреждении или воспалении стенка сосуда принимает участие в образовании тромба. Во-первых, субэндотели-альные структуры, контактирующие с кровью только при повреждении или развитии патоло­гического процесса, обладают мощным тромбо-генным потенциалом. Во-вторых, эндотелий в зоне повреждения активируется и у него появля-

ются прокоагулянтные свойства. Строение сосу­дов показано на рис. 2.

Сосудистая стенка у всех сосудов, кроме пре-капилляров, капилляров и посткапилляров, со­стоит из трех слоев: внутренней оболочки (инти­мы), средней оболочки (медии) и наружной обо­лочки (адвентиции).

Интима. На всем протяжении кровеносно­го русла в физиологических условиях кровь кон­тактирует с эндотелием, образующим внутрен­ний слой интимы. Эндотелий, который состоит из монослоя клеток эндотелиоцитов, играет наи­более активную роль в гемостазе. Свойства эн­дотелия несколько различаются на разных учас­тках кровеносной системы, определяя разный ге-мостатический статус артерий, вен и капилляров. Под эндотелием находится аморфное межкле­точное вещество с гладкими мышечными клет­ками, фибробластами и макрофагами. Также встречаются вкрапления липидов в виде капель, чаще расположенных внеклеточно. На границе интимы и медии находится внутренняя эластич­ная мембрана.

Рис. 2. Сосудистая стенкасостоит из интимы, луминальная поверхность которой покрыта однослойным эндотелием, медии (гладкомышечные клетки) и адвентиции (соединительно-тканный каркас): А – крупная мышечно-эластичная арте­рия (схематическое изображение), Б – артериолы (гистологический препарат), В – коронарная артерия в поперечном разрезе

Сосудистая стенка

Медия состоит из гладких мышечных клеток и межклеточного вещества. Ее толщина значи­тельно варьирует в различных сосудах, обуслав­ливая их разную способность к сокращению, прочность и эластичность.

Адвентиция состоит из соединительной тка­ни, содержащей коллаген и эластин.

Артериолы (артериальные сосуды с общим диаметром менее 100 мкм) представляют собой переходные сосуды от артерий к капиллярам. Толщина стенок артериол немногим меньше ши­рины их просвета. Сосудистая стенка самых круп­ных артериол состоит из трех слоев. По мере вет­вления артериол их стенки становятся тоньше, а просвет уже, однако сохраняется соотношение ширины просвета и толщины стенки. В самых мелких артериолах на поперечном срезе видны один-два слоя гладких мышечных клеток, эндо-телиоциты и тонкая, состоящая из коллагеновых волокон наружная оболочка.

Капилляры состоят из монослоя эндотелио-цитов, окруженных базальной пластиной. Кро­ме того, в капиллярах вокруг эндотелиоцитов находят другой тип клеток – перициты, роль ко­торых изучена недостаточно.

Капилляры открываются на своем венозном конце в посткапиллярные венулы (диаметр 8-30 мкм), для которых характерно увеличение ко­личества перицитов в сосудистой стенке. Пост­капиллярные венулы, в свою очередь, впадают в

собирательные венулы (диаметр 30-50 мкм), стен­ка которых, помимо перицитов, имеет наружную оболочку, состоящую из фибробластов и колла­геновых волокон. Собирательные венулы впада­ют в мышечные венулы, имеющие один-два слоя гладких мышечных волокон в средней оболочке. В целом венулы состоят из эндотелиальной выс­тилки, базальной мембраны, непосредственно прилегающей снаружи к эндотелиоцитам, пери­цитов, также окруженных базальной мембраной; кнаружи от базальной мембраны имеется слой коллагена. Вены снабжены клапанами, которые ориентированы таким образом, чтобы пропус­кать кровь по направлению к сердцу. Больше все­го клапанов в венах конечностей, а в венах груд­ной клетки и органов брюшной полости они от­сутствуют.

Функция сосудов в гемостазе:

• Механическое ограничение кровотока.

• Регуляция кровотока по сосудам, в том чис­
ле спастическая реакция поврежденных со­
судов.

• Регуляция гемостатических реакций путем
синтеза и представления на поверхности эн­
дотелия и в субэндотелиальном слое белков,
пептидов и небелковых веществ, непосред­
ственно участвующих в гемостазе.

• Представление на поверхности клеток рецеп­
торов для энзиматических комплексов, вов­
леченных в коагуляцию и фибринолиз.

Эндотелий

Характеристика энлотелиального покрова

Сосудистая стенка имеет активную поверх­ность, с внутренней стороны выстланную эндо-телиальными клетками. Целостность эндотели-ального покрова является основой нормального функционирования кровеносных сосудов. Пло­щадь поверхности эндотелиального покрова в сосудах взрослого человека сопоставима с пло­щадью футбольного поля. Клеточная мембрана эндотелиоцитов обладает высокой текучестью, что является важным условием антитромбоген-ных свойств сосудистой стенки. Высокая теку­честь обеспечивает гладкую внутреннюю поверхность эндотелия (рис. 3), который функциониру­ет как целостный пласт и исключает контакт про-коагулянтов плазмы крови с субэндотелиальны-ми структурами.

Эндотелиоциты синтезируют, представля­ют на своей поверхности и выделяют в кровь и субэндотелиальное пространство целый спектр биологически активных веществ. Это белки, пептиды и небелковые вещества, регулирующие гемостаз. В табл. 1 перечислены основные про­дукты эндотелиоцитов, участвующие в гемос­тазе.

Сосудистая стенка

Рис. 3. Эндотелиальный покров сосудов.Гладкая поверх­ность покрыта одним слоем эндотелиальных клеток. Целос­тность эндотелиального покрова – важнейшее условие со­хранения жидкого состояния крови

Антикоагулянтная активность интактного эндотелия

Антикоагулянтные свойства эндотелия обес­печиваются несколькими механизмами.

• Интактный эндотелий не обладает прокоагу-
лянтной активностью.

• Эндотелий пассивно предотвращает контакт
крови с субэндотелиальными структурами,
обладающими выраженными прокоагулянт-
ными свойствами.

• Интактный эндотелий синтезирует, выделя­
ет в кровь или представляет на своей поверх­
ности вещества, препятствующие коагуляции,
адгезии, агрегации и спазму сосудов.

Гликокаликс

Со стороны просвета сосуда на поверхности эндотелиальных клеток сформирован слой глико-

каликса(прежнее название – мукополисахарид), состоящий из протеогликанов, гликопротеидов, гликолипидов (рис. 4).

Основу гликокаликса образуют молекулы протеогликанов (рис. 5). Стержнем протеогли­канов служит очень длинный филамент гиалу-роновой кислоты. К гиалуронату с помощью контактных белков крепятся внутренние (ядер­ные) белки. Основными элементами протеогли­канов являются цепочки глюкозаминогликанов, в частности гепарансульфата и хондроитинсуль-фата, расположенные на внутреннем (ядерном) белке. На одной молекуле ядерного белка дли­ной около 300 нм размещается до 200 молекул глюкозаминогликанов. На долю гепарансульфа­та в некоторых зонах эндотелиального покрова приходится до 80% глюкозаминогликанов.

Таблица 1

Продукты эндотелиоцитов, участвующие в гемостазе

Антикоагулянты Прокоагулянты
Гепарансульфат Тканевой фактор*
Тромбомодулин Ингибитор активатора плазминогена 1-го типа
Аденозиндифосфатаза Фактор Виллебранда
Простациклин, ПГЕ2, ПГБ2 Рецептор для фактора Ха
Оксид азота Коллаген IV (рецептор для фактора IX i
Тканевой активатор плазминогена Индуцированный гипоксией активатор фактора X
Урокиназный активатор плазминогена Липополисахарид-индуцированный активатор протромбина
Ингибитор пути тканевого фактора Эндотелиальный рецептор протеина С
Аннексии V  
Аннексии II  
Протеин S  
Эндотелий-продуцируемый фактор релаксации  

* Доказано в экспериментах in vitro, in vivo имеются лишь единичные данные.

Сосудистая стенка

Рис. 4. Гликокаликс эндотелиального покровапредстав­ляет собой молекулярный слой, состоящий из протеоглика-нов, гликопротеидов, гликолипидов, именно в нем осуществ­ляются пристеночные метаболические процессы. Слой гли-кокаликса практически предупреждает прямой контакт кле­ток крови с поверхностью эндотелиальных клеток

Рис. 5. Протеогликан – основной элемент гликокалик-

са,сформированного на поверхности сосудистой стенки

Гепарансульфат обладает мощным антикоагу-лянтным действием, являясь кофактором антитром­бина. Именно гепарансульфат служит основой ге­парина, когда последний получают вытяжкой из биологических тканей. Комплекс гепарансульфат-антитромбин является самым активным ингибито­ром свертывания. На его долю приходится около 80% антикоагулянтной активности крови.

Крайними молекулами глюкозаминогликанов, как правило, являются сиаловые кислоты,которые формируют отрицательный поверхностный заряд. Клетки крови также имеют на поверхности сиало­вые кислоты, поэтому между поверхностью сосу­дистой стенки и клетками крови формируются силы электростатического отталкивания.

Внутренние пространства протеогликанов гид-ратированы и формируют вязкий гель, устойчивый к компрессионному давлению. В результате обра­зуется пристеночный молекулярный слой,куда, с одной стороны, не проникают крупные клеточные элементы, с другой стороны, именно в этом слое функционируют такие ферменты, как липопроте-инлипаза, целый ряд АДФаз, ферменты, разруша­ющие кинины, серотонин, норадреналин и другие биологически активные вещества, в том числе об­ладающие прокоагулянтной активностью.

Источник