T найти емкость сосуда
Что такое вместимость сосуда
Вместимость сосуда — это объем его внутренней полости, определяемый по его геометрическим параметрам. Единица измерения объема в СИ — кубический метр, но в случае жидкости чаще используют литр.
Особенности расчета объема жидкости в сосуде
Жидкость по своим свойствам занимает промежуточное место между двумя другими агрегатными состояниями вещества — твердым и газообразным. Жидкости присущи некоторые свойства и твердого тела, и газа. Силы взаимного притяжения молекул в жидкостях достаточно велики, чтобы удерживать молекулы вместе, так что, в отличие от газов, жидкости имеют постоянный собственный объем.
В то же время эти силы недостаточны, чтобы держать молекулы в жесткой упорядоченной структуре, и потому у жидкостей нет постоянной формы: они принимают форму сосуда, в котором находятся.
Жидкость в сосуде оказывает постоянное давление на его стенки, поэтому на производстве, где необходимо регулярно измерять текущий объем жидкости в сосуде, часто используют гидростатические датчики давления.
За счет маленького диаметра их мембран итоговая погрешность измерения близится к нулю. Поэтому, зная давление в конкретный момент времени, можно вычислять уровень жидкости, т. е. высоту гидростатического столба. В формулу для расчета входят только плотность жидкости и ее давление:
(h = frac{p}{rho times g}.)
(p) здесь — давление в паскалях, (rho) — плотность, (g) — ускорение свободного падения, константа.
Зная габариты сосуда, несложно рассчитать объем жидкости в нем. Это необходимо, например, в пивоварении и виноделии, где обычно используются цилиндрические емкости с конусным дном, близкие по параметрам к идеальным геометрическим телам.
При решении логических учебных задач на переливание жидкости из одного сосуда в другой может пригодиться понимание взаимосвязи объема жидкости и параметров сосуда. А для задач по физике часто требуется рассчитать объем, который занимает жидкость в сосуде, через ее массу. На практике это действительно один из самых удобных способов, не требующий ни специальных датчиков, ни сложных расчетов.
Задача
Найти объем керосина, зная массу одного и того же сосуда с ним, и без него. Масса пустого сосуда 440 грамм, полного — 600 грамм.
Решение:
Плотность керосина можно узнать из справочной таблицы — 800 (frac{кг}{м^{3}}.)
Вычислим массу керосина в сосуде: 600 – 440 = 160.
Подставим известные данные в формулу:
(V = frac{m}{rho} = frac{0,16}{800} = 0,0002 м^{3} = 200 см^{3}.)
Ответ: 200 (см^{3}.)
Как определить вместимость сосудов разных форм
Вычисление объема параллелепипеда
Параллелепипед — это призма, объемная шестигранная фигура, в основании которой находится параллелограмм.
(V = S_{осн} times H. )
Прямоугольный параллелепипед — это призма, у которой все грани являются прямоугольниками. Прямоугольный параллелепипед, все грани которого являются квадратами, — это куб.
Чтобы вычислить объем прямоугольного параллелепипеда, достаточно найти произведение трех его измерений:
(V = AB times AD times AA_{1} = abc.)
Объем куба равен кубу его стороны:
(V = a^{3}.)
Нахождение объема пирамиды
Пирамида — это многогранник, состоящий из основания — плоского многоугольника, вершины — точки, лежащей не в плоскости основания, и отрезков, которые соединяют вершину с углами основания. Высота пирамиды — это перпендикуляр, опущенный из вершины на плоскость основания.
(V = frac{1}{3} times S_{осн} times h.)
Чтобы определить объем усеченной пирамиды, надо знать площадь обоих оснований — (S_{1}) и (S_{2}).
(V = frac{1}{3} times h times (S_{1} + S_{2} + sqrt{S_{1} times S_{2}}). )
Как найти объем цилиндра
Цилиндр — это тело, состоящее из двух кругов, которые лежат в разных плоскостях и совмещаются параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.
(R) — радиус основания цилиндра, (h) — его высота, равная образующей оси.
(V = S_{осн} times h = pi times R^{2} times h.)
Если нужно найти объем усеченного цилиндра, то понадобится не только R — радиус основания, но и наибольшая и наименьшая образующие. Они обозначаются буквой l — (l_{1}) и (l_{2}).
(V = pi times R^{2} times frac{l_{1} + l_{2}}{2}.)
Как высчитать объем конуса
Конус — это тело, состоящее из круга, точки, лежащей не в плоскости этого круга, и отрезков, которые соединяют вершину с точками основания.
(V = frac{1}{3} times S_{осн} times h = frac{1}{3} times pi times R^{2} times h.)
Чтобы найти объем усеченного конуса, понадобятся (R_{1}) и (R_{2}) — радиусы оснований, а также высота (h).
(V = frac{pi times h}{3} times (R_1^2 + R_2^2 + R_1 times R_2).)
Нахождение объема шара
Шар — это тело, состоящее из всех точек пространства, находящихся на расстоянии не больше заданного радиуса от центральной точки.
(R) — радиус полукруга, равный радиусу шара.
(V = frac{4pi times R^{3}}{3}.)
Источник