Сварка сосудов высоким давлением

Большая Энциклопедия Нефти и Газа

Изготовление — сосуд — высокое давление

Изготовление сосудов высокого давления осуществляется, главным образом, тремя способами: из стальных поковок углеродистой или легированной стали, из вальцованных стальных листов, сваренных дуговой и электрошлаковой сваркой, и из спирально свернутых шин специального профиля. Кроме того, изготовляются многослойные и авто-фреттированные цилиндры. [1]

Для изготовления сосудов высокого давления , тяжело нагруженных машиностроительных изделий и других ответственных конструкций используют среднелегированные высокопрочные стали, которые после соответствующей термообработки обладают временным сопротивлением 100 — 200 кгс / мм2 при достаточно высоком уровне пластичности. В связи с весьма высокой чувствительностью к термическому циклу сварки стали со столь высоким содержанием углерода для изготовления сварных конструкций применяют только в особых случаях. [2]

При изготовлении крупногабаритных, толстостенных рулони-рованных сосудов высокого давления одной из основных технологических операций является сборка корпусов и их элементов, которая производится на специализированных рабочих местах и сбороч-но-сварочных стендах. [3]

Низколегированная рулонная сталь марки 08Г2СФБ для изготовления сосудов высокого давления / Молчанова В. Д., Зубаренков Е. И., Колмаков А. Г., Алябьев А. П., Ярлыков Н. И., Ковальчук Е. Н., Мироненко Э. К. — В кн.: Многослойные сварные конструкции и трубы: Материалы I Всесоюз. [4]

Широко используется в судостроении, при изготовлении сосудов высокого давления . [5]

Сварка ереднелегировэнных высокопрочных сталей, применяющихся для изготовления сосудов высокого давления ( типа 45ХЗОНВМФА, ЗОХН2МФА, ЗЗХЗНВМФА и др.) осуществляется без предварительного подогрева, который не снижает скорости охлаждения в зоне термовлияния ниже критических, а способствует лишь росту зерна. Распад аустенита происходит в мартенситной области. Увеличение степени легирования ( суммарное содержание легирующих элементов достигает 5 — 9 %, а углерода 0 5 %) повышает устойчивость аустенита при повышенных скоростях охлаждения зоны термического влияния и обеспечивает удовлетворительное формирование шва. При сварке используют технологические приемы, обеспечивающие увеличение времени пребывания металла шва и околошовной зоны в субкритическом интервале температур: сварка каскадами, блоками, короткими швами. Также используют аустенитные электроды, а при многослойной сварке — отжигающие валики. После сварки в большинстве случаев необходима термообработка: закалка низким или высоким отпуском. Электроды для сварки подвергаются прокалке и не должны содержать органических веществ в покрытии. [6]

Сварка среднелегированных высокопрочных сталей, применяющихся для изготовления сосудов высокого давления ( типа 45ХЗОНВМФА, ЗОХН2МФА, ЗЗХЗНВМФА и др.) осуществляется без предварительного подогрева, который не снижает скорости охлаждения в зоне термовлияния ниже критических, а способствует лишь росту зерна. Распад аустенита происходит в мартенситной области. Увеличение степени легирования ( суммарное содержание легирующих элементов достигает 5 — 9 %, а углерода 0 5 %) повышает устойчивость аустенита при повышенных скоростях охлаждения зоны термического влияния и обеспечивает удовлетворительное формирование шва. При сварке используют технологические приемы, обеспечивающие увеличение времени пребывания металла шва и околошовной зоны в субкритическом интервале температур: сварка каскадами, блоками, короткими швами. Также используют аустенитные электроды, а при многослойной сварке — отжигающие вштики. После сварки в большинстве случаев необходима термообработка: закалка низким или высоким отпуском. Электроды для сварки подвергаются прокалке и не должны содержать органических веществ в покрытии. [7]

Конструкция, применяемые материалы, технические условия на изготовление сосудов высокого давления , приобретаемых за рубежом, должны соответствовать требованиям Госгортехнадзора России. [9]

Примечание: Обычным шрифтом обозначены стали, используемые при изготовлении сосудов высокого давления , курсивом — стали, используемые при изготовлении деталей трубопроводов высокого давления, жирным шрифтом — стали, используемые при изготовлении сосудов и трубопроводов высокого давления. [10]

Примечание: Обычным шрифтом обозначены стали, используемые при изготовлении сосудов высокого давления , курсивом — стали, используемые при изготовлении деталей трубопроводов высокого давления, жирным шрифтом — стали, используемые при изготовлении сосудов и трубопроводов высокого давления. [11]

Горячую гибку толстого листового металла применяют в тяжелом машиностроении при изготовлении сосудов высокого давления , барабанов паровых котлов, барабанных лебедок, канатных шкивов, частей прессов. [13]

Эта заготовка была прокатана на толщину 190 мм и передана потребителю для изготовления сосудов высокого давления , работающих при повышенных температурах. [14]

С целью расширения области применения высокопрочной теплоустойчивой рулонной стали, предназначенной для изготовления сосудов высокого давления , были проведены исследования влияния реакторного облучения на ее служебные свойства. [15]

Источник

Разновидности сварки давлением

Согласно ГОСТ 2601-84 под сваркой вообще понимается процесс образования контакта элементов на атомном уровне, образующегося при нагревании или пластической деформации отдельных частей свариваемых изделий.

Из этого определения следует, что понятие сварки может относиться не только к металлам, но и к пластмассам, стеклу и другим неметаллам, а также к их производным.

Для более доступного понимания, что такое сварка давлением необходимо введение такой важной физической величины, как энергия активации. Она ответственна за перераспределение межатомных связей и формирование их на новом уровне.

Принцип сваривания

В процессе сваривания заготовок энергия активации расходуется либо на нагрев, что проявляется в виде оплавления места контакта, либо на его пластическую деформацию.

Согласно определению, в зависимости от вида энергии, используемой для объединения изделий на межатомном уровне, следует различать сварку плавлением от той же процедуры, осуществляемой под деформационным воздействием. Последний принцип используется в частности, когда проводится сварка труб под давлением.

Известные виды сварочных операций в основном различаются характером физико-химических процессов, происходящих непосредственно в контактной зоне.

В основу сварки плавлением заложен принцип её нагрева до определённого состояния, при котором происходит перемешивание двух стыкующихся частей с образованием общей жидкой массы (сварочной ванны).

По завершении сварочных процедур и охлаждения ванны образуется соединительный шов, получаемый непосредственно из расплава и лишь частично – за счёт применения особых присадок.

Читайте также:  Нарушение мозгового кровообращения спазм сосудов

Источником местного нагрева в условиях классической сварки плавлением могут служить:

  • электрическая дуга;
  • пламя газовой горелки;
  • химическая реакция, сопровождающаяся выделением большого количества тепла;
  • энергия электронного происхождения;
  • плазма или лазерное излучение.

Достаточно узкая полоска материала, образующаяся вдоль границы свариваемых частей или заготовок, называется зоной сплавления. Несмотря на малые размеры этого образования (оно измеряется в микронах), его влияние на качество сварного соединения достаточно велико.

Специфические черты

Принцип сварки давлением заключается в пластической деформации материала металла вдоль стыков свариваемых частей (отдельных участков трубопроводов, например). Такое механическое воздействие достигается за счёт значительных по величине статических, а в отдельных случаях и ударных нагрузок.

Для ускорения этого процесса сварка сопровождается местным нагревом, что способствует образованию более прочных связей между вступающими в непосредственный контакт частицами. Полоса материала с происходящими в её границах физическими процессами, называется зоной объединения.

В качестве источника тепла при сварке давлением под нагревом могут использоваться как специальные термические печи и электрический или индукционный ток, так и особые химические реакции или переменная электрическая дуга.

Картина протекания сварочного процесса под давлением с нагреванием зоны контакта существенно отличается от случая сварки плавлением.

Так, при сварке стыков давлением с частичным нагревом, места соединения сначала слегка оплавляются и только после этого пластически деформируются. Одновременно с этим некоторая часть деформированного материала вместе со шлаком выдавливается за границы стыка, образуя так называемый «грат».

Разновидности сварки давлением

Известны следующие виды сварки давлением:

  • холодная;
  • с использованием эффекта трения;
  • ультразвуковая и кузнечная.

Контактную сварку (когда деталь разогревается электрическим током) также можно причислить к виду под давлением. Ее результат зависит во многом от усилия сжатия.

Она получила наибольшее распространение при соединении труб и деталей конструкций в машиностроении. Активно развиваются такие виды сварки под давлением, как диффузионная и соединение взрывом.

Холодная

Под «холодной» сваркой давлением понимается техника соединения частей и заготовок без расплава торцов (только за счёт их механического сжатия со значительным усилием).

При давлениях, значительно превышающих предельные значения для структуры любого металла, на его стыках начинает проявляться эффект текучести. Особо легко достигается он при условии, когда при нормальной температуре материал сам по себе достаточно пластичен.

Под воздействием давления сжатия в месте соединения осуществляется диффузия одного материала в другой с одновременным выделением определённого количества тепла. По завершении сварочного процесса соединённые таким образом детали постепенно охлаждаются.

В итоге образуются натуральные швы достаточно высокого качества, свободные от каких-либо нежелательных внутренних напряжений и остаточных явлений, наблюдаемых из-за перегрева металла. Указанный вид сварки применяется при необходимости соединения деталей из трудно сплавляемых материалов, содержащих титан, никель, медь и их сплавы.

Область возможного применения этой методики ограничена необходимостью привлечения к процессу сваривания довольно дорогого и сложного специального оборудования. Ещё одним недостатком метода холодной сварки давлением является его сравнительно низкая производительная эффективность.

С применением эффекта трения

Этот вид соединения частей материала реализуется за счёт использования теплоты, выделяющейся при динамическом (трущемся) соприкосновении свариваемых поверхностей.

Для достижения результата обрабатываемые заготовки фиксируются в зажимах специального механизма, один из которых во время операции остаётся неподвижен. Второй зажим в это время совершает контролируемые оператором вращательные и поступательные колебания.

В процессе сварки обрабатываемые заготовки сначала сжимаются за счёт осевого давления, после чего в работу включается специальный вращательный механизм. При достижении предельной температуры трения (порядка 980-1300 градусов) вращение заготовок останавливается, а их сжатие продолжается.

К преимуществам этой разновидности сварки давлением можно отнести простоту и надёжность, а также высокую производительность технологического процесса. Следует добавить невысокую энергоемкость и возможность соединения изделий из разнородных материалов.

Для реализации способа с эффектом трения промышленностью выпускаются специальные механизмы, способные сваривать и пластмассовые заготовки.

Метод широко применяется для соединения с трудом поддающихся сварке разнородных металлов. Примером могут служить варианты соединения давлением стали с алюминием или же аустенитных материалов с перлитными.

Ультразвуковая и кузнечная

Сварка с помощью ультразвука – ещё один способ сочленения давлением разнородных по составу материалов, находящихся в твёрдом состоянии. Наибольшей эффективностью отличается использование этого метода при сварке современных полимеров, изготавливаемых в виде листовых изделий.

С его помощью прекрасно соединяются практически все наименования самых распространённых полимерных материалов. С его помощью также могут осуществляться соединения изделий из искусственных кож, а также природных натуральных тканей, содержащих в своём составе синтетические волокна.

Особым спросом пользуется ультразвуковой способ сварки при необходимости соединения разнородных по структуре и термочувствительных материалов.

Кузнечная сварка давлением по своей сути не отличается от печного варианта и предполагает механическое ударное воздействие на материал предварительно разогретых до пластичного состояния заготовок.

Как сваривают сосуды

При изготовлении специальных сосудов и емкостей очень часто возникает необходимость в образовании не только прямолинейных, но и кольцевых или круговых стыковочных соединений.

Сварка сосудов организуется в связи с этим по особым методикам, учитывающим толщину стенок изделия и предусматривающим тщательное исполнение каждого рабочего шва.

Выполнить все условия, предъявляемые к соединению частей тонкостенных сосудов, удается лишь путём применения рассматриваемого метода, а именно – сварки под давлением. Для получения результата используются несложные приспособления и специальный инструмент, обеспечивающие равномерное прижатие кромок свариваемых тонкостенных изделий.

Сварочные операции под давлением обеспечивают достаточно эффективное неразъемное сочленение самых различных типов металлов (в том числе – и разнородных по своему составу). При этом качество получившегося сварного контакта, образуемого без применения классических сплавных технологий, во многом определяется тщательностью подготовки свариваемых плоскостей и поверхностей.

Читайте также:  Какие сосуды регистрируются в ростехнадзоре какое давление

Помимо этого, оно в значительной мере зависит и от свойств используемых материалов, то есть от их способности подвергаться пластической деформации при воздействии предельных механических нагрузок.

Источник

Источник

Технология сварки сосудов высокого давления

К сосудам относятся паровые котлы, цистерны для сжиженных газов и т. д., в которых рабочее давление превышает атмосферное на 0,7 кгс/см2 (70 кПа) и выше. Сосуд обычно состоит из обечаек, сферических днищ и патрубков (рис. 133).

Вначале собирают карты из листов, которые сваривают между собой. Сваренные карты изгибают по радиусу в вальцах для получения заготовки обечайки, потом сваривают продольный шов с последующей правкой (обкаткой) сваренной обечайки на вальцах.
Сваренные и отвальцованные обечайки собирают между собой, с патрубками и сферическими днищами. Кольцевые швы сваривают участками обратно-ступенчатым способом. Патрубки приваривают либо в одном направлении, если диаметр патрубка .не более 200 мм, либо обратно-ступенчатым способом, если диаметр патрубка более 200-300 мм.
Сваренные сосуды обязательно проходят специальный контроль на прочность и плотность сварных соединений.
Резервуары, являющиеся листовыми конструкциями, по форме бывают цилиндрическими и шаровыми (сферическими). Цилиндрические резервуары подразделяются на вертикальные и горизонтальные. Технология сборки и сварки горизонтальных резервуаров аналогична технологии сборки и сварки сосудов.
Вертикальный резервуар (рис. 134) состоит из днища, корпуса, кровли, шахтной лестницы и других металлических конструкций. По современной технологии днище и корпус вертикального резервуара сваривают автоматической сваркой на заводе, а затем свертывают в рулон и отправляют на место монтажа. Кровлю также изготовляют по узлам на заводе и отправляют на место монтажа отдельными узлами (щитами).

При монтаже резервуаров ручной сваркой выполняют кольцевой шов, соединяющий корпус резервуара с днищем, замыкающий шов корпуса резервуара и другие сварочные работы. Кольцевой шов выполняют обратно-ступенчатым способом, а замыкающий шов — снизу вверх участками. Сферические резервуары собирают из отдельных элементов (лепестков), изготовленных методом холодной или горячей штамповки, методом взрыва или вальцовки. Сварку лепестков выполняют в специальных манипуляторах ручной или автоматической сваркой.
К решетчатым конструкциям относятся фермы, фахверки, мачты, различные опоры и т. д. Они изготовляются из профильного металла (двухтавровых балок, уголка, листа, труб, швеллера и т. д.). В решетчатой конструкции вначале сваривают все короткие швы, соединяющие между собой однотипные элементы, применяя обратно-ступенчатый метод, затем выполняют сварку длинных швов также обратно-ступенчатым способом, соблюдая определенную очередность наложения швов.

1. Как классифицируются сварные конструкции?
2. Какие бывают стыки труб по расположению в пространстве?
3. В чем заключается различие методов наложения швов при сварке поворотного, неповоротного и горизонтального стыков?

Источник

Газовая сварка сосудов и газопроводов

К газовой сварке сосудов, газопроводов и их элементов допускаются сварщики, имеющие удостоверения на право выполнения сварочных работ.

В сварных сосудах в основном применяют стыковые соединения, днища сосудов должны иметь эллиптическую форму. Тавровые сварные соединения допускаются только в случае приварки плоских днищ, фланцев или штуцеров.

В стыковых сварных соединениях элементов с различной толщиной стенок должен быть обеспечен плавный переход от одного элемента к другому. Сварные швы должны быть доступными при изготовлении сосудов. Пересечение сварных швов при ручной газовой сварке не допускается.

В случае приварки опор или других элементов к корпусу или днищу сосуда расстояние между сварным швом сосуда и швом приварки должно быть не менее толщины стенки.

Все сварные соединения сосудов и их элементов должны подвергаться тщательному контролю. Дефекты, обнаруженные в процессе изготовления, монтажа и испытания, должны быть устранены с последующим контролем исправленных участков.

На применяемые для изготовления газопроводов трубы должны быть сертификаты заводов-изготовителей. Применяемая для сварки присадочная проволока также должна иметь сертификат, а при отсутствии его — подвергаться проверке механическими испытаниями образцов, которые вырезаются из пробных сварных стыков.

Газовую сварку применяют для газопроводов диаметром не более 150 мм, при толщине стенок не более 5 мм. Перед сборкой и сваркой труб их очищают от попавших внутрь посторонних предметов, поверхность свариваемых кромок зачищают до металлического блеска. Ручная газовая сварка газопроводов выполняется только в один слой.

Контроль за сваркой газопроводов включает проверку качества применяемых материалов, пооперационный контроль сборки и сварки стыков, проверку качества стыков внешним осмотром и физическими методами контроля, механические испытания образцов, вырезанных из контрольных стыков.

Пооперационный контроль состоит в проверке правильности сборки и сварки стыков. Высота усиления должна составлять от 1 до 3 мм, но не более 40% толщины стенки труб, а ширина шва не должна превышать 2,5% толщины стенки трубы. Для подземных газопроводов диаметром 50 мм и более проверке физическими методами контроля (просвечивание рентгеновским и гамма-излучением, магнитный метод) подлежит следующее количество сварных стыков (в % от общего числа):

Газопроводы низкого давления (до 0,005 МПа включительно)5
То же, среднего давления (от 0,005 до 0,3 МПа)10
То же, высокого давления (от 0,3 до 0,6 МПа)50
То же, высокого давления (от 0,6 до 1,2 МПа)100

При этом проверяется не менее чем по одному стыку из числа стыков, сваренных каждым сварщиком на каждом объекте.

Сварные стыки газопроводов при проверке их физическими методами контроля бракуются при наличии следующих дефектов: трещин, непровара по сечению шва, непровара глубиной свыше 10% корня шва, шлаковых включений или раковин по группам А и В (ГОСТ 7512-82) размером по глубине шва более 10% для труб толщиной стенки до 20 мм, шлаковых включений, расположенных цепочкой или сплошной линией вдоль шва по группе Б (ГОСТ 7512-82) при суммарной длине свыше 200 мм на 1 м шва, скоплений газовых пор на отдельных участках шва по группе В (ГОСТ 7512-82) свыше 5 шт. на 1 см 2 площади шва, газовых пор, расположенных в виде сплошной сетки. Если дефектная часть шва менее 30% его длины, разрешается исправление стыка вырубкой дефектной части и заваркой заново, после чего проверяется физическими методами контроля вся длина сварного шва.

Читайте также:  Сосуды работают под давлением охрана труда

Для механических испытаний из стыка вырезают по три образца для испытаний на изгиб и на растяжение.

После газовой сварки и проверки газопровода его испытывают на прочность и плотность. Перед этими испытаниями газопровод должен быть продут воздухом. Испытания на прочность и плотность, за исключением надземных и внутрицеховых газопроводов с давлением свыше 0,3 МПа, производят воздухом. Величины испытательных давлений на прочность и плотность для подземных и надземных газопроводов приведены в таблице.

Таблица 1 — Испытательные давления для подземных, и надземных газопроводов

Давление на газопроводеИспытательное давление, МПа
на прочностьна плотность
Низкое (до 0,005)0,30,1
Среднее (от 0,005 до 0,3)0,450,3
Высокое (от 0,3 до 0,6)0,750,6
Высокое (от 0,6 до 1,2)1,51,2

Продолжительность испытания газопровода на плотность составляет не менее 24 ч. Дефекты сварных швов, выявленные при испытании, исправляются вырубкой и повторной сваркой. После устранения дефектов качество сварных соединений должно быть заново проверено.

Источник

Плазменная сварка сосудов, работающих под давлением. Сравнение с ТИГ сваркой

В этой статье мы разберемся что такое плазменная сварка сосудов и проведем ее сравнение с популярной TIG-сваркой. Для начала обратимся к истокам. Львиную долю продукции предприятий химического машиностроения и производителей оборудования для пищевой промышленности в том или ином виде составляют сосуды, работающие под давлением. К материалам, используемых для производства данных конструкций, часто предъявляются повышенные требования к коррозионной стойкости, часто при наличии агрессивных сред. В то же время вещества, что находятся в подобных сосудах, могут иметь рабочий диапазон температур от 200 до 600 °С.

Подбор подходящей стали

Исходя из таких требований, наиболее оптимальным является применение в качестве основного материала сосуда коррозионостойких хромоникелевых сталей аустенитного класса. На постсоветском пространстве наиболее распространенной маркой стали является 12Х18Н10Т, которая в западных странах более известна как AISI 304.

Сварка сталей аустенитного класса, как известно, может быть связана с определенными трудностями: при использовании неподходящей схемы нагрева способа сварки, возможно образование холодных (кристаллизационных) трещин. Также большой проблемой может быть выгорание легирующих элементов (хрома и никеля), что приводит к снижению коррозионной стойкости. Если срок эксплуатации конструкции более 20 лет, то выгорание легирующих элементов может привести к межкристаллитной коррозии через десятилетия после отгрузки с завода.

Требования к сварному шву

Исходя из всех вышеизложенных особенностей, способ сварки должен обеспечивать: высокие механические характеристики (как следствие, мелкозернистую структуру металла), отсутствие выгорания легирующих элементов. Также при изготовлении оборудования для пищевой отрасли есть специфические требования к геометрическим размерам сварного шва – обратный валик должен быть минимальным или отсутствовать. Это связано с тем, что процесс сварки обычно производится с внешней стороны сосуда, и как следствие, обратный валик находится внутри сосуда. В случае, если валик имеет большую высоту, пищевые продукты в небольших количествах могут сосредотачиваться и задерживаться возле него. В последствии, при промывке этой емкости, пищевые продукты в данном месте почти не удаляются, и по окончании своего срока годности, могут испортить уже новые загружаемые продукты.

Именно для обеспечения этих требований используют TIG Cold Wire – способ сварки (сварка неплавящимся способом с подачей присадочной проволоки — ИНп). Сварка этим способом позволяет обеспечить сварному шву оптимальный обратный валик, способствует минимизации выгорания легирующих элементов. Также с присадочной проволокой возможно введение дополнительных элементов-аустенизаторов структуры стали. Но у способа есть и недостатки: скорость сварки в таком случае достаточно низкая: 150-300 мм/мин, а из-за «мягкости» режима (соотношения вложенной энергии в объем металла и времени ее воздействия на него) размер зерен становиться большим (т. н. «крупнозернистая» структура), что несколько снижает механические характеристики сварного шва.

Плазменная сварка сосудов

В последнее время большое распространение плазменная сварка – способ, в котором источником тепла для процесса является плазменная дуга. Она позволяет нивелировать вышеизложенные недостатки ИНп способа сварки.

Основной технологической особенностью плазменной сварки является феномен, названный впоследствии процессом сварки «в замочную скважину» (англ. Key hole welding). Весь феномен состоит в том, что во время сварки поток плазменной дуги изначально образует в свариваемой заготовке сквозное отверстие, вокруг которого находится расплавленный металл. При последующем перемещении плазменной дуги расплавленный метал, который находится позади нее, под действием различных сил смыкается и образовывает единую сварочную ванну.

Сильные стороны

1. Обеспечение полного проплавления заготовок до 8 мм без разделки кромок, за один проход:

а) Плазменная сварка стали 12Х18Н10Т толщиной 8 мм, один проход без разделки

б) TIG- сварка стали 12Х18Н10Т толщиной 8 мм, четыре прохода с разделкой:

  • угол раскрытия кромок 60°, притупление 3 мм.

2. Наличие значительно меньших остаточных деформаций вследствие меньшего тепловложения в заготовку

3. Большая производительность сварки

4. Плазменная сварка сосудов обеспечивает более высокие механические характеристики соединений, так как образовывает более мелкозернистую структуру.

Источник

Источник