Температура кипения ртути в открытом сосуде

Температура кипения ртути в открытом сосуде thumbnail

 
Температура плавления ртути характеризует момент перехода металла из твердого состояния в жидкость. Свойства живого серебра (argentum vivum в переводе с латинского) расширяют границы применения металла в разных сферах производства с учетом мер безопасности, связанных с его использованием.

ртуть

При условии безопасности для человека, ртуть используют в разных сферах производства

Распространенность в природе

В земной коре концентрация химического элемента низкая. Ртутные рудные минералы содержат до 2,5% живого серебра. Это отличает их от других пород. В основном меркурий находится в рассеянной форме, и лишь часть находится в месторождениях.

В магматических породах долевое содержание живого серебра равно между собой, а в осадочных толщах крупные концентрации металла сосредоточены в глинистых минералах. Воды Мирового океана содержат 0,1 мкг/л меркурия.

Высокая степень ионизации определяет особенности металла:

    • восстанавливаться до состояния самородного элемента;
    • устойчивость к кислотной среде и кислороду.

Химический элемент присутствует в составе сульфидных минералов (сфалерит, реальгар). Этот металл является индикатором месторождений ртути и скрытых рудных тел. В поверхностных условиях живое серебро и киноварь не растворяются в воде, но при наличии серной кислоты, озона способствует увеличению показателя растворимости минералов.

Меркурий обладает отличными сорбционными свойствами. В природе существует около 20 минералов, содержащих этот металл, но промышленная добыча производится на месторождениях киновари.

Одно из крупнейших месторождений находится в Испании. Технология производства металла предусматривает обжиг киновари с последующей конденсацией и сбором паров ртути.

Физические и химические свойства живого серебра

Ртуть (меркурий) имеет уникальные химические и физические особенности, что позволяет ее применять в различных сферах. Но в то же время ее испарения опасны для человека. Как уже упоминалось, ее называют живым серебром, она по цвету напоминает лунный металл.

Меркурий обладает переходными свойствами, при комнатной температуре он остается в жидком состоянии. Живое серебро легко образует с другими материалами твердые и жидкие сплавы (амальгамы). Наиболее популярными являются соединения золота и серебра.

Какова температура плавления ртути? Живое серебро начинает плавиться при отрицательной температуре -38,83°C. При +18°C она испаряется, а закипает при +356,73°C.

Химический элемент является диамагнетиком, и в случае необходимости собрать его магнитом невозможно. Он неплохо проводит ток, поэтому в свое время его применяли при изготовлении реле и выключателей.

свойства ртути

Испарения ртути опасны для здоровья человека

Плотность живого серебра при нормальных условиях составляет 13,5 г/см³. Этот химический элемент обладает устойчивостью в сухом воздухе, окисляется только при нагревании выше +300°C. После длительного хранения на открытом воздухе на поверхности образуется пленка из оксидов компонентов, содержащихся в основном материале в качестве примесей.

При нагревании вступает в реакцию с кислородом, образуя оксид красного цвета. Металл малоактивный, не реагирует с растворами кислот, но растворяется в царской водке. При нагревании в серной кислоте образует сульфат ртути.

Сферы использования живого серебра

Ртуть применяется для изготовления точных измерительных приборов для определения температуры и давления. Сегодня в электрохимическом производстве широко используются ртутные выпрямители тока.

использование ртути

Разнообразные свойства ртути дали возможность использовать ее в самых разных сферах промышленности

В медицинской отрасли для проведения профилактических работ в качестве источников ультрафиолетового спектра применяются ртутные (газоразрядные) лампы, всем известные градусники для измерения температуры тела содержат этот химический элемент.

В связи с тем, что меркурий токсичен, его не используют для изготовления медицинских препаратов. Хотя до середины 70-х годов ее активно применяли для производства мази от педикулеза.

Измерительные приборы для низкотемпературных условий содержат амальгаму таллия, которая в отличие от чистой ртути застывает при температуре – 60°C. Сочетание 2 токсичных металлов значительно расширяет границы использования.

За рубежом кипящую ртуть используют в качестве охладителя. Ее преимущество поддерживать постоянную температуру позволяет интенсивно отводить тепло от пространства катализатора. Для увеличения коэффициента отдачи в ртуть добавляют натрий для образования амальгамы.

С целью размягчения кадмия, олова и серебра меркурий используют в стоматологии при изготовлении пломб. Раньше ее применяли для золочения деталей часов и ювелирных изделий, а амальгамы золота и серебра использовались при производстве зеркал.

Живое серебро применяется в качестве катода для извлечения ряда активных компонентов электролитическим путем, а также для переработки вторичного алюминия.

Существуют технологии извлечения золота из россыпей с использованием свойства химического элемента образовывать амальгаму с благородным металлом. Этот метод был широко распространен в Индии, где в местах предполагаемого скопления золота проделывали специальные углубления, в которые заливали металлическую ртуть. Через некоторое время вытаскивали амальгаму, и путем выпаривания извлекали золото.

В нефтеперерабатывающей промышленности для регулировки температурных процессов используют пары ртути. В сельском хозяйстве ее используют для подготовки семян к посеву.

С давних времен и сегодня соли меркурия используют при изготовлении фетра, дублении кожи в качестве катализатора органического синтеза.

В прошлом ртуть не считалась вредным веществом, ее применяли для исцеления от недугов. В Средневековье алхимики использовали меркурий в поисках философского камня и превращения ее в золото.

Ртуть опасна для человека, она токсична и даже в ничтожных концентрациях плохо влияет на иммунную систему, почки, глаза, кожу и пищеварительный тракт.

Кипение и плавление металла

плавление

Переход ртути в жидкое состояние происходит в специальных термометрах

Технология физико-химических исследований при условиях высоких температур рассматривает давление плавления металла при разных температурах. Точность опытов обеспечивает применение на практике свойств химического элемента № 80.

Для измерения температуры выше +360°C пользуются термопарами или специальными термометрами, в которых пространство надо ртутью заполнено газом. С целью повышения температуры кипения металла в капилляр надо ртутью закачивают азот. При давлении 30 атмосфер температурный градиент увеличивается до +600°C.

Такого типа термометры требуют постепенного нагрева. Нижним пределом такого измерительного прибора является температура перехода живого серебра в твердое состояние.

Теплоемкость металла с увеличением температуры последовательно уменьшается и после определенного порога температурного градиента начинает медленно расти. Это свойство и жидкое состояние роднит ртуть с водой.

Источник

Многие до сих пор не доверяют электронным градусникам и отдают предпочтение ртутным. Но ведь при определенных условиях они могут быть опасны для людей.

О последствиях разбитого термометра, воздействии ртути на организм и о том, как правильно избавиться от металла, рассказал доцент химического факультета ВГУ Юрий Ковыгин.

Об отравлениях и разбитом градуснике

«АиФ-Воронеж», Дарья Вербицкая: Можно ли отравиться ртутью от одного разбитого градусника?

Юрий Ковыгин: В градуснике порядка двух граммов ртути. Этого хватит, чтобы при правильном использовании отравить около 20 человек. Но сама по себе ртуть не так страшна, как её малюют. 

Ртуть – это металл, который реагирует не со всеми веществами. Если вы съедите градусник, то, скорее всего, проблемы будут не от ртути: больше неудобств доставит стекло. В желудке содержится соляная кислота, с которой ртуть не реагирует. Из-за ртути, возможно, будет сильное местное раздражение, боли в животе, которые потом пройдут. 

Читайте также:  Сосуды проросли в роговицу как это

Жидкий металл сам по себе мало опасен: ему не попасть глубоко в ткани. Плохо, если вы вдыхаете пары ртути: они поражают лёгкие. Чрезвычайно опасны соединения ртути, особенно растворимые и летучие. Ртуть активно взаимодействует с серой в составе белков и связывает многие ферменты организма, чем нарушает клеточный обмен. Попадая в организм, она ломает многие биохимические процессы.

Хроническое отравление, помимо прочего, приводит к нарушениям центральной нервной системы. Любимый кэрролловский герой – Безумный Шляпник – типичный пример: шляпники поражались соединениями ртути при изготовлении фетра.

– Забытый в квартире шарик ртути может навредить человеку?

– Температура кипения у ртути – 357 градусов, и при комнатной температуре она испаряется очень слабо. 

Если вы живете в квартире, в которой просто лежит шарик ртути под шкафом, то она, конечно, постепенно будет попадать в организм. Но и выводится из организма ртуть гораздо лучше, чем, например, свинец.

В нашем организме есть некоторое количество ртути. При увеличении нормы ртуть выводится почками. Токсическая доза ртути для человека – полмиллиграмма. С объёмом ртути меньше этой дозы организм справится без серьёзных проблем. Но если в организм будет попадать большее количество этого вещества, то тело не будет успевать от него избавляться и острое отравление перерастёт в хроническое. 

При комнатной температуре из большой капли ртуть испаряется медленно. Но если вы разобьёте градусник и начнете его подметать или пылесосить, то один шарик вы разделите на множество. Тогда опасность возрастёт многократно. Во-первых, испарение пойдёт активнее. А во-вторых, через некоторое время на её поверхность попадут бактерии, способные переводить этот металл в летучие соединения, такие как метилртуть. Такое соединение легче и в большем количестве попадает в организм. Оно может вызвать болезнь Минаматы (синдром, вызываемый отравлением органическими соединениями ртути– ред.). Органические соединения ртути испаряются, впитываются через кожу, попадают и в лёгкие и во все органы тела.

– Что делать, если разбился градусник?

– Если разбился градусник, ртуть собирается очень легко. Медной пластинкой или кисточкой из разлохмаченного медного провода прикасаетесь к шарикам, и они сразу в неё «втягиваются». Ртуть очень хорошо образует амальгамы (сплавы ртути с другими металлами при комнатной температуре – ред.), в частности с медью. Ещё советуют скотчем, но я не пробовал. Потом уже можно проветрить комнату. А собранные шарики ртути лучше отдать специализированным службам. 

Если очень страшно, то после сбора видимых шариков, можно химически связать оставшуюся на полу ртуть марганцовкой. Но нужно иметь в виду, что раствор нужен концентрированный: образно говоря, на стакан воды – стакан марганцовки. Скорее всего, этот раствор испортит любое покрытие. На местах, куда он попадёт, останутся чёрные пятна. 

Вообще, всем должны заниматься специалисты. Поэтому лучше всего вызвать команду демеркуризации из СЭС.

Переходим на электронные градусники

– Нужно ли помещать шарики ртути в воду? 

– Да, до передачи собранной ртути специализированным службам, есть смысл хранить её под слоем воды. Так она будет меньше испаряться. Хотя, просто герметично заткнутый пузырёк для хранения ничуть не хуже.

– Почему нельзя выбрасывать ртуть в канализацию?

– Потому что она попадёт в водоём, где на дне содержится ещё больше бактерий, чем в вашей квартире. Бактерии, как уже сказано, переводят её в органические производные. Ртуть попадает в природные воды, в подземные, в рыбу и другие организмы. 

– А если градусник разбить в постели – это опаснее?

– У ртути очень большое поверхностное натяжение – она не растекается, а сразу собирается в шарики, которые стремятся слиться друг с другом. Поэтому ртуть не впитывается в ткани. Собрать её так же легко, как и с гладкого покрытия. Но, если вы пропустили ртуть через мешок пылесоса, тогда она раздробится на микроскопические шарики, которые могут спрятаться в волокнах.

– Можно ли стирать вещи, которые соприкасались с ртутью?

– В воде ртуть проще раздробить. Если в вещах осталась ртуть, то при стирке она раздробится и прилипнет к барабану стиральной машинки изнутри, после чего превратится в амальгаму и останется там навсегда. Но, как уже говорилось, в ткани ртуть не впитывается, в машинку её можно засунуть разве что специально.

– Правда ли, что много ртути присутствует в рыбе и морепродуктах?

– Морские организмы накапливают этот металл, потому что естественное содержание ртути в воде довольно велико. Если превышен некоторый порог, если в рыбу попадает столько ртути, что она не может от неё избавиться, то ртуть накапливается во всех её частях. 

Но все морепродукты сейчас тестируются на ртуть и другие тяжёлые металлы, особенно после истории с Японией. Если содержание опасных соединений велико, в продажу такая рыба не попадёт. Ну, разве что на «стихийный» рынок.

– На ваш взгляд, каким лучше пользоваться термометром: электронным или ртутным?

– Хорошие электронные термометры, конечно, точнее, безопаснее, менее уязвимы. Но те, которые мы покупаем в аптеке, нередко бывают плохого качества, поэтому на них столько жалоб. 

В ртутном градуснике выходить из строя нечему. Разве что, столбик ртути может разорваться, если «стряхнуть» термометр неудачно. Однако, именно разбить термометр мы все боимся с детства. 

И есть смысл избавить себя и от ртути в доме, и от лишнего стресса. В конце концов, на дворе 21-й век! Поэтому переход на более технологичные электронные термометры неизбежен.

Источник

Крылатый дракон, пожирающий свой хвост (некоторые называют его Уроборос, что не совсем верно – понятие «Уроборос» имеет несколько широких толкований), людям немного знакомым с алхимией сразу дает понять, что речь идет о меркурии. Правда не о ближайшей планете к Солнцу, а о химическом элементе более известном, как ртуть.

Источник изображения: shutterstock.com

Находится этот элемент в таблице Менделеева сразу вслед за золотом и обозначается Hg, что расшифровывается как hydrargyrum. Это слово имеет древнегреческое происхождение и состоит из 2 частей: вода или «жидкость» и «серебро», что можно понимать как «жидкое (подвижное, живое) серебро».

Как и любой другой природный элемент, ртуть имеет некоторые свойства, отличающие ее от других веществ. Часть этих свойств настолько необычна, что на них стоит остановиться подробнее.

Металлическая жидкость

Из жизненного опыта каждому человеку известно, что любой металл имеет определенную форму, которую изменяет не очень охотно (ковкой или резкой) и прочность, и еще он совсем не текуч. А вот ртуть нарушает привычные представления, поскольку хоть и является при комнатной температуре очень подвижной жидкостью, это не мешает ей оставаться металлом.

Источник изображения: tn.com.ar

Читайте также:  Лечение при спазмах сосудов

Все дело в низкой температуре плавления в -39°C, что делает ее единственным жидким металлом при комнатной температуре (тут, правда, возможно и есть ошибка – у открытого в 1939 году крайне радиоактивного франция точка плавления находится между 18 и 21°C (определить точнее не удалось), а комнатной температурой считается 20°C).

Электропроводность

То, что хорошей электропроводностью обладают все металлы хорошо известно каждому школьнику. Но вот получить пары находящихся в твердом агрегатном состоянии металлов дело довольно сложное. А ртуть, она ведь жидкая изначально, и ее пары несложно получить и при невысоких температурах.

Ртутные лампы. Источник изображения:marchenotizie.it

Это свойство уже довольно давно используется (с неплохой экономией электроэнергии) в лампах дневного света, где под действием электричества светятся пары ртути. Правда, эти лампы обязательно нужно правильно утилизировать.

Линейное расширение

Под воздействием тепла каждое вещество расширяется (имеются редкие исключения – вода в промежутке от 0 до 4°C имеет тенденцию сжиматься). Беда в том, что многие вещества расширяются в одном температурном промежутке быстрее, а в другом медленнее. А вот ртуть расширяется практически линейно (равномерно), что делает этот металл практически идеальным для измерения температуры.

Ртутный термометр. Источник изображения: istockphoto.com

Ртутные термометры даже несколько точнее спиртовых, но обращаться с ними надо аккуратно, т. к. ртуть – вещество I класса опасности, а разбитый градусник – это самая распространенная причина попадания паров ртути в воздух помещений. О том как действовать в случае, если у вас разбился ртутный термометр можно ознакомиться в рекомендациях МЧС России.

Низкая температура плавления

Ртуть плавится при -39°C, что значительно ниже, чем у всех остальных металлов. Если в средней полосе ртутные термометры замерзают крайне редко (можно вспомнить разве что первые 2 года Великой Отечественной войны), то в высоких широтах в зимнее время их применение довольно ограничено. Там нужно применять термометры на спиртовой основе. Это свойство ртути было блестяще обыграно великим французским писателем Жюлем Верном в его романе «Путешествие и приключения капитана Гаттераса». Именно пулей, сделанной из замерзшей в термометре ртути, герои убили медведя, добыв таким образом себе пропитание.

Амальгама

Ртуть с легкостью создает сплавы со многими металлами, которые называются амальгамами. Правда, с железом ртуть не взаимодействует, почему ее и перевозят в стальных цистернах. Большая польза этих амальгам, что при обычных условиях такие сплавы устойчивые, но несложными действиями ртуть можно из сплава восстановить. Таким образом и покрывали в былое время различные вещи тонким слоем золота.

Источник изображения:anvari.org

И у зеркал на тыльной поверхности ранее был тонкий слой амальгамы. Теперь просто небольшое количество серебра.

Высокая плотность

Человеческая жизнь связана с водой. На интуитивном уровне плотность различных веществ сравнивается с плотностью самой распространенной жидкости на планете – тонет или не тонет. А литр ртути в 13,6 раза тяжелее литра воды, что кажется просто удивительным для жидкости.

В ртути будет спокойно плавать чугунное ядро, как будто шар из пробки на поверхности воды.

Если вам понравилась статья, то поставьте лайк и подпишитесь на канал Научпоп. Наука для всех. Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник

1. Температура кипения ртути при нормальном атмосферном давлении равна 357°С. Теплота испарения равна 283,2 Дж/г. Определить изменение давления пара ртути при изменении температуры на 1°С вблизи температуры кипения ртути при нормальном атмосферном давлении.

Решение:

Т = 357 + 273 = 630 К

DHисп = lисп×МHg = 283,2 Дж/г ×200,6 г/моль =

= 56810 Дж/моль

2. Давление паров воды при 97°С равно 90919,9 Па, а при 103°С – 112651,8 Па. Определить давление паров воды при 110°С.

Решение:

р3 = 143,4 кПа.

3. Удельная теплота плавления нафталина при tпл = 79,9оС равна 149,25 Дж/г. Разность удельных объемов в жидком и твердом состояниях (DV) при 79,9°С равна 0,146 см3/г. Определить изменение Тпл нафталина при увеличении давления в 100 раз по сравнению с атмосферным.

Решение:

;

Тпл = 79,9 + 273 = 352,9 К

Так как давление дано в Па, а DHпл в Дж/г то DV должно быть выражено в м3/кг, а энтальпия плавления в Дж/кг.

3,452×10–7 К/Па

DТпл = 3,452×10–7×(101,3×102×103 – 101,3×103) = 3,46 К.

Задачи для самостоятельного решения

1. Энтальпия испарения воды при температуре кипения при нормальном атмосферном давлении равна 2258,4 Дж/г. Определить изменение давления пара воды при изменении температуры на 1°С вблизи температуры кипения.

(Ответ: 3561 Па/К)

2. Температура кипения ртути при нормальном атмосферном давлении равна 357°С. Изменение давления пара ртути при изменении температуры на 1°С вблизи температуры кипения при нормальном атмосферном давлении равно 1,744×103 Па. Вычислить энтальпию испарения ртути в Дж/г.

(Ответ: 283 Дж/г)

3. Давление паров воды при 95° и 97°С соответственно равно 84513 и 90920 Па. Вычислить энтальпию испарения воды (Дж/моль) и количество теплоты, необходимое для испарения 100 кг воды.

(Ответ: 41,36 кДж/моль; 229,8 МДж)

4. Давление паров иода при 90°С равно 3572,4 Па, а при 100°С – 6065,15 Па. Определить давление паров иода при температуре 115оС.

(Ответ: 12748 Па)

5. Температура плавления (°С) нафталина в зависимости от давления (Па) выражается уравнением

Разность удельных объемов в жидком и твердом состоянии равна 0,146×10–3 м3/кг. Рассчитать энтальпию плавления при давлении 50,66×105 Па.

(Ответ: 187,4 кДж/кг)

6. Зависимость давления p пара никотина C10H14N2 от температуры t имеет вид (1 атм =760 мм рт. ст.)

По графику зависимости lnp от 1/T рассчитайте энтальпию испарения в указанном интервале температур.

(Ответ: 41,29 Дж/моль)

Фазовые равновесия в двухкомпонентных системах, перегонка

Основные уравнения

Если система состоит из двух компонентов, а на состояние равновесия влияют такие внешние факторы, как температура и давление, то правило фаз Гиббса имеет вид:

С = 2 – Ф + 2 = 4 – Ф. (145)

При Сmin = 0 число фаз Ф = 4. Следовательно, в двухкомпонентной системе число фаз, одновременно находящихся в равновесии, не может быть больше четырех (ж, п, Ат, Вт). Максимальное число степеней свободы Сmax при Фmin = 1 равно 3 (давление, температура и концентрации х1 одного из компонентов). При выражении концентрации в процентах или долях x1 = 1 – х2 и при выбранных параметрах (р, Т, х1 = 1 – х2) состояние двухкомпонентной системы можно изобразить с помощью трехмерной диаграммы. Часто состояние двухкомпонентных систем изучают при p = const или T = const. В этом случае уравнение (145) приобретает вид

Читайте также:  Можно ли капать офтальмоферон когда лопнул сосуд
С = 2 – Ф + 1 = 3 – Ф, (146)

а диаграмма, построенная в координатах “температура – состав” или “давление – состав”, будет плоской.

Равновесие «твердое вещество – жидкость».
Фазовая диаграмма системы с простой эвтектикой

Равновесия в системах «твердое вещество – жидкость» встречаются при изучении различных металлических сплавов, силикатов, водных растворов солей, систем, состоящих из органических соединений.

Особое значение имеют исследования зависимостей температур начала и конца кристаллизации твердых веществ от состава системы. Графики, выражающие эту зависимость, называются фазовыми диаграммамиили диаграммами плавкости.

Диаграммы плавкости строятся на основании результатов термического анализа, который заключается в наблюдении за скоростью охлаждения расплавленных чистых веществ и их смесей.

Диаграммы такого типа отвечают бинарным системам, в которых вещества неограниченно смешиваются в жидком состоянии, образуя гомогенный раствор и практически не растворяются в твердом состоянии, образуя гетерогенную систему из твердых фаз.

Рассмотрим построение и анализ такой диаграммы на примере системы из веществ А и В.

Рис. 41. Фазовая диаграмма системы

с простой эвтектикой

Линия – линия ликвидуса, линия MN – линия солидуса, они разбивают диаграмму на четыре области:

· область I –жидкий расплав;

· область II – гетерогенная система, состоящая из кристаллов вещества А и жидкого расплава переменного состава;

· область III – гетерогенная система, состоящая из кристаллов вещества В и жидкого расплава переменного состава;

· область IV – гетерогенная система, состоящая из смеси кристаллов А и В.

Каждая точка на диаграмме называется фигуративной и соответствует одному строго определенному состоянию системы в зависимости от того, где эта точка лежит.

Чтобы найти состав сосуществующих фаз, надо через фигуративную точку провести горизонталь до пересечения с граничными линиями, из точки пересечения с одной граничной линией опустить перпендикуляр на ось состава – это даст состав одной фазы, из другой – состав другой фазы. Например, для того чтобы найти состав сосуществующих фаз в точке r, проведем горизонталь до пересечения с линией ликвидус и опустим перпендикуляр из точки пересечения (S), определим массовую долю В в расплаве (ωВ), второй конец горизонтали пересекается с левой осью ординат, соответствующей чистому веществу А, находящемуся при температуре tr, ниже температуры его плавления (t0А), следовательно вещество А находится в виде кристаллов.

Диаграмма плавкости позволяет определить не только число фаз и их состав, но и относительные массы фаз, с помощью правила рычага:

, (147)

где gж – масса расплава, г; gтв – масса кристаллов, г.

Отрезки trr и rS измеряются на диаграмме в сантиметрах или миллиметрах (рис. 41).

Одним из методов построения диаграмм состояния является метод термического анализа, который заключается в построении кривых охлаждения. Рассмотрим пример: расплавим чистое вещество А и будем его равномерно охлаждать, измеряя температуру. Нанеся эти данные на график, получим кривую охлаждения(рис. 42). Кривая охлаждения любого чистого вещества (однокомпонентная система K = 1) будет состоять из трех участков ab, bc, cd.

Рис. 42. Кривая охлаждения чистого вещества

Изломы на кривых охлаждения (графиках в координатах «температура – время») свидетельствуют об изменении числа фаз в системе (рис. 42 и 43).

Участок ab соответствует охлаждению чистого жидкого вещества А, так как охлаждение ведется равномерно, то он соответствует прямой линии, наклоненной под определенным углом. Число степеней свободы (С) в такой системе рассчитываем по правилу фаз Гиббса: С = KФ + n; n = 1, а С = 1 – 1 + 1 = 1 (то есть температура понижается, но при этом сохраняется жидкая фаза).

Когда в жидкости появятся первые кристаллы, система станет двухфазной (твердая и жидкая фазы), а число степеней свободы становится равным нулю: С = 1 – 2 + 1 = 0. Следовательно, при охлаждении однокомпонентной системы (чистого вещества) температура не может изменяться, на кривой охлаждения появляется горизонтальный участок – участок bc.

Охлаждение системы компенсируется теплотой, которая выделяется при кристаллизации. Таким образом, температура горизонтального участка – это температура кристаллизации чистого вещества А.

Когда вся жидкость закристаллизуется, в системе останется одна фаза – твердая, число степеней свободы снова станет равно 1: С = 1 – 1 + 1 = 1.

Такая же кривая охлаждения соответствует и чистому веществу В, только горизонтальный участок будет наблюдаться при другой температуре (при температуре плавления В).

Теперь к твердому веществу А добавим 10% вещества В, смесь расплавим, получим расплав и будем его охлаждать. По результатам охлаждения построим кривую охлаждения (рис. 43), она состоит из четырех участков: mn, nf, fk и kl.

Рис. 43. Кривая охлаждения смеси

Участок mn соответствует охлаждению расплава:

С = 2 – 1 + 1 = 2.

Как только в расплаве появятся кристаллы вещества А (С = 2 – 2 + 1 = 1), температура системы будет понижаться уже медленнее из-за того, что при образовании кристаллов выделяется теплота, замедляющая охлаждение, на кривой появится изгиб (точка n), который будет указывать температуру начала кристаллизации (Tn). В соответствии с законом Рауля наблюдается понижение температуры замерзания раствора (температура начала выпадения кристаллов) по сравнению с температурой замерзания чистого жидкого вещества, поэтому Tn < . Следовательно, участок nf относится к охлаждению системы, состоящей из расплава и кристаллов вещества А.

При температуре Tk в системе появляются и кристаллы вещества В. Так как в твердом состоянии вещества A и В совершенно не растворяются друг в друге, а выделяются в виде самостоятельных твердых фаз, то Ф = 3 (две твердые фазы и жидкая). С = 2 – 3 + 1 = 0.

Температура остается постоянной, на кривой охлаждения наблюдается горизонтальный участок fk, температура, которая ему соответствует (Tk) – это температура конца кристаллизации 10% расплава вещества В.

После окончания кристаллизации (жидкая фаза исчезает), Ф = 2 (кристаллы А и кристаллы В), наблюдается охлаждение гетерогенной твердой системы (участок kl): С = 2 – 2 + 1 = 1.

Вид кривых охлаждения для расплавов других концентраций такой же, только перегиб появляется при строго определенной температуре (т.е. температура начала кристаллизации Tn для расплава индивидуальна). Но конец кристаллизации (горизонтальный участок) для расплавов всех концентраций отвечает одной и той же температуре Tk, ее называют температурой эвтектики.

Таким образом, каждая кривая охлаждения дает возможность определить две температуры –начала и конца кристаллизации.

Если нанести эти температуры на график в координатах «T – состав» и соединить между собой все точки начала кристаллизации (линия ликвидуса) и все точки конца кристаллизации (линия солидуса), то получим диаграмму плавкости, общий вид которой представлен на рисунке 41.

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Источник