Строение ситовидных трубок и сосудов

Строение ситовидных трубок и сосудов thumbnail

Появление проводящих тканей в процессе эволюции является одной из причин, которые сделали возможным выход растений на сушу. В нашей статье мы рассмотрим особенности строения и функционирования ее элементов – ситовидных трубок и сосудов.

Особенности проводящей ткани

Когда на планете произошли серьезные изменения климатических условий, растениям пришлось приспосабливаться к ним. До этого все они обитали исключительно в воде. В наземно-воздушной среде стала необходимой добыча воды из почвы и ее транспортировка ко всем органам растения.

Различают два вида проводящей ткани, элементами которой являются сосуды и ситовидные трубки:

  1. Луб, или флоэма – расположена ближе к поверхности стебля. По ней органические вещества, образованные в листе во время фотосинтеза, передвигаются по направлению к корню.
  2. Второй тип проводящей ткани называется древесина, или ксилема. Она обеспечивает восходящий ток: от корня к листьям.

ситовидные трубки

Ситовидные трубки растений

Это проводящие клетки луба. Между собой они разделены многочисленными перегородками. Внешне их строение напоминает сито. Отсюда и происходит название. Ситовидные трубки растений живые. Это объясняется слабым давлением нисходящего тока.

Их поперечные стенки пронизаны густой сетью отверстий. А клетки содержат много сквозных отверстий. Все они являются прокариотическими. Это означает, что в них нет оформленного ядра.

Живыми элементы цитоплазмы ситовидных трубок остаются только на определенное время. Продолжительность этого периода варьирует в широких пределах – от 2 до 15 лет. Данный показатель зависит от вида растения и условий его произрастания. Ситовидные трубки транспортируют воду и органические вещества, синтезированные в процессе фотосинтеза от листьев к корню.

ситовидные трубки растений

Сосуды

В отличие от ситовидных трубок, эти элементы проводящей ткани представляют собой мертвые клетки. Визуально они напоминают трубочки. Сосуды имеют плотные оболочки. С внутренней стороны они образуют утолщения, которые имеют вид колец или спиралей.

Благодаря такому строению сосуды способны выполнять свою функцию. Она заключается в передвижении почвенных растворов минеральных веществ от корня к листьям.

сосуды и ситовидные трубки

Механизм почвенного питания

Таким образом, в растении одновременно осуществляется передвижение веществ в противоположных направлениях. В ботанике этот процесс называют восходящим и нисходящим током.

Но какие силы заставляют воду из почвы двигаться вверх? Оказывается, что это происходит под влиянием корневого давления и транспирации – испарения воды с поверхности листьев.

Для растений этот процесс является жизненно необходимым. Дело в том, что только в почве находятся минералы, без которых развитие тканей и органов будет невозможным. Так, азот необходим для развития корневой системы. В воздухе этого элемента предостаточно – 75 %. Но растения не способны фиксировать атмосферный азот, поэтому минеральное питание так важно для них.

Поднимаясь, молекулы воды плотно сцепляются между собой и стенками сосудов. При этом возникают силы, способные поднять воду на приличную высоту – до 140 м. Такое давление заставляет почвенные растворы через корневые волоски проникать в кору, и далее к сосудам ксилемы. По ним вода поднимается к стеблю. Далее, под действием транспирации, вода поступает в листья.

В жилках рядом с сосудами находятся и ситовидные трубки. Эти элементы осуществляют нисходящий ток. Под воздействием солнечного света в хлоропластах листа синтезируется полисахарид глюкоза. Это органическое вещество растение расходует на осуществление роста и процессов жизнедеятельности.

Итак, проводящая ткань растения обеспечивает передвижение водных растворов органических и минеральных веществ по растению. Ее структурными элементами являются сосуды и ситовидные трубки.

Источник

Особенности транслокации по флоэме растения. Строение ситовидных трубок растения.

Прежде чем рассматривать возможные механизмы транслокации по флоэме, полезно перечислить некоторые факты, которые не должны противоречить любой выдвигаемой гипотезе.

1. Количество транспортируемых флоэмой растворенных веществ очень велико. Подсчитано, например, что вниз по стволу крупного дерева за вегетационный период перемешается до 250 кг сахара.

2. Скорость транслокации высока, обычно 20—100 см/ч, а максимальное зарегистрированное значение превышало 600 см/ч.

ситовидные трубки растений

3. Транспорт может осуществляться на очень большие расстояния. Эвкалипты достигают в высоту более 100 м. Листья этих деревьев располагаются главным образом у вершины, а значит, ассимиляты должны перемещаться вниз почти по всей длине ствола, а часто еще и на значительное расстояние по корням.

4. Относительная масса флоэмы невелика. Толщина слоя функционально активной флоэмы, расположенного по окружности древесного ствола, близка к толщине почтовой открытки. Флоэма образует самый внутренний слой коры (точнее — ее луба) одревесневших стеблей и корней, при этом более старые слои флоэмы растягиваются и отмирают по мере роста органов и увеличения их диаметра.

Читайте также:  Чем очистить сосуды от атеросклеротических бляшек

5. Флоэмный сок движется у цветковых растений по ситовидным трубкам, диаметр которых очень мал — не более 30 мкм (как у тончайшего человеческого волоса). Через примерно равные интервалы эти трубки разделены ситовидными пластинками со сквозными отверстиями еще меньшего диаметра. Чем меньше диаметры трубок и отверстий, тем больше сопротивление потоку жидкости и тем большая сила нужна для приведения ее в движение. Давление внутри ситовидных трубок велико.

6. Помимо ситовидных пластинок, ситовидные трубки обладают другими структурными особенностями, которые также должны приниматься во внимание.

Строение ситовидных трубок растения

Строение флоэмы по данным световой микроскопии описано в статье. Эта ткань содержит проводящие трубки, называемые ситовидными, которые образованы клетками — члениками ситовидных трубок, — соединенными в ряд своими торцами. Членики отделены друг от друга торцевыми ситовидными пластинками с отверстиями, позволяющими жидкости перетекать из клетки в клетку1.

В отличие от сосудов ксилемы, представляющих собой мертвые полые трубки, по которым раствор течет, почти или вообще не встречая никаких препятствий, ситовидные трубки флоэмы являются живыми, и движение растворов по ним затруднено из-за наличия ситовидных пластинок и в меньшей степени из-за наличия цитоплазмы. На рисунке приведена электронная микрофотография зрелого членика ситовидной трубки, а на рисунке — схема с указанием всех основных деталей ситовидных элементов и примыкающих к ним клеток-спутниц.

В процессе развития ситовидного элемента из меристематической клетки ядро этой клетки дегенерирует, и перед нами оказывается неооычныи пример живой клетки, не имеющей ядра; в этом отношении она сходна с эритроцитом млекопитающего. Одновременно происходит множество других важных изменений, результаты которых схематически представлены на рисунке. Клеточная стенка на обоих «торцах» членика превращается в ситовидные пластинки. Здесь плазмодесмы, соединяющие между собой соседние цитопласты, сильно утолщаются, образуя тем самым многочисленные ситовидные поры, сквозь которые они проходят. Вид ситовидной пластинки с поверхности показан на рисунке. Конечный итог всех этих преобразований — формирование трубчатой структуры, выстланной тонким пристенным слоем живой цитоплазмы, окруженной плазмалеммой. Центральная часть ситовидной трубки занята как бы единой гигантской вакуолью, которая, впрочем, не отделена от цитоплазмы тонопластом.

К каждому членику прилегают одна или несколько клеток-спутниц, которые возникают из той же самой родительской клетки путем ее продольного деления. Клетки-спутницы имеют очень плотную цитоплазму с ядром, мелкими вакуолями и обычными клеточными органелла-ми. Судя по многочисленным митохондриям и рибосомам, метаболически клетки-спутницы весьма активны. В физиологическом отношении они очень тесно связаны с ситовидными элементами и совершенно необходимы для их жизнедеятельности: в случае гибели клеток-спутниц погибают и ситовидные элементы. У некоторых растений в ситовидных элементах образуется большое количество волокнистого белка, называемого флоэмным белком (Ф-белком). Иногда он образует крупные отложения, различимые в световом микроскопе. Раньше его функция вызывала много споров, но сейчас признано, что особой роли в транслокации он не играет.

– Также рекомендуем “Данные свидетельствующие о передвижении веществ по флоэме растения.”

Оглавление темы “Транспорт у растений.”:

1. Подъем воды по ксилеме растений.

2. Поглощение воды корнями. Апопластный транспорт в корне.

3. Поглощение минеральных солей и их транспорт в корне растений.

4. Транспорт минеральных солей по растению. Транслокация органических веществ по флоэме.

5. Особенности транслокации по флоэме растения. Строение ситовидных трубок растения.

6. Данные свидетельствующие о передвижении веществ по флоэме растения.

7. Механизм транслокации веществ по флоэме. Гипотезы объемного потока Мюнха и тока под давлением.

8. Загрузка ситовидных трубок растения.

9. Критическая оценка гипотезы тока под давлением. Механизмы первой помощи растениям.

10. Транспорт у растений. Общие особенности кровеносной системы.

Источник

«В природе нет ничего бесполезного» – Мишель де Монтень

Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня
до клеток листа. Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) – 117 метров в высоту.
И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против
силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.

Читайте также:  Как народными методами очистить сосуды

Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать
самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая
микропрепараты.

Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку.
Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.

Проводящие ткани растений

Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты
обмена веществ из них.
Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям
(восходящий ток) и от листьев к корням (нисходящий ток).

Логическим путем можно угадать многие научные факты, даже не зная их. К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же
вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани – ксилемы (древесины).
От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани – флоэмы (луба).

Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, которая в процентном соотношении может составить до 25% от их массы. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.

В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.

Ксилема (древесина)

Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей. В толще проводящей ткани находятся отнюдь не только те самые трахеиды и
сосуды, ее пронизывают многочисленные механические волокна – древесинные, обеспечивающие каркасность и прочность. В ксилеме содержатся также запасающие структуры,
представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.

  • Трахеиды
  • Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение
    и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую,
    спиралевидную, кольчатую.

    Трахеиды ксилемы

  • Сосуды
  • Длинные трубки, представляющие собой слияние отдельных мертвых клеток “члеников” в единый “сосуд”. Ток жидкости идет из нижележащих отделов в вышележащие
    благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.

    Сосуды ксилемы

    Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению
    он растягивается и обеспечивает ток воды и минеральных солей.

    Растяжение сосудов

  • Древесинные волокна (либриформ)
  • Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной
    клеточной стенкой, которая придает ксилеме механическую прочность.

  • Паренхимные клетки (древесинная паренхима)
  • Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.

Флоэма (луб)

Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания,
подземные части, или “складировать” на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод – дисахарид сахароза.

Читайте также:  В закрытом сосуде кубической формы объемом 0 216

Эта ткань представлена ситовидными трубками, генез (от греч. genesis – происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная
флоэма – из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.

Разберемся с компонентами, которые входят в состав флоэмы:

  • Ситовидные элементы
  • Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток – “члеников”, соединенных в единую цепь. Между “члениками” имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито – вот откуда берется название ситовидных трубок 🙂

    Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ
    и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность
    ситовидных трубок.

    Клетки-спутницы

  • Склеренхимные элементы (лубяные волокна)
  • Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.

  • Паренхимные элементы (лубяная паренхима)
  • Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.

По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают.
Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.

Ниже вы найдете продольный срез тканей растения, изучите его.

Клетки-спутницы

Жилка

Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма – снизу. Над пучком и под ним располагаются уголковая или пластинчатая
колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия,
располагаются в центральном осевом цилиндре. Существует два вида жилок:

  • Открытые
  • Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема
    ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно
    обнаружить во всех органах двудольных растений.

  • Закрытые
  • Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы.
    Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.

Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань
– склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.

Жилка, сосудисто-волокнистый пучок

Как вода поднимается от корней к листьям, против силы тяжести?

Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и
присасывающего листового.

  • Корневое давление
  • Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос:
    клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться
    в сосуды.

  • Транспирация
  • Работа верхнего концевого двигателя заключается в транспирации – испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых
    волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место
    освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости.
    Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник