Стенки сосудов состоят из гладкой мышечной ткани

Гладкая мышечная ткань. Строение гладкой мышечной ткани.

Это ткань энтомезенхимного происхождения, которая делится на два вида: висцеральную и сосудистую. В эмбриональном гистогенезе даже электронно-микроскопически трудно отличить мезенхимные предшественники фибробластов от гладких миоцитов. В малодифференцированных гладких миоцитах развиты гранулярная эндоплазматическая сеть, комплекс Гольджи. Тонкие филаменты ориентированы вдоль длинной оси клетки. По мере развития размеры клетки и число филаментов в цитоплазме возрастают. Постепенно объем цитоплазмы, занятый сократительными филаментами, увеличивается, расположение их становится все более упорядоченным. Пролиферативная активность гладких миоцитов в миогенезе постепенно снижается. Это происходит в результате увеличения продолжительности клеточного цикла, выхода клеток из цикла репродукции и перехода в дифференцированное состояние.

Однако и в дефинитивном состоянии в гладкой мышечной ткани клеточная регенерация в виде размножения миоцитов полностью не прекращается. Существуют данные о том, что пролиферация и дифференцировка в большей степени свойственна субпопуляции малых (по размерам) гладких миоцитов.

Строение гладкой мышечной ткани. Структура дефинитивных гладких миоцитов (лейомиоцитов), входящих в состав внутренних органов и стенки сосудов, имеет много общего, но в то же время характеризуется гетероморфией. Так, в стенках вен и артерий обнаруживаются овоидные, веретеновидные, отростчатые миоциты длиной 10-40 мкм, доходящие иногда до 140 мкм.

гладкая мышечная ткань
Гладкая мышечная ткань

Наибольшей длины гладкие миоциты достигают в стенке матки — до 500 мкм. Диаметр миоцитов колеблется от 2 до 20 мкм. В зависимости от характера внутриклеточных биосинтетических процессов различают контрактилъные и секреторные миоциты. Первые специализированы на функции сокращения, но вместе с тем сохраняют секреторную активность. Плазмолемма расслабленной клетки имеет ровную поверхность, а при сокращении становится складчатой. В центре клетки имеется палочковидное ядро, которое при сокращении клетки спиралевидно изгибается. Практически все ядра миоцитов содержат диплоидное количество ДНК. Гладкая эндоплазматическая сеть занимает примерно 2-7% объема цитоплазмы, а гранулярная сеть в контрактильных миоцитах выражена плохо. Митохондрии мелкие, сферические или овоидные, расположены у полюсов ядра. Характерной чертой гладких миоцитов является наличие множества впячиваний (кавеол) плазмолеммы, содержащих ионы кальция.

Секреторные миоциты (синтетические) по своей ультраструктуре напоминают фибробласты, однако содержат в цитоплазме пучки тонких миофиламентов, расположенные на периферии клетки. В цитоплазме хорошо развиты комплекс Гольджи, гранулярная эндоплазматическая сеть, много митохондрий, гранул гликогена, свободных рибосом и полисом. По степени зрелости такие клетки относят к малодифференцированным.

Сократительный аппарат миоцитов представлен тонкими актиновыми филамен-тами (гладкомышечным альфа-актином), связанными с тропомиозином. Толстые нити состоят из миозина, мономеры которого располагаются вблизи филаментов актина. Соотношение актиновых и миозиновых филаментов в гладком миоците составляет 12 к 1. Важным компонентом контрактильного аппарата миоцитов являются электронно-плотные структуры — тельца прикрепления, расположенные свободно в цитоплазме (плотные тельца) или тесно связанные с плазмолеммой. Основными белковыми компонентами плотных телец являются альфа-актинин, актин (немышечный) и кальпонин, что позволяет расссматривать их как функциональный эквивалент Z-линий миофибрилл скелетной мышцы. Актиновые филаменты фиксируются на плотных тельцах. Промежуточные филаменты, включающие десмин и виментин, обеспечивают связи между плотными тельцами и плазмолеммой, образуя прикрепительные пластины.

Сократительные белки формируют решетчатую структуру, закрепленную по окружности плазмолеммы, поэтому сокращение выражается в укорочении клетки, которая приобретает складчатую форму, тогда как в состоянии покоя клетка вытянута. При возникновении нервного импульса, распространяющегося по плазмолемме миоцита, происходит повышение уровня внутриклеточного Са2+, который поступает в цитоплазму из кавеол, отшнуровывающихся в цитоплазму в виде пузырьков. Высвобождение ионов кальция приводит к каскаду реакций, в результате которого происходит полимеризация миозина и образование перекрестных связей миозина вдоль актиновых филаментов по мере развития мышечного сокращения. Расслабление мышцы возникает при восстановлении концентрации исходного уровня Са2+ внутри клетки путем его перемещения внутрь саркоплазматической сети. При этом образовавшиеся в присутствии ионов кальция связи между актином и миозином нарушаются, акто-миозиновый комплекс распадается, гладкий миоцит расслабляется.

Гладкие миоциты синтезируют протеогликаны, гликопротеиды, проколлаген, проэластин, из которых формируются коллагеновые и эластические волокна и основное вещество межклеточного матрикса.

Взаимодействие миоцитов осуществляется с помощью цитоплазматических мостиков, взаимных впячиваний, нексусов, десмосом или простых участков мембранных контактов клеточных поверхностей.

Регенерация гладкой мышечной ткани

Гладкая мышечная ткань висцерального и сосудистого видов обладает значительной чувствительностью к воздействию экстремальных факторов.

В активированных миоцитах возрастает уровень биосинтетических процессов, морфологическим выражением которых являются синтез сократительных белков, укрупнение и гиперхроматоз ядра, гипертрофия ядрышка, возрастание показателей ядерно-цитоплазменного отношения, увеличение количества свободных рибосом и полисом, активация ферментов, аэробного и анаэробного фосфорилирования, мембранного транспорта. Клеточная регенерация осуществляется как за счет дифференцированных клеток, обладающих способностью вступать в митотический цикл, так и за счет активизации камбиальных элементов (миоцитов малого объема).

При действии ряда повреждающих факторов отмечается фенотипическая трансформация контрактильных миоцитов в секреторные. Данная трансформация часто наблюдается при повреждении интимы сосудов, формировании ее гиперплазии при развитии атеросклероза.

Гладкая мышечная ткань в поперечном (наверху) и продольном (внизу) разрезах. Обратите внимание на центрально расположенные ядра. Во многих клетках ядра не попали в срез.

Окраска: парарозанилин—толуидиновый синий. Среднее увеличение.

– Также рекомендуем “Мионевральная ткань. Миоидные клетки.”

Оглавление темы “Костные ткани. Мышечные ткани.”:

1. Воспаление в соединительной ткани. Процессы воспаления в соединительной ткани.

2. Ткани с опорно-механической функцией. Плотные волокнистые соединительные ткани.

3. Костные ткани. Остеогистогенез.

4. Развитие костной ткани на месте хряща. Остеокласты. Пластинчатая костная ткань.

5. Ткани с двигательной функцией. Скелетная мышечная ткань. Гистогенез скелетной мышечной ткани.

6. Строение скелетной мышечной ткани. Регенерация скелетной мышечной ткани.

7. Сердечная мышечная ткань. Строение сердечной мышечной ткани.

8. Гладкая мышечная ткань. Строение гладкой мышечной ткани.

9. Мионевральная ткань. Миоидные клетки.

10. Ткани нервной системы. Гистогенез нервной системы.

Источник

В этой статье описано строение и функции гладкой и поперечно-полосатой мышечной ткани.

В теле любого мужчины или женщины существует несколько видов тканей мышц. Мышечные ткани различаются по строению и происхождению. В этой статье мы рассмотрим их свойства, функции и признаки.

Какие типы мышечной ткани встречаются в организме человека?

Типы мышечной ткани

В нашем организме встречаются следующие типы мышечных тканей:

  • Гладкая
  • Скелетная
  • Сердечная

Гладкая мышечная ткань есть в составе кожи, стенках наших органов и сосудов, по которым течет кровь. Ее сократительная способность выполняется непроизвольно и достаточно медленно. В отличие от иных, данный вид мышц потребляет малое количество энергии и довольно долго не утомляется.

Поперечно-полосатая скелетная мышечная ткань есть в строении пищевода, в глоточной структуре и в скелете. Контролирование производится человеческим мозгом. У этих мышц высокая сократительная скорость. Данный вид ткани требует много энергии и длительное время на отдых.

Поперечно-полосатая сердечная мышечная ткань является составной частью сердца, осуществляет насосную функцию с помощью клеточных контактов, которые мгновенно передают друг другу импульс, от чего сокращение происходит синхронно. Управляется непроизвольно, способна к автоматизму.

Особенности строения гладкой мышечной ткани человека: свойства, какие клетки, волокна образуют?

Гладкая и поперечно-полосатая мышечная ткань человека

Все виды мышечных тканей отличаются пор структуре и происхождению, но одинаково хорошо сокращаются. В их составе имеют миоциты — это клетки, которые принимают импульсы и отвечают сокращением. Особенности строения гладкой мышечной ткани человека заключаются в наличии мелких веретеновидных клеток.

Все мышцы человеческого организма представлены всего 3 видами:

  • Гладкие
  • Поперечно-полосатые скелетные
  • Поперечно-полосатые сердечные

Вот какие клетки, волокна образуют гладкую мускулатуру:

  • Строение этого вида мускул состоит из гладкого миоцита.
  • В составе таких клеток есть ядро и тончайшие мио-фибриллы.
  • Цитолемма гладких мускул образует множественные впячивания в виде мелких пузырьков — кавеолы.
  • Клеточки гладких мускулов соединены в пучки из 10-12 штук.
  • Такая особенность получается благодаря иннервации гладких мышц и это помогает лучше и быстрее проходить импульсу по всей группе клеток.

Свойства и функциональность гладких мускул заключаются в следующем:

  • Возбудимость, сократимость, эластичность. Сокращение регулируется при помощи нервной системы.
  • Выполнение стабильного давления в органах с полой структурой.
  • Регулирование показателей уровня давления крови.
  • Перистальтика органов пищеварения и беспрепятственное передвижение по ним содержимого.
  • Опорожнение мочевого пузыря.

Многие органы в нашем организме не смогли бы функционировать, если они бы не состояли из гладкой мышечной ткани.

Строение поперечно-полосатой скелетной мышечной ткани человека: функции, признаки

Строение мышечной ткани

Скелетная мышечная ткань – тугая, эластичная ткань, которая сокращается под действием нервных импульсов. Она состоит из скелетной мускулатуры, как у людей, так и у животных. Ее работа заключается, например, в сокращении голосовых связок, выполнении дыхания, а также движении тела.

Как говорилось выше, у людей различают несколько видов мышц:

  • Поперечнополосатая сердечная мышца
  • Поперечнополосатые скелетные мышцы
  • Гладкие мышцы

Строение поперечно-полосатых скелетных мускул человека особенное и заключается в таких главных аспектах:

  • Состоит из мио-цитов, по длине которые равны несколько сантиметров.
  • Диаметр этих клеток-миоцитов от 50 до 100 мкм.
  • Такие клетки имеют множество ядер — до 100.
  • Если рассматривать под микроскопом, то можно увидеть темные и светлые полоски.
  • Волокнистые нити имеют длину до 12 см.

Также стоит отметить следующее:

  • Скелетные мускулы представляют собой активный тканевый отрезок, необходимых для поддержания опорно-двигательного аппарата, состоящего из костей, их сочленений, сухожилий, связок.
  • К двигательному аппарату относят также моторные нейроны, которые посылают нервные «сигналы» к волокнам мышц.
  • Тела моторных нейронов размещаются спереди, в специальных ответвлениях спинно-мозговом отделе, а иннервирующие мускулы челюстно-лицевой области — в ядрах ствола мозга. Когда нейрон заходит в скелетную мышечную клетку, то он раздваивается, и создает нервно-мышечный синапс на каждом волокнистом отрезке.

Функции скелетных мышц:

  • Держание положения фигуры
  • Движение фигуры в пространстве 
  • Передвижение отдельных элементов человеческой фигуры относительно друг друга
  • Выполнение дыхательных движений

Скелетные мышцы вместе со скелетом образуют опорно-двигательную систему организма, которая помогает человеку держать позы и выполнять передвижение. Скелетные мускулы и скелет совершают защитную функцию, оберегая наше сердце, желудок, печень, почти и другие органы от ушибов.

Из чего состоит мышечная ткань сердца, языка, желудка человека?

Сердечная мышечная ткань

Структурная единичка ткани сердца – кардиомиоцит. Из чего же она состоит? Вот ответ:

  • Кардиомиоцит — это клеточка в форме в виде прямоугольника.
  • Миоциты расположены друг за другом столбиками и, совместно со вставочными дисками, образуют проводящую систему сердца.
  • Вставочные диски по своей структуре являются участками плазмалеммы соседних 2-х клеток.
  • Волокна, пролегающие рядом, имеют соединение в виде анастомоз, которые обеспечивают синхронность сокращения.
  • Еще одной особенностью является большое кол-во митохондрий, что позволяет сердцу непрерывно работать и почти не подвергаться усталости.
  • Сократительная способность такого типа мускул не зависит от воли нашего тела. Их деятельность зависит от импульсов ритма проводящей систематизации сердца.

Мускульная ткань языка и желудка человека: какая она? Вот ответ:

  • Язык и желудок человека представлены поперечно-полосатым скелетным типом мускул.
  • Эта ткань состоит из многоядерных волокон цилиндрической формы, которые, располагаясь параллельно, образуют светлые и темные участки (так называемые диски и полоски).
  • Диаметр образующих волокон 100 мкм, а длина – от 1000 до 40000 мкм.

Сокращение этих мышц является произвольным. Их иннервация происходит при участии спинномозговых и черепных нервов.

Какие органы человека образованы гладкой и поперечно-полосатой мышечной тканью?

Гладкая и поперечно-полосатая мышечная ткань человека

Главная функция любой мышечной ткани — это способность к изменению формы, длины волокон, то есть к сокращению при возбуждении. Какие органы образованы гладкой и поперечно-полосатой мышечной тканью? Вот ответ:

В большинстве внутренних органов в составе имеется гладкомышечная ткань:

  • Мочевой пузырь
  • Желудок, кишечник
  • Сосудистые стенки
  • Матке и других внутренних органах

Длина гладких мышц достигает 500 микрон и содержит одно ядро – миоциты веретеновидной формы. Она непроизвольна и малоподвижна, медленно сжимается и расслабляется.

Поперечно – полосатая мышечная ткань является частью:

  • Сердечно-сосудистой мышцы
  • Глоточного отдела
  • Пищеводного отдела
  • Языка
  • Глазных мышц

Это основа скелетных мускул, так как подобная мышечная ткань представляет собой многоядерную структуру. К примеру, сердечная мышца состоит из 1-2-х ядер, скелетная содержат до 100 ядер. Она обладает повышенной скоростью при сжимании и расслаблении. Волокнистые нити скелетных мышц в длину большие — до двенадцати сантиметров.

В какой форме существует, как выглядит поперечно-полосатая и гладкая мышечная ткань человека?

Мышечные ткани

Поперечно полосатая мышечная ткань расположена на кости скелета человека и благодаря тому что она сокращается, она приводит в движение тело человека и суставы. Ее миофибриллы образуют поперечную исчерченность.

В какой форме существует, как выглядит поперечно-полосатая мышечная ткань человека? Вот ответ:

  • Она включает в свой состав многочисленные клеточки, которые имеют вытянутость в длину.
  • Благодаря ей человек может выполнять разные двигательные упражнения.
  • Поперечно-полосатая мышечная ткань делится на скелетную и сердечную.

Гладкие мышечные мускулы:

  • Ее главная функция — это сокращение, благодаря чему происходит двигательный процесс в нашем теле.
  • На этом виде ткани не прослеживается поперечные полоски.
  • Эта ткань есть в стенозной ткани любого внутреннего органа. Состоит из клеточных миоцитов, которые имеют разный вид.
  • Длина этой клеточки от 20 до 500 мкм, а внутри нее расположено ядро.

Миоциты могут иметь такую форму:

  • Овальную
  • Округлую
  • Отростчатую
  • Веретеновидную

Ярким выражением возбудимости тканей организма считается – их сокращение, то есть изменение длины, которая наблюдается в мышечных тканях.

Отличия гладкой и поперечно-полосатой мышечной ткани: сравнение

Гладкая и поперечно-полосатая мышечная ткань человека

Из вышесказанного можно понять в чем заключается отличие этих двух видов тканей. Вот сравнение гладкой и поперечно-полосатой мышечной ткани человека:

  • Поперечно-полосатая мышечная ткань является основой скелетных мышц, сердечной мышцы, опорно-двигательного аппарата. При возбудимости имеет свойство быстрого колебания. Иннервируется соматической нервной системой.
  • Гладкая мышечная ткань преобладает во внутренних органах: желудочно–кишечного тракта, матке, в мочевыводящих путях. Имеет свойство медленного изменения мембранного потенциала. Иннервируется автономной нервной системой. Обладает чувствительностью к биоактивным веществам, возможность к пластическому тонусу, регенерацией к восстановлению.

Можно сделать следующие выводы:

  • Отличия. Гладкие мышцы — одноядерные, сокращаются медленно, непроизвольно и мало утомляются, поперечно-полосатые – многоядерные, сокращаются быстро, произвольно и быстро утомляются.
  • Сходство. Наличие нервов и сосудов, присутствует в обеих мышцах оболочка из соединительных тканей и пучки мышечных волокон.

Ниже вы найдете еще немного важной информации об этих группах мышц, которая пригодится вам при подготовке к экзаменам. Читайте далее.

Различают гладкую, поперечно-полосатую мышечные ткани: ответы на вопросы по ЕГЭ

В школе на уроках биологии учитель вам рассказывал, что различают гладкую и поперечно-полосатую мышечную ткань. Все вопросы по этой теме на ЕГЭ будут связаны с функциями, строением и механизмом мышечного сокращения. Ответы должны быть такими:

Мышечные ткани человекаМеханизм мышечного сокращенияФункции мышцГладкая и поперечно-полосатая мышечная ткань человекаГладкая и поперечно-полосатая мышечная ткань человека

Видео: Лекция № 7. Мышечные ткани — 2. Лекция по гистологии

Источник

Вены. Строение вен. Стенки и структура вен.

Вены в целом сходны по строению с артериями, однако особенности гемодинамики (низкое давление и медленное движение крови в венах) придают структуре их стенки ряд особенностей. По сравнению с артериями одноименные вены имеют больший диаметр (в венозном звене сосудистого русла находится около 70% всей крови), тонкую, легко спадающуюся стенку, слабо развитый эластический компонент, более слабо развитые гладкомышечные элементы в средней оболочке, хорошо выраженную наружную оболочку.

Вены, расположенные ниже уровня сердца, имеют полулунные клапаны. Границы между оболочками в венах менее отчетливы по сравнению с артериями. Внутренняя оболочка вен состоит из эндотелия и подэндотелиального слоя. Внутренняя эластическая мембрана слабо выражена. Средняя оболочка вен представлена гладкими мышечными клетками, которые не образуют сплошного слоя, как в артериях, а располагаются в виде обособленных пучков, отделенных прослойками волокнистой соединительной ткани. Эластических волокон мало.

Наружная адвентициальная оболочка представляет собой наиболее толстый слой стенки вены. Она содержит коллагеновые и эластические волокна, сосуды, питающие вену, и нервные элементы. Толстая адвентиция вен, как правило, непосредственно переходит в окружающую рыхлую соединительную ткань и фиксирует вену в соседних тканях.

строение вен

В зависимости от степени развития мышечных элементов вены подразделяются на безмышечные и мышечные. Безмышечные вены располагаются в участках органов с плотными стенками (твердая мозговая оболочка, кости, трабекулы селезенки), в сетчатке глаза, плаценте. В костях и трабекулах селезенки, например, стенки вен сращены своей наружной оболочкой с интерстициальной тканью органов и, таким образом, не спадаются.

Строение стенки вен безмышечного типа достаточно простое — эндотелий, окруженный слоем рыхлой соединительной ткани. Гладкомышечных клеток в стенке нет.

В венах мышечного типа гладкомышечные клетки имеются во всех трех оболочках. Во внутренней и наружной оболочках пучки гладких миоцитов имеют продольное направление, в средней — циркулярное. Мышечные вены подразделяются на несколько видов. Вены со слабым развитием мышечных элементов — это мелкие вены верхней части туловища, по которым кровь движется, главным образом, вследствие собственной силы тяжести; вены со средним развитием мышечных элементов (мелкие вены, плечевая, верхняя полая вены).

В составе внутренней и наружной оболочек этих вен присутствуют единичные продольно ориентированные пучки гладкомышечных клеток, а в средней оболочке — циркулярные пучки гладких миоцитов, разделенные рыхлой соединительной тканью. Эластических мембран в структуре стенки нет, а внутренняя оболочка по ходу вены образует немногочисленные полулунные складки — клапаны, свободные края которых направлены к сердцу. В основании клапанов находятся эластические волокна и гладкомышечные клетки. Предназначение клапанов — препятствовать обратному току крови под влиянием ее собственной силы тяжести.

Клапаны открываются по ходу кровотока. Наполняясь кровью, они перекрывают просвет вены и препятствуют обратному движению крови.

Вены с сильным развитием мышечных элементов это крупные вены нижней части туловища, например, нижняя полая вена. Во внутренней оболочке и адвентиции этих вен присутствуют множественные продольные пучки гладких миоцитов, а в средней оболочке — циркулярно расположенные пучки. Имеется хорошо развитый клапанный аппарат.

– Также рекомендуем “Лимфатические сосуды. Строение лимфатических сосудов. Стенки лимфатических сосудов.”

Оглавление темы “Сердечно-сосудистая система. Дыхательная система.”:

1. Желчевыводящие пути и желчный пузырь. Строение желчного пузыря.

2. Сердечно-сосудистый комплекс органов. Артерии. Виды и строение артерий.

3. Сосуды микроциркуляторного русла. Артериолы. Прекапилляры. Посткапилляры. Венулы.

4. Вены. Строение вен. Стенки и структура вен.

5. Лимфатические сосуды. Строение лимфатических сосудов. Стенки лимфатических сосудов.

6. Сердце. Эндокард. Миокард. Строение сердца.

7. Дыхательный комплекс органов. Развитие дыхательной системы.

8. Гортань. Слизистая гортани. Стенки гортани. Трахея. Стенки трахеи. Слизистая трахеи.

9. Легкие. Внутрилегочные бронхи. Строение внутрилегочных бронхов.

10. Респираторный отдел легких. Строение респираторного отдела легких.

Источник

Читайте также:  Народная медицина для сосудов ног